
ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 5, Issue 2, February 2018

A model-based scheduling approach for selection of

Real-Time Scheduling Algorithm on basis of

Different Parameters
[1]

Ajitesh Kumar,
[2]

Mona Kumari,
[3]

S.K.Gupta
[1][2] GLA University,

[3]
BIET Jhansi

Abstract - In Modern days, the real-time system plays an important role in our modern and digital society. The success of any real-

time application is totally depends upon the selection of optimal scheduling algorithm. In real time application, every task should

have the nature of deadlines and time when they arrived, on the basis of these parameters we observe the response time of different

scheduling algorithm then we select the optimal algorithm for a particular application. So in this paper, our aim is to reduce the

complexity of real-time system researcher for selection of scheduling algorithm for a particular application. This model-based

approach is an extent the state of any real-time system in the area of scheduling. This approach works in any uniprocessor system.

Keywords: Hard RTS, Deadline, WCET.

I. INTRODUCTION & MOTIVATION

The real time system is much different to non-real time

system. They perform and gives result within a certain

duration of time. In real time application they monitor and

controls the process and must react to change in timely

fashion, sometimes in milliseconds. In Hard Real time

system, a sophisticated coordination is required and

timely responses to the events is a challenge, so for

scheduling of any real time application is required optimal

scheduling algorithm. This motivates the study and

evaluation of different real time algorithm and choose the

optimal algorithm for a time critical task because failure

to lead the loss of life and properties.

For any RTS, the major issue is scheduling algorithm.

There are many types of scheduling algorithm exists due

to various needs and requirements of real time

applications [5]. The selection of scheduling algorithm

having very importance in any real time application and

greatly influenced the algorithm will serve what kind of

system. In this research article we present a model based

approach that can be very helpful to the real time system

researcher for selection of optimal algorithm for a

particular real time application [8].

The two important characteristics of any real time

application is time of completion of task and when they

arrived. The tasks arrivals may be periodic with constant

intervals and may be aperiodic with random in nature.

[12] So that the important factor is a time constraint task

should be completed within their time interval and did not

miss their deadlines. The task having hard deadline must

be executed and gives result with in their specified time

period and never miss their deadline.

In different real time application, the nature of deadline

may be differing and if any task misses their deadline, the

significance of execution for such a task is nil. If any hard

deadline missed, that causes the failure of system.

Missing deadline is major factor for any hard real time

system so that the chosen of scheduling algorithms for a

particular task set is playing a very vital role to

successfully completion of task set and gives their

specified result in a given period of time, so in this paper

we are having much more concern with timing

requirement in hard real time system [14].

Any real time task set using some terminology to better

understand and carried out.

Release Time: Time required to any task to be ready to

release

Deadline: The finishing time of any task

Slack: Time available for maximum delay of any task

WCET: The time period required to complete any task

successfully and in critical condition.

Run Time: Require time for completion of task

Hard Real Time System: Deadline (Time Constraint)

should not be changed in any condition

Periodic Task: Task should have arrived after fixed time

interval

 269

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 5, Issue 2, February 2018

Aperiodic Task: Arrived at any random time constraints

and such task should not be having any predefined arrival

sequence

Sporadic Task: The pattern of arrival of task is a

combination of both periodic and aperiodic task, in this

type of task, they have Aperiodic execution time and rate

of execution is periodic in nature.

Pre-emptive/Non Pre-emptive: In Any real time, system it

is compulsory to execute higher priority task first but if

any lower task is executed with some resources it should

not be allow to higher priority task to execute first. In

same respect some task is never pre-empted their job. [6]

Fixed/Dynamic Priority: The priority of task is decided

either fixed in nature or may be changed according to

their need.

Independent/Dependent Task: In multitasking output

system one task execution may be depended on other task

results so may be some task having dependent and some

task have independent [9].

The dependent task is having the shared memory and they

communicate by transferring the information given by

one task and required by another task.

We are organizing this paper is as follows. In section II

we discuss some basic concept of real time system and

having comparative study of different types of real time

system algorithm and in section III we present the model

based approach for a selection of an optimal scheduling

algorithm for any real time application being the main

section of the paper. In the next section IV, we are having

some experiment result of real time application and

finally section V covers the conclusion and references.

II. ANALYSIS OF SCHEDULING ALGORITHM

For Real Time System we are having so many scheduling

algorithms but all algorithm falls in two categories one is

offline algorithm and another categories is online

scheduling.

