
ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 5, Issue 1, January 2018

 129

Profiling and Synthesis of Leaky Bucket Algorithm

for Network Processor
[1] Neha Jain,

[2]
Dr. M.K. Jain

[1][2]
 Department of Computer Science, Mohanlal Sukhadia University

Udaipur, Rajasthan 313001, India

Abstract - Leaky Bucket algorithm is used in packet switched networks for traffic shaping of data transmissions. In this paper we

gather the profiling data of software implementation of the algorithm. Memory consumption of software algorithm is very high.

Also the software implementation is not optimized. To implement the code we use hardware description language like VHDL.

Hardware implementation of the algorithm is taking only 197520 kilobytes of memory. Only 2138 Slice registers are used out of

12490. Only 4129 Slice LUTs are used out of 12490. Only 25 bonded IOBs are used out of 172. Thus the devise utilization is 17%,

33%, 14% respectively.

Keywords — Leaky Bucket, traffic shaping, network processor, profiling, Valgrind tool, Massif Visualizer.

1. INTRODUCTION

Leaky bucket algorithm is used for traffic shaping in data

transmissions. Traffic shaping means to regulate the data

flow. It is a method of congestion control. Leaky Bucket

algorithm is used to control the data rate in data

transmission. Here bucket refers to buffer. If bucket or

buffer overflows then the packets are discarded. Packets

entered in the buffer in different – different rates. But

output rate remains constant. By averaging the data rate

this algorithm converts the bursty traffic into constant rate

traffic.

In [1] authors studied Leaky Bucket algorithm with loss

priorities. In [2] authors published that required bucket

size increased linearly with the average number of bits

generated during an on period, and increase

logarithmically with the decrease in loss or mark

probability. In [3] authors proposed Leaky Bucket

algorithms. Author suggested these algorithms for

sustainable-cell-rate usage parameter control in ATM

networks. One is the fuzzy leaky bucket algorithm, and

the other is the neural fuzzy leaky bucket algorithm. In [4]

author proposed Buffered Leaky Bucket algorithm, for

ATM networks. In [6] author proposed a Network

processors (NPs) for active networks (AN). In [7] author

studied the effect of concurrency in network processors

on packet ordering In this paper to dynamically analyze

(profiling) the algorithm we use Valgrind tool. Using this

tool we can easily calculate space and time complexity of

any algorithm. In Section 2 profile data is shown which is

generated by using KCachegrind visualization tool. We

also used Massif Visualizer to view the memory

consumption. After generating profiling data we try to

reduce space and time complexity of the program. For the

purpose we switched to hardware platform. Section 3

shows the hardware implementation of the algorithm. We

develop the program in Xilinx ISE using Vertex 5 board.

Section 4 and section 5 shows the result and conclusion

respectively.

2. PROFILING OF THE LEAKY BUCKET

ALGORITHM

After compilation of the program we run Massif to collect

the profiling information, and then we run ms_print

command to present the results in a readable form.

Fig. 1. Memory consumption occurred as the program

executed

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 5, Issue 1, January 2018

 130

In fig. 1 the graph shows how memory consumption

occurred as the program executed. In the above graph

each vertical bar represents a measurement of the memory

usage at a certain point in time. Normal snapshots taken

by Massif are represented in the graph by using ':'

character bars. '@' character is used to represent detailed

snapshots. In above graph total 75 snapshots have been

taken. Out of which 7 snapshots [2(peak), 18, 26, 30, 38,

55, 65] are detailed snapshots. '#' character is used to

represent the peak snapshot in the graph. In following

graph 2nd snapshot is the peak snapshot. Peak snapshot

shows that memory consumption was very high at this

point.

Fig. 2. Snapshot with Normal Information Recorded

Fig. 2 shows the information taken on various snapshot.

These snapshots are normal, so only a small amount of

information is recorded for them.

In fig. 3 we can also see an allocation tree which indicates

exactly which pieces of code is responsible for allocating

heap memory. We read allocation tree from top to down.

This allocation tree shows that 1,024B of useful heap

memory has been allocated and arrows show that this is

from different code location. The „->‟ indicates that

_IO_file_doallocate called malloc function.

_IO_doallocbuf called _IO_file_doallocate.

_IO_doallocbuf is responsible for 1024B. Thus we can

see at this point every allocation so far is due to main. In

this allocation tree we can also see the time taken in every

point on which snapshot is taken. This time is measured

in millisecond.

Fig. 3 Snapshot with Detail Information Recorded

Fig. 4 Snapshot with Detail Information Recorded

Tree allocation of fig. 4 shows that 2,048B has been

allocated. _IO_file_overflowGLIBC_2.2.5 is responsible

for 2,048 B. The lines and arrows indicate that this is also

from two different code locations line no 1339 in file

fileops.c is responsible for 1,024B and line no 564 in

fileops.c is responsible for other 1,024B.

Fig. 5 Memory Consumption Graph

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 5, Issue 1, January 2018

 131

Graph showed in fig. 5 is generated by using massif

Visualizer. It shows the total memory consumption in

each snapshot during the execution of the program. In fig.

6 (A) we can see that Inclusive cost for main () is 62.61

and self cost is .45. Where the inclusive cost is high and

self cost is low then we have to optimize that function.

