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Abstract - Nowadays, processing speed is one of the most important performance criteria of modern multicore processors. For 

achieving higher processing speed of processor various components are used, in which cache is one of them. As modern processors 

include multiple levels of caches and as cache associativity increases, it is important to revisit the effectiveness of common cache 

replacement policies. In this paper, we have analyzed the impact of different replacement policies such as LRU (Least Recently 

Used), FIFO (First In First Out), RANDOM, DIP (Dynamic Insertion Policy), PLRU-t (Pseudo Least Recently Used tree-based). We 

have used Simple Scalar as a simulation tool. We have taken the problem of matrix multiplication of different size 10 x 10, 100 x 

100, 500 x 500. 
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 I. INTRODUCTION 
 

Dictionary meaning of cache is “A collection of item of 

the same type stored in a hidden or inaccessible place”. 

Caches are generally the top level of the memory 

hierarchy and are made of SRAM (Static Random access 

Memory). The main structural difference between a cache 

and other level in the memory hierarchy is that caches use 

hardware to locate memory addresses whereas other 

memories use software or a combination of software and 

hardware. Cache memories are small fast memories used 

to temporarily hold the contents of portions of main 

memory that are likely to be used. Today caches have 

become an integral part of all processors. Performance 

improvement of microprocessors historically comes from 

both increasing the speed or frequency at which the 

processors run and by increasing the amount of task 

performed in each cycle. The increasing number of 

transistors on a chip has led to different ways of 

increasing parallelism [1].  

In multicore processors, two or more independent cores 

are combined into a single processing chip. In most of the 

cases, each processor has its own private level-1 cache 

memory (L1). Generally, the L1 cache memory is split 

into instruction cache and data cache. Also, multicore 

processors may have one shared level-2 (L2) cache or 

multiple distributed and dedicated L2s cache. 

 

A. Cache Memory  

Cache memory was first seen in the IBM system/360 

Model 85 in 1960. In 1980s, the Intel 486DX 

microprocessor introduced an on chip 8 KB L1 cache for 

the first time. In early 1990s an off chip L2 cache 

appeared with the 86DX4 and Pentium microprocessor. 

Generally, microprocessors usually have 128 KB or more 

of L1 and 512 KB or more of L2 and optional 2 MB or 

more Level 3 (L3) cache [2]. Cache memory resides 

between CPU and main memory.   

  

 
Fig:-1. Block Diagram of Cache 

  

The cache contains a copy of data of portions of main 

memory. When the processor attempts to read a word of 

memory a check is made to determine if the word is in the 

cache. If so, the word is delivered to the processor. If not 

complete block consisting of that memory word is 

brought into the cache and then that word is delivered to 

the processor. 

Cache memory is divided into two different parts; one is 

cache data memory and another is cache tag memory. 

Cache data memory contains various collections of 

memory words called cache block or line or page. Each 

cache block has a block address or tag. Collection of all 

block addresses or tags is called cache tag memory. When 

the CPU refers to memory and finds the word in cache, it 
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is said to produce a cache hit. If the word is not found in 

cache, it is in main memory and it counts as a miss. M. M. 

D.Hill et. al [3] classify cache misses into three 

categories: compulsory miss, conflict miss and capacity 

miss. A compulsory miss is the first access to a cache 

line. A capacity miss occurs when the cache size is too 

small to hold all the cache lines referenced by a program. 

A conflict miss occurs when multiple cache lines are 

mapped to the same set in the cache and the program 

subsequently references an evicted line. The 

transformation of data from main memory to cache 

memory is referred as a mapping process. Basically, there 

are three methods for mapping addresses to cache 

locations - direct mapping, associative mapping and set 

associative mapping. Direct mapping is the simplest 

technique which maps each block of main memory into 

only one possible cache line. In associative mapping each 

block of main memory maps into any line of the cache.  

In set associative mapping cache is divided into sets, each 

of which consists of cache lines or blocks and each block 

of main memory maps into any of lines of set [4].  

 

II. REPLACEMENT POLICIES 

 

Cache replacement policies determine which data blocks 

should be removed from the cache when a new data block 

is added. Well known policies are as follows: FIFO (First 

In First Out), LRU (Least Recently Used), RANDOM. 

FIFO selects for replacement of the block least recently 

loaded into cache. FIFO has advantage that it is very easy 

to implement by using a circular counter which points to 

the next cache block to be replaced; the counter is updated 

on every cache miss [5]. LRU policy selects for 

replacement of the block that was least recently (oldest 

block) accessed by the processor. This policy is based on 

the assumption that the least recently used block is the 

one least likely to be referenced in the future. The LRU is 

efficient, still it has some disadvantages. Such as LRU 

replacement policy wastes valuable high speed cache 

memory. Each time when a cache hit occurs, the cache 

controller must put a time counter value in memory 

location associated with the cache memory line. Another 

disadvantage with the LRU replacement policy is that it 

requires complex logic for implementation. When a 

replacement occurs, the cache controller compares all the 

cache memory line time counter values [6]. To reduce the 

cost and complexity of the LRU policy Random policy 

can be used but potentially at the expense of performance. 

