
ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 5, Issue 2, February 2018

Implementation of a Perceptron-based Artificial

Neural Network Classifier Circuit on FPGA

Hardware
[1]

 Amit R. Chavan,
[2]

Ashwini Kumar Arya

[1] [2]

Project Engineer (ACTS), Centre for Development of Advanced Computing (C-DAC), Pune

Abstract - This paper elaborates the implementation of an unsupervised Artificial Neural Network (ANN) on FPGA hardware for

data classification. ANN is the best option to classify a large amount of data into several desired classes as per the characteristics

and parameters of the given data samples. Implementation of an unsupervised ANN on a chip eliminates the additional stage of

software simulation of the ANN for the given dataset, i.e. training of ANN using a software and then implementation of trained

ANN on FPGA chip. The Unsupervised ANN is implemented on Xilinx Virtex-4 FPGA, which consumes less on-chip resources,

consuming less power at optimum speed.

Keywords— Artificial Neural Network (ANN), Data Classification, Field-Programmable Gate Array (FPGA), Heaviside Step

Function, Neural Network Implementation, On-chip Neural Network Training, Perception, Unsupervised Learning.

1. INTRODUCTION

Data classification is an essential task in many of the daily

processes. From biomedical to agriculture, and from

statistics to space-science, data classification is widely

used to analyze several parameters so that they can be

“grouped” as per the desired characteristics or criteria.

Generally, data classification is done by manual (e.g.

classification by assigning workers), approximation (e.g.

by guessing from parameters like size), and several other

processes. But the methods like manual and

approximation are suitable if the data or objects to be

classified are smaller in number. For a large amount of

data, these methods prove time-consuming – means they

are taking more time to processing as the data increases.

So, for these scenarios, automated data classification

techniques can be the best option.

A. Problem Statement

For automated rapid data classification, use of an

Artificial Neural Network (ANN) is one of the efficient

options. Artificial Neural Networks (ANNs) are

computing systems which mimics the biological neural

networks. ANN „learns‟ i.e. progressively improves

performance to do tasks by considering examples without

task-specific programming. ANNs are preferred in such

applications, where a normal traditional algorithm with

rule-based programming proves difficult for

implementation. Generally, ANNs can be trained to

achieve the desired functionality by several learning

methods, known as Supervised and Unsupervised

Learning Techniques [1], [2].

In supervised learning, there are some input variables, an

output variable, and the implementation of such an

algorithm is required to learn the mapping function which

can map inputs and output variable [2]. That is, if „x‟ is

any input data and „y‟ is the output variable, then an ANN

should learn the mapping function y = f(x). The goal of a

supervised ANN is to approximate the mapping function

y = f(x), such that when a new input „x‟ is given to the

ANN, it should predict the output variables „y‟.

In the supervised learning process, the correct output class

or value is already known for an input, so the algorithm

repetitively makes predictions on the training data and is

corrected by the known output values, like a supervisor.

The learning process of ANN stops when the algorithm

reflects an acceptable level of performance [2].

 166

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 5, Issue 2, February 2018

Fig. 1: General representation of an ANN [1].

In unsupervised learning, there is only input data „x‟ and

no corresponding output variables „y‟. The purpose of

unsupervised learning is to train an ANN architecture by

such a way that, it can learn more about the data without

any external guidance. As opposite to supervised learning,

there are neither correct answers nor any supervision. So,

the algorithms fully depend on the ANN structure for data

clustering or data association [2].

For real-time data classification using ANNs, generally

there are two approaches usually followed: software-

based and hardware-based. In software-based approaches,

the data to be classified is in digital format. Hence, the

implementation and training of an ANN is done with the

aid of software tools. The advantage of ANN software

implementation is the related code is flexible. As the

application for ANN changes, code instructions can be

modified as per convenience. The main drawback of

ANN software implementation is the requirement of large

overhead for running in parallel with the ANN software

implementation by the operating system and other

software applications [3]. If the real-time data is hardware

input (e.g. switch or relay) or signal input (e.g. an EEG

signal or revolution per second value), taking help of

software tools should be less effective. This happens due

to hardware data we have to send to a host where it is

evaluated by a software tool, and after processing, we

have to send the processed output back to the hardware

where the user observes it actually. In such a case, ANNs

are first trained on a software tool. This trained ANN is

preferred to implement on FPGA Hardware. So, direct

implementation of ANN hardware which can be trained

without any external training software tool seems to be

beneficial. Implementing an ANN direct as hardware will

save conversion time and transmission time from one

medium (hardware) to another medium (software). Also,

as the computations are directly being performed by

hardware, the operating speed of ANN will be much

faster. Hardware implemented ANNs fully reflects the

parallel operation of the neurons, hence achieving a very

high speed of information processing as compared with

computer-based sequentially simulated ANNs [4].