In offline scheduling algorithm all decision like priority

allocation, deadline, resource allocation and execution

time are decided before the system started and scheduler

having complete knowledge about all task set. The offline

scheduling is very useful for any hard real time

application because if scheduler knowing the complete

knowledge about task set then it can execute as they meet

their deadlines.

In online scheduling, all decision should be taken at

runtime of the system and all scheduling decision depend

upon the assigned priority of the task set. The priority

decision may be static or dynamic in nature, in static the

decision about priority of the task is taken before start of

execution and dynamic assignment the decision about

priority should be taken at run time.

The goal of any real time system is to scheduler ensure

that the all task should meet their deadline and preventing

from simultaneous access to shared resources. In this

paper we are having the concern about only uniprocessor

system so we are going to discuss and analysis the

uniprocessor.

Fig 2. Real Time Scheduling Algorithm

Rate Monotonic Algorithm:

In rate monotonic is a static priority algorithm and

preemptive in nature.

This algorithm works on a simple concept. That is shorter

the execution period and having the higher priority.

 270

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 5, Issue 2, February 2018

That why they are used the periodic task set. This

algorithm should not be works for aperiodic and sporadic

task set [2].

1.The priority task should come after a fixed interval of

time and execute at the beginning of each period.

2.The deadline is shows the end of the period.

3.The tasks are not to be block by each other.

4.The scheduling overhead is assumed to be negligible.

Deadline Monotonic(DM)

In deadline monotonic algorithm also works with fix

priority task set, is very similar to the RM.

Some extensions have been performed on RM to increase

its performance. So that, when the tasks share its

resources, we can also use the RM.

In order to prevent the simultaneous use from the shared

resources, is used a technique called semaphore. In which

case, when the task arrives to the critical section, it will

lock and after the task exiting is released. The critical

section is a part of the code for access to a shared source.

blocking. It occurs when a task will not execute by tasks

with lower priority. To solve this problem, there are two

methods as follows: PIP (Priority inheritance protocol) If

a task blocks the task with higher priority, dynamically

task priority will change. PCP (Priority ceiling protocol)

This protocol has a semaphore that be allocated as the

priority ceiling. Hence, it prevents the deadlock

occurrence [6].

Dynamic algorithm:

Here there are two algorithms those are dynamic in nature

that’s varies at run time and decision should be made at

run time.

EDF (Earliest Deadline First)

This algorithm is dynamic in nature and based on a simple

concept.

Earliest deadline should have the highest priority and run

first. This algorithm gives best performance at run time

when at any time instance the scheduler decide which task

should be run first. At run time such type of decision is

very difficult for the scheduler. [5]

This algorithm works on pre-emptible task set.

All the condition and assumption should be valid and

same of RM algorithm accept deadline equal to the

execution time period.

Least Laxity First(LLF)

This algorithm work on the concept of lowest slack

availability run first on the processor.

This algorithm decide the schedule based on the laxity

means slack. [9]

The laxity is the time interval where the task should be

relaxed and execute without missing deadline.

III. PROPOSED SCHEDULER APPROACH

In this proposed method for selection of optimal

algorithm from different available algorithm we are

having a step by step method.

In this algorithm the response time analysis is done by

accepting the task set requirement in all expect. We are

having a ready task queue that hold the task arrival in the

system. And the task should have the different parameters

for the execution, these parameters should be analysis by

given input to the analyzer

Fig:2 Model for scheduling algorithm selection

Step by step model based algorithm gives the solution of

selection of scheduling algorithm for any real time

application.

 271

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 5, Issue 2, February 2018

Step 1: Initialize the ready queue of the model

Step 2: Enter the task sets

Step 3: All parameters should be entering in queue like

release time, execution time, deadline, WCET period and

if there is any relative deadline

Step 4: Now firstly check the task should be

periodic/Aperiodic/Sporadic in nature

Step 5: According to their nature the task set should be

analyses in task set parameter analyzer

Step 6: First we calculate the slack availability in the task

Step 7: If slack is not available

Step 8: then go to step 16

Step 9: according to availability of slack we calculate the

response time period by using different formulas

Step 10: Calculate Using different parameter, we check

the priority of the task if the priority of the task set is

fixed go to next step and if dynamic in nature go to step

17

Step 11: Then {Check the condition Deadline is equal to

the execution time period} if it is then

Step 12: calculate utilization bound area of the task set

)12(/1

1

N
N

i i

i N
T

C
U

 NU as 69.0

Where C is computation time and T is execution time

period and n is no of task.

Also we calculate response time of the task set

Where R is release time of the task.