A RANDOM replacement policy would select a block to 

replace in a random order, with no consider to memory 

references or previous selections [7]. Apart from this 

basic policies many researcher enhanced the replacement 

policies for next generation computing era. For our 

analysis we study basic policies as well as some enhanced 

policies.   

Pseudo-LRU (PLRU) is a tree-based approximation of the 

LRU policy.  In the tree-based replacement policy 

(number of ways -1) bits are used to track the accesses to 

the cache blocks or lines, where number of ways 

represents the number of cache blocks or lines in a set. 

Dynamic Insertion Policy (DIP) is a combination of two 

different replacement policies one is LRU and other is 

Bimodal Insertion Policy (BIP). BIP frequently places the 

incoming line in the Most Recently Used (MRU) position. 

Dynamic insertion policy selects the traditional LRU 

policy and BIP depending upon which policy has less 

number of miss. DIP requires runtime estimation of 

misses occurred by both the competing policies. For 

selection of policy, DIP uses the Policy Selector (PSEL), 

a saturated counter which keeps the hit or miss 

information [8][11]. 

Another factor which can also affect the performance of 

cache memory is locality of reference. The principle of 

locality of reference is a phenomenon describing the same 

value or related storage location being frequently 

accessed. Locality of reference assists the cache 

replacement polices there are two type of localities first is 

spatial and second is temporal. In spatial locality nearby 

memory locations are accessed frequently. In temporal 

locality same memory location is referenced frequently. 

In this work we also compare hardware complexity of the 

policies shown below table 1.1. 

 

    Hardware Complexity of Cache Replacement Policies 
Replacement 

policy 

Storage 

Requirement 

(bits) 

Action 

on Hit 

Action 

on Miss 

 

 

Random 

 

 

Log2(Way) 

 

 

None 

Update the 

Linear 

Feedback Shift 

Register 

 

LRU 

No. of set 

× Way 

× Log2 (Way) 

 

Update the 

LRU Stack 

 

Update the 

LRU Stack 
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FIFO No. of set × 

Log2(Way) 

None Update the 

FIFO Counter 

 

DIP 

 

No. of Way 

 

Update 

PSEL counter 

 

Update 

PSEL counter 

 

PLRU 

 

No. of Set × 

(way – 1) 

 

Increment the 

TREE counter 

 

Decrement the 

TREE counter 

Table 1.1 Hardware complexity of Replacement Policy      

 

III. REVIEW OF LITRATURE 

  

Our Review is based on various cache replacement 

policies and performance issues in multicore processors. 

Here, we present a brief review of the related work.  

  

Hussein Al-Zoubi et al [7] explored the performance of 

cache on the basis of replacement policies such as LRU, 

FIFO and Random. They found that the LRU policy in the 

data cache has better performance than FIFO and 

Random.  

  

According to Gheith A bandah et al [11] LRU Policy has 

been the standard replacement policy used for caches (L1, 

L2 caches). All basic policies such as FIFO, Random etc. 

are compared with the LRU and sometimes with other 

proposed replacement policies. 

  

James E. Smith et al [13] presented the instruction cache 

replacement policies. They proposed a new loop model. 

In this loop model, they found that random replacement 

has performed better than LRU and FIFO. However, each 

simulation has different cache sizes, different cache 

associativity and different benchmarks. Therefore, the 

performance comparisons of policies are less accurate. A 

unified simulation should be implemented for all policies 

to compare their performance. 

 

IV. PROBLEM OF MATRIX MULTIPILCATION 

 

In this paper we have taken the matrix multiplication. 

Matrix multiplication used to solve various problems in 

computer science like pattern recognizes, image 

processing and many scientific computations. It takes 

order of n3 time to compute n * n matrix. Here we present 

the block of multiplication code. 

Ans[N][M] = A[N][M]*B[N][M] 

Where N is Number of rows and M is Number of 

Columns. 

            for (i=0;i<N; i++) 

                 {   

                    for (j=0; j<M; j++ ) 

                         {     Ans[0][0]=0; 

                           for (k=0; k < N ; k++) 

      { 

           Ans[i][j] = Ans[i][j] + A[i][k] * B[k][j]; 

 }}} 

This code have temporal locality as index variable i, j, k 

and spatial locality as next element will be fetched i.e. an 

array.  

 

V. PERFORMANCE METRIC 

 

For measuring the performance of cache memory we use 

hit ratio and miss ratio. 

 Hit Ratio and Miss Ratio   

Hit Ratio denoted by H is defined as the ratio of the total 

number of hits and total no. of hits and misses. 

   
                

                                   
 

 

The cache hit ratio H should be almost one. s  Miss Ratio 

is denoted by M is defined as 

               

For measuring the performance of multi core processor 

we use Instruction Per Cycle (IPC) and Cycle Per 

Instruction (CPI). 

 IPC is number of instructions are executed in one cycle. 

IPC=  1/(Number of Instruction ) 

CPI is number of cycles are needed to execute one 

instruction.    

EXPRIMENTAL EVALUATION 

In this paper we have simulated various cache 

replacement policies such as LRU, FIFO, RANDOM, 

PLRU and DIP with the help of Simple Scalar trace 

driven simulator. The Simple Scalar is an open source 

trace driven simulation tool set for computer architecture. 