B. Organization of the Paper

This paper is organized as follows: section II describes

the basic framework required for object counting

techniques using image processing. In Section III, the

methodology for implementation of an unsupervised

ANN on a Virtex-4 chip is presented. The results are

analyzed in section IV.

II. FRAMEWORK

Generally, any Artificial Neural Network i.e. ANN is

made up of planned interconnections of its basic elements

called as neurons. Neurons are behaviorally similar to the

neurons as in the mammalian nervous system. The basic

neuron can be represented as shown in Fig. 2.

Fig. 2: Structure of a basic neuron in ANN [1].

 167

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 5, Issue 2, February 2018

A. Input Reception and processing

For any neural network, inputs are given to several

building blocks (called as neurons) as per the ANN

architecture. Inputs are multiplied by several parameters

called as „weight‟, before giving as an input to each

neuron. Weights are assigned to the specific inputs. If a

neuron has „n‟ inputs, then it has „n‟ weights that can be

adjusted individually. During the training of ANN, values

of the weights can be adjusted considering the error of the

last test result [1].

B. Summing Junction

After processing by weights, the inputs are summed up to

obtain a single value. In this step, an adjustable offset

(called as bias) is also added to this sum. ANN can adjust

the bias value during the ANN training. At the beginning,

all the neurons have random values of weights and biases.

Weights and biases are changed by a small value after

every learning iteration so that the next result is a bit

closer to the desired output. This way, the ANN

approaches towards a state where it can be considered that

it has „learned‟ the desired patterns [1].

C. Activation Function

The result of the summing junction output is converted

into an output signal. This is done by passing this result to

an activation function. The most basic form of an

activation function is a simple binary threshold function

that has only two possible results: „high‟ and „low‟. A

similar activation function is described in Fig. 3.

Fig. 3: The Heaviside Step function.

 (If x1, x2, … xi are the inputs, w1, w2, … wi are their

respective assigned weights, and b is the bias added, then

the summing junction gives output, which can be

represented in the equation form as

bxw nin n ...3,2,1
 (1)

 If Φ(x) is the activation function of the neuron,

then as per the requirement, we can define Φ(x) as

otherwise 0

0 if 1
)(...3,2,1

bxw
x

nin n
 (2)

 These types of activation functions come under a

category termed as “the Heaviside Step function” [5].

This function returns 1 if the input is positive or zero, and

0 if the input is negative. A neuron having the similar type

of activation function is called as „perceptron‟ [1]. In this

work, these perceptrons are used with a slight

modification.

By joining or cascading such a neurons in the desired

way, a multilayer ANN can be constructed. Each layer

can have a number of neurons, who are taking inputs from

the previous layer and their outputs are cascaded to the

next layer. A representation of a multilayer ANN is

shown in Fig. 4.

Fig. 4: A generalized framework for a multilayer ANN.

Most of the recent works [6]-[9] have followed the same

framework; however, the activation functions, HDL

Language and target hardware are varying in each work.

III. METHODOLOGY

In this work, the proposed workflow is – to acquire three

1-bit input data, use the same to pass to a 3×2

Unsupervised ANN structure, performing convolution of

the processed inputs, and decision making for

classification of the given input combination by an

activation function. The simulation of the ANN is done in

Questa Sim 10.0b simulator software and its

 168

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 5, Issue 2, February 2018

implementation is done by using Xilinx ISE Design Suite

14.7 and Virtex-4 (XC4VLX25–10–FF668) FPGA

Development Board Hardware.

Fig. 5: Implementation scheme for the proposed

unsupervised 3×2 ANN. (Note: Activation function

block is not shown)

The ANN unit consists of two perceptrons, having three

single bit inputs and one single-bit output. The

arrangement of ANN using these perceptrons is shown in

Fig. 5. Here, A, B, and C are the inputs to the ANN and Y

and Z are the outputs with different activation functions.

