
ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 5, Issue 2, February 2018

Performance Analysis of First Level Cache Memory

Replacement Policies in Multicore Systems
[1]

Dhammpal Ramtake,
[2]

Sanjay Kumar
[1] School of Study in Computer science & IT

 Pt. Ravishankar Shukla University, Raipur (Chhattisgarh) 492010 India

Abstract - Nowadays, processing speed is one of the most important performance criteria of modern multicore processors. For

achieving higher processing speed of processor various components are used, in which cache is one of them. As modern processors

include multiple levels of caches and as cache associativity increases, it is important to revisit the effectiveness of common cache

replacement policies. In this paper, we have analyzed the impact of different replacement policies such as LRU (Least Recently

Used), FIFO (First In First Out), RANDOM, DIP (Dynamic Insertion Policy), PLRU-t (Pseudo Least Recently Used tree-based). We

have used Simple Scalar as a simulation tool. We have taken the problem of matrix multiplication of different size 10 x 10, 100 x

100, 500 x 500.

Keywords: Cache memory; Multicore system; replacement policies.

 I. INTRODUCTION

Dictionary meaning of cache is “A collection of item of

the same type stored in a hidden or inaccessible place”.

Caches are generally the top level of the memory

hierarchy and are made of SRAM (Static Random access

Memory). The main structural difference between a cache

and other level in the memory hierarchy is that caches use

hardware to locate memory addresses whereas other

memories use software or a combination of software and

hardware. Cache memories are small fast memories used

to temporarily hold the contents of portions of main

memory that are likely to be used. Today caches have

become an integral part of all processors. Performance

improvement of microprocessors historically comes from

both increasing the speed or frequency at which the

processors run and by increasing the amount of task

performed in each cycle. The increasing number of

transistors on a chip has led to different ways of

increasing parallelism [1].

In multicore processors, two or more independent cores

are combined into a single processing chip. In most of the

cases, each processor has its own private level-1 cache

memory (L1). Generally, the L1 cache memory is split

into instruction cache and data cache. Also, multicore

processors may have one shared level-2 (L2) cache or

multiple distributed and dedicated L2s cache.

A. Cache Memory

Cache memory was first seen in the IBM system/360

Model 85 in 1960. In 1980s, the Intel 486DX

microprocessor introduced an on chip 8 KB L1 cache for

the first time. In early 1990s an off chip L2 cache

appeared with the 86DX4 and Pentium microprocessor.

Generally, microprocessors usually have 128 KB or more

of L1 and 512 KB or more of L2 and optional 2 MB or

more Level 3 (L3) cache [2]. Cache memory resides

between CPU and main memory.

Fig:-1. Block Diagram of Cache

The cache contains a copy of data of portions of main

memory. When the processor attempts to read a word of

memory a check is made to determine if the word is in the

cache. If so, the word is delivered to the processor. If not

complete block consisting of that memory word is

brought into the cache and then that word is delivered to

the processor.

Cache memory is divided into two different parts; one is

cache data memory and another is cache tag memory.

Cache data memory contains various collections of

memory words called cache block or line or page. Each

cache block has a block address or tag. Collection of all

block addresses or tags is called cache tag memory. When

the CPU refers to memory and finds the word in cache, it

 505

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 5, Issue 2, February 2018

is said to produce a cache hit. If the word is not found in

cache, it is in main memory and it counts as a miss. M. M.

D.Hill et. al [3] classify cache misses into three

categories: compulsory miss, conflict miss and capacity

miss. A compulsory miss is the first access to a cache

line. A capacity miss occurs when the cache size is too

small to hold all the cache lines referenced by a program.

A conflict miss occurs when multiple cache lines are

mapped to the same set in the cache and the program

subsequently references an evicted line. The

transformation of data from main memory to cache

memory is referred as a mapping process. Basically, there

are three methods for mapping addresses to cache

locations - direct mapping, associative mapping and set

associative mapping. Direct mapping is the simplest

technique which maps each block of main memory into

only one possible cache line. In associative mapping each

block of main memory maps into any line of the cache.

In set associative mapping cache is divided into sets, each

of which consists of cache lines or blocks and each block

of main memory maps into any of lines of set [4].

II. REPLACEMENT POLICIES

Cache replacement policies determine which data blocks

should be removed from the cache when a new data block

is added. Well known policies are as follows: FIFO (First

In First Out), LRU (Least Recently Used), RANDOM.