Step 13: Then {Check the condition Deadline is less than

execution time period}

True then go to step 11

 Step 14: Then {Check the condition Deadline is less or

equal to the execution time period}

If true, then go to step 11

Step 15:

If the deadline is equal to the execution time, then

Utilization ratio =

1
1

N

i i

i

T

C

And for the response time period go to step 11

Else

Check deadline is equal or less than execution time then

also go to step 11 and calculate response time

Step16:

Now controller chosen the optimal algorithm based on

above step parameters.

 If Deadline is equal to execution time interval

Then

 rate monotonic algorithm and deadline first both are

optimal and then controller check the response time of the

task set, those have less response time that can be chosen

by controller as optimal algorithm

otherwise

Deadline first algorithm should be chosen by the

controller

Step 17:

If the slack is available and we can reach the deadline

with the execution time, then controller chosen the Least

laxity first algorithm directly and this algorithm the

scheduler does not any critical path.

Step 18:

Now the controller chosen the optimal algorithm

Step 19:

This information should be passes to the basic scheduler

by controller

Step 20: Now the basic scheduler having the information

about which scheduling algorithm is optimal for this

particular task set

Step 21: Then the basic scheduler schedule the task set on

the basis of algorithm which are chosen by controller.

Step 22: This schedule given to the CPU and task are

executed according the schedule

Step 23: Task Executed/ task Aborted by CPU

Step 24: END

 272

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 5, Issue 2, February 2018

This model based algorithm that help the basic scheduler

for chosen from the different available algorithm in real

time single processor system.

In this model we are implemented and tested two static

algorithms, rate monotonic and Deadline first algorithm

and two for dynamic, one is earliest deadline first and

another one is least laxity first algorithm.

IV. EXPERIMENTAL RESULT AND

ANALYSIS FOR REAL TIME APPLICATION

For verifying the performance of this model based

algorithm we are implemented and tested this approach in

MATLAB and experimental result shows that it works for

selection of the optimal algorithm.

Here we are considering a real time case study where 5

tiny computing device raspberry pi that can be repair in an

electronics hub and that can be scheduled like that it will

complete that job of repairing within a time limit and no

job should miss their deadline.

List of Job repairs:

Perform the replacement of the port16 of the Pi1 at 2:00

hrs.

Pi2 has restart automatically problem and ready at 12:00

hrs.

Pi3 has OS problem and repair by 4:00 hours.

Pi4 needs RAM replacement and needs to be ready before

3:00 hrs.

Pi5 has SD card slot problem and needs to repair at 1:00

hrs.

Time required for repairs:

Port16 replacement needs 1 Hr.

Restart Problem needs 2 hrs.

OS problem 2 hrs.

RAM replacement 1 Hrs.

SD Card Slot problems needs 1 Hrs.

So that

T1= (Pi1, 1, 9, 14)

T2= (Pi2, 2, 10, 12)

T3= (Pi3, 2, 8, 16)

T4= (Pi4, 1, 11, 15)

T5= (Pi5, 2, 9, 13)

1. All task is entered in ready queue (T1, T2, T3,

T4, T5) and task analyzer found the task set are periodic

in nature and having the fixed priority and then the

availability the slack should be check and find the slack

should not be available so that the time critical path

should be find and the information passes to the controller

to choose the best optimal algorithm. So for that the

controller check the deadlines of each and every task.

2. And controller find the deadline are less or equal

to the execution time period.

3. So that the controller performs the step 11 in the

given model based algorithm.

4. The controller found the response time of the

task set is 0.46875s.

5. So that controller should decide and passes this

information to the basic scheduler to schedule these task

on the basis of response time analysis and utilization ratio

of the task.

6. The information by controller is passes that RM

should be used and this is best optimal algorithm

7. Visualized by basic scheduler based on

controller information and scheduled by standard plot

function, plot schedule(TS,’pooc’,0)

8. And final schedule given to processor and all

task should be scheduled.

Fig3 shows scheduling by processor for raspberry pi

making batched in MATLAB

This experimental result shows that this model based

approach should be work in very efficient way and

 273

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 5, Issue 2, February 2018

schedule the task set by chosen best optimal algorithm

from available algorithms.

This model based approach having the capability of

chosen the optimal algorithm by controller and passed the

information to the basic scheduler and schedule and gives

information to the processor and processor will execute

the task set in such a manner no task should miss their

deadline.

In this example this algorithm also reduces the context

switching [1] in the processor that also help the processor

to save the consumption of the energy.

CONCLUSION

This model based approach will work in all aspect and

experimental result shows that this basic scheduler works

for finding out the best optimal algorithm for any real

time application.