The design of the ANN is done using Verilog Hardware

Descriptive Language (HDL).

A. Generation of Test Data

For the generation of a complete data set from three 1-bit

inputs, generally, 23 = 8 combinations are required. It

means, if A, B, and C are three inputs which are binary,

then we require eight combinations of all values of these

three variables – {A,B,C} = {(0,0,0), (0,0,1), (0,1,0),

(0,1,1), (1,0,0), (1,0,1), (1,1,0), (1,1,1)}. These data

combinations are generated by using three clock signals

with frequency f Hz, f/2 Hz, and f/4 Hz. The two signals

with frequencies f/2 Hz and f/4 Hz are obtained from the

first signal with frequency f Hz by implementing a

frequency-divider cum binary counter circuit. The

schematic representation is shown in Fig. 6. Here,

frequency divider unit is made up of cascaded D flip-

flops. The output of the frequency divider block is also

given to the LEDs so that user can observe that which

output is being provided to the input of the ANN block.

This hardware design helps to compare the input being

given to the ANN and output generated by the same, at

the same time. Hence, tallying the input-output becomes

easy and real-time. For Virtex-4 implementation, the

value of „f‟ is chosen as 1 Hz, so that step-by-step

changes can be easily observed by human vision.

Fig. 6: Hardware scheme for generation and interfacing

test data block (frequency divider block) and ANN block

B. Experimental Procedure

For implementing a perceptron, a scheme shown in fig. 2

is used. At first, a Verilog code for simple 3×1 ANN is

simulated and synthesized. If the circuit of ANN is made

asynchronous, it forms combinational loops within the

design, which leads to failure of the hardware

implementation of ANN. Combinational loops are logical

structures that do not contain any synchronous feedback

element like registers [10]. These loops affect the stability

of output and will generate different results than expected.

Since combinational loops make feedback with no any

register in loops, such a design violates the synchronous

principles [10]. Hence, synchronization of the design with

a periodic reference signal becomes necessary. Usage of a

clock signal for synchronization introduces flip-flops in

the design. Also, synchronization eliminates almost all

combinational loops in the digital circuit synthesized for

the ANN. Apart from the clock; a synchronous reset is

also introduced to the circuit for restarting the training

process if needed.

At first, the three inputs A, B and C are given to the

inputs of the two perceptrons. Let‟s call the perceptron

generating output Y as P-Y, and the perceptron generating

output Z as P-Z. The RTL Schematic of the

implementation of the 3×2 ANN is shown in Fig. 7. One

can compare Fig. 6 with Fig. 7 for understanding the

hardware implementation on Virtex-4. As per the

framework of a perceptron, the inputs are multiplied by

some configurable weights. The bias value can also be

 169

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 5, Issue 2, February 2018

fetched to a perceptron for covering the missing

classifications by linear equations of weight-input pairs

[11]. Referring Fig. 5, the formula for summing junctions

of P-Y and P-Z can be declared respectively as

SumY = (A × W1) + (B × W2) + (C × W3) + b1 (3)

SumZ = (A × W4) + (B × W5) + (C × W6) + b2 (4)

From the above formulas, it can be concluded that the

convolution takes place for all the input values. The

summation results can be cascaded to the activation

function unit. Now, for activation function, the Biased

Heaviside Step Function is preferred. It means that, if the

output is above the pre-decided threshold, the output of

the perceptron will be high. The threshold value is

reconfigurable via Verilog coding. For current

implementation, the biased threshold value is set to an

unsigned positive 31 (9'b000011111). The activation

function is same for both P-Y and P-Z, and the output is

also given to the respective perceptron outputs Y and Z.

Fig. 7: RTL Schematic of 3×2 ANN.

Fig. 8: RTL Schematic of a perceptron.