FIFO selects for replacement of the block least recently

loaded into cache. FIFO has advantage that it is very easy

to implement by using a circular counter which points to

the next cache block to be replaced; the counter is updated

on every cache miss [5]. LRU policy selects for

replacement of the block that was least recently (oldest

block) accessed by the processor. This policy is based on

the assumption that the least recently used block is the

one least likely to be referenced in the future. The LRU is

efficient, still it has some disadvantages. Such as LRU

replacement policy wastes valuable high speed cache

memory. Each time when a cache hit occurs, the cache

controller must put a time counter value in memory

location associated with the cache memory line. Another

disadvantage with the LRU replacement policy is that it

requires complex logic for implementation. When a

replacement occurs, the cache controller compares all the

cache memory line time counter values [6]. To reduce the

cost and complexity of the LRU policy Random policy

can be used but potentially at the expense of performance.

A RANDOM replacement policy would select a block to

replace in a random order, with no consider to memory

references or previous selections [7]. Apart from this

basic policies many researcher enhanced the replacement

policies for next generation computing era. For our

analysis we study basic policies as well as some enhanced

policies.

Pseudo-LRU (PLRU) is a tree-based approximation of the

LRU policy. In the tree-based replacement policy

(number of ways -1) bits are used to track the accesses to

the cache blocks or lines, where number of ways

represents the number of cache blocks or lines in a set.

Dynamic Insertion Policy (DIP) is a combination of two

different replacement policies one is LRU and other is

Bimodal Insertion Policy (BIP). BIP frequently places the

incoming line in the Most Recently Used (MRU) position.

Dynamic insertion policy selects the traditional LRU

policy and BIP depending upon which policy has less

number of miss. DIP requires runtime estimation of

misses occurred by both the competing policies. For

selection of policy, DIP uses the Policy Selector (PSEL),

a saturated counter which keeps the hit or miss

information [8][11].

Another factor which can also affect the performance of

cache memory is locality of reference. The principle of

locality of reference is a phenomenon describing the same

value or related storage location being frequently

accessed. Locality of reference assists the cache

replacement polices there are two type of localities first is

spatial and second is temporal. In spatial locality nearby

memory locations are accessed frequently. In temporal

locality same memory location is referenced frequently.

In this work we also compare hardware complexity of the

policies shown below table 1.1.

 Hardware Complexity of Cache Replacement Policies
Replacement

policy

Storage

Requirement

(bits)

Action

on Hit

Action

on Miss

Random

Log2(Way)

None

Update the

Linear

Feedback Shift

Register

LRU

No. of set

× Way

× Log2 (Way)

Update the

LRU Stack

Update the

LRU Stack

 506

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 5, Issue 2, February 2018

FIFO No. of set ×

Log2(Way)

None Update the

FIFO Counter

DIP

No. of Way

Update

PSEL counter

Update

PSEL counter

PLRU

No. of Set ×

(way – 1)

Increment the

TREE counter

Decrement the

TREE counter

Table 1.1 Hardware complexity of Replacement Policy

III. REVIEW OF LITRATURE

Our Review is based on various cache replacement

policies and performance issues in multicore processors.

Here, we present a brief review of the related work.

Hussein Al-Zoubi et al [7] explored the performance of

cache on the basis of replacement policies such as LRU,

FIFO and Random. They found that the LRU policy in the

data cache has better performance than FIFO and

Random.

According to Gheith A bandah et al [11] LRU Policy has

been the standard replacement policy used for caches (L1,

L2 caches). All basic policies such as FIFO, Random etc.

are compared with the LRU and sometimes with other

proposed replacement policies.

James E. Smith et al [13] presented the instruction cache

replacement policies. They proposed a new loop model.

In this loop model, they found that random replacement

has performed better than LRU and FIFO. However, each

simulation has different cache sizes, different cache

associativity and different benchmarks. Therefore, the

performance comparisons of policies are less accurate. A

unified simulation should be implemented for all policies

to compare their performance.

IV. PROBLEM OF MATRIX MULTIPILCATION

In this paper we have taken the matrix multiplication.

Matrix multiplication used to solve various problems in

computer science like pattern recognizes, image

processing and many scientific computations. It takes

order of n3 time to compute n * n matrix. Here we present

the block of multiplication code.

Ans[N][M] = A[N][M]*B[N][M]

Where N is Number of rows and M is Number of

Columns.

 for (i=0;i<N; i++)

 {

 for (j=0; j<M; j++)

 { Ans[0][0]=0;

 for (k=0; k < N ; k++)

 {

 Ans[i][j] = Ans[i][j] + A[i][k] * B[k][j];

 }}}

This code have temporal locality as index variable i, j, k

and spatial locality as next element will be fetched i.e. an

array.