As we know that a variety of real time algorithm are

available but this algorithm finds out the best optimal

algorithm and also scheduler gives the schedule to the

CPU.

This paper provides the analysis summary of schedule.

This model presents the algorithm that works on the basis

of controller. The controller has the ability to take the

decision.

 This algorithm only chosen the optimal algorithm form

four algorithm this can be improved and added some

more algorithm features so that this is the feature aspect

of the model based algorithm.

REFERENCES

[1] Ranvijay, Rama shankar Yadavand Smriti

“Efficient energy constrained scheduling approach for

dynamic real time system”, First International Conference

On Parallel, Distributed and Grid Computing (PDGC

2010)

[2] Mehrin Rouhifar and reza, “A servey on

Scheduling algorithm Approaches for Hard real Time

Systems ” IJCA December 2015.

[3] Robert. I, Davis, R and Burns A, “A Review of

Fixed Priority and EDF Scheduling for Hard Real-Time

Uniprocessor Systems”, EWiLi’13, August 26–27, 2013,

Toulouse, FRANCE

[4] Lindh. F, Otnes. T, Wennerström. J, “Scheduling

Algorithms for Real-Time Systems”.

[5] Davis, R. I. and Burns. A, “A Survey of Hard

Real-Time Scheduling for Multiprocessor Systems”,

ACM Computer Survey, Vol. 43, No.4, Article 35, 44

pages, 2011.

[6] Shamim Shiravi and Mostafa E. Salehi, “Fault

Tolerant Task Scheduling Algorithm for Multicore

Systems”, The 22nd Iranian Conference on Electrical

Engineering (ICEE 2014), 2014, Shahid Beheshti

University

[7] Sha L., Rajkumar R. and Lehoczky J. P.,

"Priority Inheritance Protocols: An Approach to Real

Time Synchronization", IEEE Transactions on Computers

39(9), pp. 1175-1185, September 1990.

[8] G. E. Moore, "Cramming more components onto

integrated circuits", Electronics, Vol. 38, No. 8,

McGraw-Hill, 1965

[9] F. Kong, W. Yi, and Q. Deng, "Energy-efficient

scheduling of real-time tasks on cluster-based multicores"

in Design, Automation & Test in Europe Conference &

Exhibition (DATE), pp. 1-6, 2011.

[10] W. Y. Lee, "Energy-efficient scheduling of

periodic realtime tasks on lightly loaded multicore

processors", Parallel and Distributed Systems, IEEE

Transactions on, vol. 23, pp. 530-537, 201

[11] J.-J. Chen and T.-W. Kuo, "Energy-efficient

scheduling of periodic real-time tasks over homogeneous

multiprocessors", in the 2nd international workshop on

power-aware real-time computing, pp. 30-35, 2005

[12] K. Manudhane, A. Wadhe, “QoS-Aware

Approaches to Real-Time task scheduling on

Heterogeneous Clusters”, international Journal of

Advanced Research in Computer Science and Software

Engineering, Volume 3, Issue 4, pp. 174−180, 2013

[13] K. Houben and A. Halan, “An Energy-Aware

Dynamic Scheduling Algorithm for Hard Real-Time

Systems”, 3rd Mediterranean Conference on Embedded

Computing, MECO – 2014, ACM, PP. 14-17.

[14] Abhaya K. Samal , R. Mall and C. Tripathy,

“Fault tolerant scheduling of hard real-time tasks on

 274

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 5, Issue 2, February 2018

multiprocessor system using a hybrid genetic algorithm”,

Elsevier. Swarm and Evolutionary Computation, 2014.

[15] S. Ghosh, R. Melhem, D. Mossé, “Fault-

tolerance through scheduling of aperiodic tasks in hard

real-time multiprocessor systems”, IEEE Trans. Parallel

Distrib. Syst. 8 (3), pp. 272-284, 1997.

[16] Mohammad H. Mottaghi and Hamid R. Zarandi,

“DFTS: A dynamic fault-tolerant scheduling for real-time

tasks in multicore processors”, Elsevier.Microprocessors

and Microsystems, Vol. 38, pp:88–97, 2014.

[17] A. Wiese, V. Bonifaci and S. Baruah,

“Partitioned EDF scheduling on a few types of unrelated

multiprocessors”, Springer, Real-Time Syst, vol. 49,

pp:219–238, 2013.

[18] G. Yao, R. Pellizzoni, S. Bak, E. Betti and M.

Caccamo, “Memory-centric scheduling for multicore hard

real-time systems”, Springer, Real-Time Syst, vol. 48,

pp:681– 715, 2012.

 275