Now, for training the ANN, we have to reconfigure the

weights and biases to get exact classification as per

expectations. It is already known that inputs can have

only eight possible combinations. Hence, it is considered

that each perceptron must classify all the inputs in their

two respective categories, according to the weights and

biases applied. Each class can have half of the possible

input combinations i.e. four samples. To obtain this, for

each cycle of eight possible combinations, it is necessary

to count a number of all „highs‟ for each perceptron. If it

is less than four, we have to adjust weights and biases by

a specific value. The adjustment is continued for every

iteration of all combinations (can be considered as

learning iterations) till the circuit satisfied the said

condition for classification. The resultant RTL schematic

for the similar perceptron circuit is shown in Fig. 8. In the

figure, the block N1 (neuron3x1) consists of only input

processing unit (i.e. part of ANN where multiplication of

all inputs by weights happens) and summing junction.

The block CMP1 (comp_g) consists activation function

for the perceptron. The output is monitored for

modification in input processing parameters.

Almost all the blocks (excluding neuron3x1 and

comparators) uses the clock and reset signals for

synchronized operations. It increases the stability of

circuit operations and formation of glitches or

metastability in the outputs [12]. The same synthesized

design is later implemented on Xilinx ML401 Virtex-4

FPGA Development Board hardware, which is shown in

Fig. 9.

 170

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 5, Issue 2, February 2018

Fig. 9: A Vitrex-4 ML401 FPGA Development Board.

IV. ANALYSIS OF RESULTS

The simulation result of the 3×2 ANN design is displayed

in Fig. 10. From simulation results, it is clear that if all of

the processing parameters (i.e. weights and biases) are

reconfigurable, then ANN takes more time for training.

(Note: Compare wave labels of Fig. 10 with diagram

labels of Fig. 6 for easy understanding of simulation.)

TABLE I

Design Summary for 3×2 ANN with FDB

Logic Utilization Used Available Utilization

Number of Slice Flip

Flops
108 21,504 1%

Number of 4 input

LUTs
79 21,504 1%

Number of occupied

Slices
106 10,752 1%

Number of Slices

containing only

related logic

106 106 100%

Total Number of 4

input LUTs
80 21,504 1%

Number used as

logic
79

Number used as a

route-thru
1

Number of bonded

IOBs
7 448 1%

Number of

BUFG/BUFGCTRLs
1 32 3%

Average Fanout of

Non-Clock Nets
3.45

With a 100 MHz-to-1 Hz Frequency Divider Block

(FDB), this design can run with the clock signal having

minimum clock period 4.076 ns (i.e. maximum frequency

245.360 MHz) smoothly. The synthesis summary for the

same is given in Table I.

For considering an application-based implementation of

this 3×2 ANN on Virtex-4, the frequency divider block

can be removed and the inputs can be taken from other

interfaces. Without the 100 MHz-to-1Hz frequency

divider block, this design can run with the clock signal

having minimum clock period 3.462 ns (i.e. maximum

frequency: 288.863 MHz).

Fig. 10: Simulation Results for 3×2 ANN.

Fig. 11: Implementation results during the training of

the 3×2 ANN.

(a) For input combination 011. (b) For input combination

100. (c) For input combination 101.

West, Center and East LEDs are reflecting inputs C, B

and A respectively.

 171

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 5, Issue 2, February 2018

Fig. 12: Implementation results after training of the 3×2

ANN.

(a) For input combination 011. (b) For input combination

100. (c) For input combination 101.

North and South LEDs are displaying outputs Y and Z

respectively.

This is the maximum possible speed of the proposed on-

chip trainable unsupervised ANN for a Virtex-4 FPGA

hardware. The synthesis summary for the same is given in

Table II. Here, the number of bounded IOBs is increased

from 7 to 10, due to the removal of frequency divider

block (FDB) and taking actual inputs from hardware for

classification.

TABLE II

Design Summary for 3×2 ANN without FDB

Logic Utilization Used Available Utilization

Number of Slices 46 10752 0%

Number of Slice Flip

Flops
52 21504 0%

Number of 4 input

LUTs
81 21504 0%

Number of bonded

IOBs
10 448 2%

Number of GCLKs 1 32 3%

The implementation results of the 3×2 ANN on Virtex-4

Development Board are shown in Fig. 11 and Fig. 12

respectively. The inputs A, B, and C can be observed on

the East, Center and West LEDs respectively. The output

Y and Z are displayed on the North and South LEDs.