V. PERFORMANCE METRIC

For measuring the performance of cache memory we use

hit ratio and miss ratio.

 Hit Ratio and Miss Ratio

Hit Ratio denoted by H is defined as the ratio of the total

number of hits and total no. of hits and misses.

The cache hit ratio H should be almost one. s Miss Ratio

is denoted by M is defined as

For measuring the performance of multi core processor

we use Instruction Per Cycle (IPC) and Cycle Per

Instruction (CPI).

 IPC is number of instructions are executed in one cycle.

IPC= 1/(Number of Instruction)

CPI is number of cycles are needed to execute one

instruction.

EXPRIMENTAL EVALUATION

In this paper we have simulated various cache

replacement policies such as LRU, FIFO, RANDOM,

PLRU and DIP with the help of Simple Scalar trace

driven simulator. The Simple Scalar is an open source

trace driven simulation tool set for computer architecture.

The Simple Scalar tool Set performs fast, flexible, and

accurate simulations of a modern microprocessors [12].

This tool runs on Linux operating system, bind with GCC

or FORTAN compiler and make a cross platform for

binary file.

To evaluate the performance of L1 cache on different

cache replacement policies, we have implemented our

experiment on quad core intel i3 (4 core) processor with

 507

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 5, Issue 2, February 2018

independent L1 instruction cache and L1 data cache, L2

shared cache with 2-way associative. After environment

setup we give the input of binary code of matrix

multiplication.

Table 1.2 Simulation Configurations

L1 Instruction

Cache Size (KB)

4, 8, 16, 32, 64, 128, 256, 512

L1 I Data Cache

Size (KB)

4, 8, 16 , 32, 64, 128, 256, 512

L2 Unified cache 1 MB fixed

Replacement

Policies

LRU, FIFO, RANDOM, PLRU, DIP

Matrix size (float

data type)

10 x 10, 100 x 100, 500 x 500

 Experiment Results

After the implementation of above configuration we

measures Hit ratio, Miss ratio, IPC, CPI and completion

time. Result graphs are shown below:

For problem of 10 x10, 100x 100, 500 x 500 matrix hit

ratio graph is:

Graph 1.1 Instruction Cache Hit Ratio for 10 x 10

Matrix Multiplication

Graph 1.2 Instruction Cache Hit Ratio for 100 x 100

Matrix Multiplication

Graph 1.3 Instruction Cache Hit Ratio for 500 x 500

Matrix Multiplication

Graph 1.4 Data Cache Hit Ratio for 10 x 10 Matrix

Multiplication

 508

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 5, Issue 2, February 2018

Graph 1.5 Data Cache Hit Ratio for 100 x 100 Matrix

Multiplication

Graph 1.6 Data Cache Hit Ratio for 500 x 500 Matrix

Multiplication

Graph 1.7 of Cycle Per Instruction for 10 x 10 Matrix

Multiplication

Graph1.8 for Cycle Per Instruction of 100 x 100 Matrix

Multiplication

Graph 1.9 for Cycle Per Instruction of 500 x 500 Matrix

Multiplication.

Graph 1.10 Instructions Per Cycle for 10 x 10 Matrix

Multiplication

 509

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 5, Issue 2, February 2018

Graph 1.11 Instructions Per Cycle for 100 x 100 Matrix

Multiplication

Graph 1.12 Instructions Per Cycle for 500 x 500 Matrix

Multiplication Here we present simulation time graph

for 100 x 100 and 500 x 500 with different cache size.

Graph 1.13 Simulation Time of 100 x 100 Matrix

Multiplication.

Graph1.14 Simulation Time of 500 x 500 Matrix

Multiplication.

B) Result Analysis

 Graph 1.1, 1.2, 1.3 presents the hit ratio of instruction

cache. From these graphs we observed that when

Instruction cache size increases, for the 10 x 10 problem

RANDOM replacement policy gives better hit ratio. For

the 100 x 100 problem DIP replacement policy gives

better hit rate. For the 500 x 500 problem LRU

replacement policy gives better hit rate. Graph 1.4, 1.5,

1.6 presents the hit ratio of Data cache. From these graphs

we observed that when Data cache size increases, for the

10 x 10, 100 x 100 problems FIFO and DIP replacement

policies gives better hit ratio. For the 500 x 500 problem

LRU replacement policy gives better hit rate.