The Simple Scalar tool Set performs fast, flexible, and 

accurate simulations of a modern microprocessors [12]. 

This tool runs on Linux operating system, bind with GCC 

or FORTAN compiler and make a cross platform for 

binary file. 

To evaluate the performance of L1 cache on different 

cache replacement policies, we have implemented our 

experiment on quad core intel i3 (4 core) processor with 
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independent L1 instruction cache and L1 data cache, L2 

shared cache with 2-way associative. After environment 

setup we give the input of binary code of matrix 

multiplication. 

 

Table 1.2 Simulation Configurations 

L1 Instruction 

Cache Size (KB) 

4, 8, 16, 32, 64, 128, 256, 512 

L1 I Data Cache 

Size (KB) 

4, 8, 16 , 32, 64, 128, 256, 512 

L2 Unified cache  1 MB fixed 

Replacement 

Policies 

LRU, FIFO, RANDOM, PLRU, DIP 

Matrix size (float 

data type) 

10 x 10, 100 x 100, 500 x 500 

 

 

 Experiment Results 

After the implementation of above configuration we 

measures Hit ratio, Miss ratio, IPC, CPI and completion 

time. Result graphs are shown below:    

For problem of 10 x10, 100x 100, 500 x 500 matrix hit 

ratio graph is: 

 

 
Graph 1.1 Instruction Cache Hit Ratio for 10 x 10 

Matrix Multiplication 

    

 
Graph 1.2 Instruction Cache Hit Ratio for 100 x 100 

Matrix Multiplication 

  

 
Graph 1.3 Instruction Cache Hit Ratio for 500 x 500 

Matrix Multiplication 

 

 

 
Graph 1.4 Data Cache Hit Ratio for 10 x 10 Matrix 

Multiplication 
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Graph 1.5 Data Cache Hit Ratio for 100 x 100 Matrix 

Multiplication 

  

 
Graph 1.6 Data Cache Hit Ratio for 500 x 500 Matrix 

Multiplication 

 

 

 
Graph 1.7 of Cycle Per Instruction for 10 x 10 Matrix 

Multiplication 

 

 

 
Graph1.8 for Cycle Per Instruction of 100 x 100 Matrix 

Multiplication 

  

 
Graph 1.9 for Cycle Per Instruction of 500 x 500 Matrix 

Multiplication. 

  

 

 
Graph 1.10 Instructions Per Cycle for 10 x 10 Matrix 

Multiplication 
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Graph 1.11 Instructions Per Cycle for 100 x 100 Matrix 

Multiplication 

 

  

 
Graph 1.12 Instructions Per Cycle for 500 x 500 Matrix 

Multiplication Here we present simulation time graph 

for 100 x 100 and 500 x 500 with different cache size. 

 

 
Graph 1.13 Simulation Time of 100 x 100 Matrix 

Multiplication. 

 
Graph1.14 Simulation Time of 500 x 500 Matrix 

Multiplication. 

  

B) Result Analysis 

  Graph 1.1, 1.2, 1.3 presents the hit ratio of instruction 

cache. From these graphs we observed that when 

Instruction cache size increases, for the 10 x 10 problem 

RANDOM replacement policy gives better hit ratio. For 

the 100 x 100 problem DIP replacement policy gives 

better hit rate. For the 500 x 500 problem LRU 

replacement policy gives better hit rate. Graph 1.4, 1.5, 

1.6 presents the hit ratio of Data cache. From these graphs 

we observed that when Data cache size increases, for the 

10 x 10, 100 x 100 problems FIFO and DIP replacement 

policies gives better hit ratio. For the 500 x 500 problem 

LRU replacement policy gives better hit rate. 

 

Graph 1.7, 1.8, 1.9 presents the CPI from these graphs we 

observed that for the 10 x 10 and 100 x 100 problems 

PLRU and DIP replacement policies CPU takes less 

number of cycles. For the 500 x 500 problem LRU 

replacement policy CPU takes less number of cycles. 

Graph 1.10, 1.11, 1.12 presents the IPC, from these 

graphs we observed that for the 10 x 10 and 100 x 100 

problems with DIP replacement policies gives better 

result. For the 500 x 500 problem LRU replacement 

policy gives better result. 

Graph 1.13, 1.14 presents the execution time, from these 

graphs we observed that for the 100 x 100 and 500 x 500 

problem DIP replacement policies gives better result as 

compared with other replacement policies. 
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CONCLUSION 

 

In this paper, we focused on impact of replacement 

policies of first level split cache memory in multi core 

(quad core) processor.  From our simulation we observed 

that the larger cache size improves cache performance by 

taking advantage of spatial locality. From the result 

analysis we conclude that when the matrix multiplication 

problem size is smaller, than all replacement policies 

perform better. In Some simulation LRU policy performs 

better but due to hardware complexity it takes large time 

to compute the problem. For the large matrix 

multiplication problem DIP replacement policy takes very 

long time to compute. In our future work we will test 

other replacement policies with CPU intensive problems 

and to enhanced cache replacement policy.    
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