After training, the input-output combinations for the final

values of input processing parameters are displayed in

Table III. From results, we can conclude that – if we

consider {A,B,C} as a three-bit input binary number, the

ANN classifies the input by two ways. At output Y, if the

number lies in the upper half, Y goes high. At output Z, if

the number is odd, Z goes high. By designing activation

function algorithm circuit in different ways, we can obtain

different results.

TABLE III

Implementation results after training of 3×2

unsupervised ANN as per final values of weights and

biases

A B C Y Z

0 0 0 0 0

0 0 1 0 1

0 1 0 0 0

0 1 1 0 1

1 0 0 1 0

1 0 1 1 1

1 1 0 1 0

1 1 1 1 1

CONCLUSION AND FUTURE SCOPE

This work introduces a prototype hardware

implementation of a 3×2 perceptron-based unsupervised

ANN on Virtex-4 FPGA chip for data classification

purpose. These types of designs are much faster than

processor-based implementations, since they utilize the

comparatively less on-chip area. These designs can also

handle real-time data well as compared with software

simulated ANNs due to natural parallelism in the ANN

hardware. If the Unsupervised ANN has more

reconfigurable input processing parameters, the circuit of

activation function algorithm becomes more complex.

Hence, it is recommended to implement a trained ANN on

the chip rather than training the same on the hardware. If

area optimization is not important, then the similar

reconfigurable ANN hardware can be used smoothly in

application-based classification and regression circuits.

Such a neural network can be further developed for the

regression-based hardware where prediction of future

values can be done. Also, it can be used for automated

unsupervised classification of any fixed sized data. Since

 172

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 5, Issue 2, February 2018

on-chip training is enabled, the ANNs can still train

themselves after hardware implementation, leading to

auto-reconfiguration of ANN parameters. This is

equivalent to self-upgrading the hardware, which is the

rare phenomenon in hardware. These types of self-

learning hardware components can be further developed

as a neuroprocessor.

ACKNOWLEDGEMENTS

Authors are grateful to Mrs. Mita Karajagi (Associate

Director and Head of the Department), Mr. Aditya Kumar

Sinha (Joint Director), Mrs. Risha P. (Joint Director), and

all the staff of Adavanced Computer Training School

(ACTS), C-DAC Innovation Park, Pune (India) for their

support in the research activities.

REFERENCES

[1] Omondi, Rajapakshe, FPGA Implementations of

Neural Networks, Springer.

[2] Brownlee, Master Machine Learning

Algorithms.

[3] Ayman Youssef, Mohammed, Nasar, “Two

Novel Generic, Reconfigurable Neural Network FPGA

Architectures”, IEEE 4th International Conference on

Artificial Intelligence with Applications in Engineering

and Technology, 2014.

[4] Dinu, Cirstea, “A Digital Neural Network FPGA

Direct Hardware Implementation Algorithm”, IEEE

International Symposium on Industrial Electronics (ISIE),

2007.

[5] Kanwal, Generalized Functions: Theory and

Technique, 2nd ed. Boston, MA: Birkhäuser, 1998.

[6] Chaitra, “Hardware Implementation of Artificial

Neural Networks using Back Propagation Algorithm on

FPGA”, International Journal of Research in Engineering

and Technology, Vol. 05 Sp. Issue 04, pp. 211-214, May

2016.

[7] Elmisery, Khalil, Salama, Algeldawy,

“Adaptation of ANN For FPGA Implementation and its

Application for Speaker Identification”, IEEE

International Conference on Electrical, Electronic and

Computer Engineering, pp 317-320, 2004.

[8] Shah, Vishwakarma, “FPGA implementation of

ANN for reactive routing protocols in MANET”, IEEE

International Conference on Communication, Networks

and Satellite, pp. 11-14, July 2012.

[9] Langer, Bhat, Agarwal, “Neural-network-based

space-vector pulse-width modulation for capacitor voltage

balancing of threephase three-level improved power

quality converter”, IET Power Electronics, vol. 7, issue 4,

pp. 973-983, April 2014.

[10] Fayyazi, Kirsch, “Efficient Simulation of

Oscillatory Combinational Loops”, 47th ACM/IEEE

Design Automation Conference (DAC), June 2010.

[11] Smola, Vishwanathan, Introduction to Machine

Learning, Cambridge University Press.

[12] Wakerly, Digital Design: Principle and Practices,

4th Edition, Pearson.

 173