Graph 1.7, 1.8, 1.9 presents the CPI from these graphs we

observed that for the 10 x 10 and 100 x 100 problems

PLRU and DIP replacement policies CPU takes less

number of cycles. For the 500 x 500 problem LRU

replacement policy CPU takes less number of cycles.

Graph 1.10, 1.11, 1.12 presents the IPC, from these

graphs we observed that for the 10 x 10 and 100 x 100

problems with DIP replacement policies gives better

result. For the 500 x 500 problem LRU replacement

policy gives better result.

Graph 1.13, 1.14 presents the execution time, from these

graphs we observed that for the 100 x 100 and 500 x 500

problem DIP replacement policies gives better result as

compared with other replacement policies.

 510

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 5, Issue 2, February 2018

CONCLUSION

In this paper, we focused on impact of replacement

policies of first level split cache memory in multi core

(quad core) processor. From our simulation we observed

that the larger cache size improves cache performance by

taking advantage of spatial locality. From the result

analysis we conclude that when the matrix multiplication

problem size is smaller, than all replacement policies

perform better. In Some simulation LRU policy performs

better but due to hardware complexity it takes large time

to compute the problem. For the large matrix

multiplication problem DIP replacement policy takes very

long time to compute. In our future work we will test

other replacement policies with CPU intensive problems

and to enhanced cache replacement policy.

REFERENCES

[1] Alan Jay Smith, “Cache memory”, Computing

Surveys, ACM 0010-4892/82/0900-0473, Vol.

14, No. 3, September 1982, pp 473-531.

[2] Abu Asaduzzaman, Fadi N. Sibai, Manira Rani,

“Improving cache locking performance of

modern embedded systems via the addition of a

miss table at the L2 cache level”, Journal of

Systems Architecture, Vol. 56, No. 6, Elsevier,

2010, pp 151–162.

[3] M. D. Hill and A. J. Smith, “Evaluating

associativity in CPU caches”, IEEE Transactions

on Computers, Vol. 38, No. 12, December 1989,

pp 1612-1630.

[4] Zhenlin Wang, “Cooperative Hardware/Software

Caching for Next-Generation Memory Systems”,

Thesis (Ph.D), Department of Computer Science,

University of Massachusetts at Amherst,

February 2004, pp 31.

[5] John P.Hayes, “Computer Architecture and

organization”, Third Edition Tata McGraw Hill,

ISBN: 0-7-0027355-3, 1998, pp 451-452.

[6] William Stalling, “Computer Organisation and

Architecture”, Seventh Edition Pearson

Education, ISBN: 978-81-7758993-1, 2005, pp

30-31.

[7] Hussein Al-Zoubi, AleksandarMlienkovic,

Milena Mlienkovic, “Performance Evaluation of

Cache Replacement Policies for the SPEC

CPU2000 Benchmark Suit”, Proceeding of the

42th annual southeast regional conference

(ACM-SE’42), ACM, ISBN: 1-58113-870-9,

April 2004, pp 267-272.

[8] Moinuddin K. Qureshi, Aamer Jaleel, Yale N.

Patt, Simon C. Steely Jr. , Joel Emer, “Adaptive

Insertion Policies for High Performance

Caching”, Proceedings of the 34th annual

international symposium on Computer

architecture (ISCA’07), ACM, ISBN: 978-1-

59593-706-3, June 2007, pp 381-391.

[9] Jaeheon Jeong and Michel Dubois,“Cost-

Sensitive Cache Replacement Algorithms”,

HPCA '03 Proceedings in the 9th

International Conference, ACM, ISBN: 0-7695-

1871-0, 2003, pp 327-338.

[10] Fei Guo and Yan Solihin, “An Analtical Model

for Cache Replacement policy Performance”,

Proceedings of the joint international conference

on Measurement and modeling of computer

systems SIGMETRICS '06, ACM, ISBN: 59593-

320-4/06/0006, June 2006, pp 228-239.

[11] Gheith Abandah, “A Study on Cache

Replacement Policies”,

http://www.abandah.com/gheith/Courses/CPE73

1_F09/Research_Projects/3_Report.pdf,

University of Jordan, retrieved as on August

2017.

[12] Doug Burger, Todd M. Austin, “The

SimpleScalar Tool Set, Version 2.0”,

http://www.simplescalar.com, retrieved as on

April 2017.

[13] James E. Smith, James R. Goodman, “Instruction

cache replacement policies and organizations”,

IEEE Transactions on Computers, Vol. 34, No.

3, March 1985, pp 234-241.

 511