Similarly in fig. 6 (B) inclusive cost is 30.08 and self cost

is 2.30. We have to also optimize this function.

Fig. 6 Inclusive and self cost of functions

By using above profiling data we conclude that when we

execute the algorithm in C environment time and space

complexity is very high. To efficiently use this algorithm

in network processor we implement this algorithm in

hardware platform using Xilinx ISE Vertex 5 board.

3. IMPLEMENTATION OF CODE IN XILINX ISE

The following code shows that how data is generated on

different-different data rates.

3.1 Clk_divider.vhd

library IEEE;

USE IEEE.STD_LOGIC_1164.ALL;

USE IEEE.NUMERIC_STD.ALL;

-- ENTITY DESCRIPTION

entity CLK_DIVIDER is

Port (

CLK : in STD_LOGIC;

RST : in STD_LOGIC;

EN : in STD_LOGIC;

INDataRate: in STD_LOGIC_VECTOR (2 downto 0);

OUTDataRate: in STD_LOGIC_VECTOR (2 downto 0);

WriteEn : out STD_LOGIC;

ReadEn : out STD_LOGIC); end CLK_DIVIDER;

 -- ARCHITECTURE DESCRIPTION

architecture Behavioral of CLK_DIVIDER is

signal WriteEnable : STD_LOGIC;

signal ReadEnable : STD_LOGIC;

begin

clk_divider_process : process (CLK)

variable MaxCountValue_WR : natural range 0 to

1000000 -1;

variable FreeRunningCount_WR : natural range 0 to

1000000 - 1;

variable MaxCountValue_RD : natural range 0 to

1000000 - 1;

variable FreeRunningCount_RD : natural range 0 to

1000000 – 1;

begin

if rising_edge(CLK) then

if RST = '1' then

 FreeRunningCount_WR := 0;

 FreeRunningCount_RD := 0;

 MaxCountValue_WR := 500;

 MaxCountValue_RD := 500;

 WriteEnable <= '0';

 ReadEnable <= '0';

else

if EN = '1' then

case (INDataRate) is

 when "000" => MaxCountValue_WR := 500;

 when "001" => MaxCountValue_WR := 250;

 when "010" => MaxCountValue_WR := 167

 when "011" => MaxCountValue_WR := 125;

 when "100" => MaxCountValue_WR := 100;

 when "101" => MaxCountValue_WR := 84;

 when "110" => MaxCountValue_WR := 72

 when "111" => MaxCountValue_WR := 63;

 when others => MaxCountValue_WR := 500;

end case;

case (OUTDataRate) is

 when "000" => MaxCountValue_RD := 500;

 when "001" => MaxCountValue_RD := 250;

 when "010" => MaxCountValue_RD := 167;

 when "011" => MaxCountValue_RD := 125;

 when "100" => MaxCountValue_RD := 100;

 when "101" => MaxCountValue_RD := 84;

 when "110" => MaxCountValue_RD := 72;

 when "111" => MaxCountValue_RD := 63;

 when others => MaxCountValue_RD := 500;

end case;

 FreeRunningCount_WR := MaxCountValue_WR;

 end if;

if FreeRunningCount_WR = 0 then

 FreeRunningCount_WR := MaxCountValue_WR;

 WriteEnable <= '1';

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 5, Issue 1, January 2018

 132

else

 FreeRunningCount_WR := FreeRunningCount_WR -

1;

 WriteEnable <= '0';

end if

if FreeRunningCount_RD = 0 then

 FreeRunningCount_RD := MaxCountValue_RD;

 ReadEnable <= '1';

else

 FreeRunningCount_RD := FreeRunningCount_RD -

1;

 ReadEnable <= '0';

end if;

end if;

end process;

 WriteEn <= WriteEnable;

 ReadEn <= ReadEnable;

end Behavioral;

3.2 design.vhd

This is the main code. It calls Clk_divider.vhd and fifo.v

in turn.

library IEEE;

USE IEEE.STD_LOGIC_1164.ALL;

USE IEEE.NUMERIC_STD.ALL;

-- ENTITY DESCRIPTION

entity LEAKY_BUCKET is

Generic (

constant DATA_WIDTH : positive := 8;

constant FIFO_DEPTH : positive := 256);

 Port (

CLK : in STD_LOGIC;

RST : in STD_LOGIC;

EN : in STD_LOGIC;

INDataRate : in STD_LOGIC_VECTOR (2 downto 0);

OUTDataRate : in STD_LOGIC_VECTOR (2 downto

0);

DataIn: in STD_LOGIC_VECTOR (DATA_WIDTH - 1

downto 0);

DataOut: out STD_LOGIC_VECTOR (DATA_WIDTH -

1 downto 0););

end LEAKY_BUCKET;

-- ARCHITECTURE DESCRIPTION

architecture Behavioral of LEAKY_BUCKET is

signal WriteEn : STD_LOGIC;

signal ReadEn : STD_LOGIC;

-- COMPONENT DECLARATION OF STANDARD

FIFO

 component STD_FIFO

 Generic (

constant DATA_WIDTH : positive := 8;

constant FIFO_DEPTH : positive := 256);

Port (

CLK : in STD_LOGIC;

RST : in STD_LOGIC;

WriteEn : in STD_LOGIC;

DataIn: in STD_LOGIC_VECTOR (DATA_WIDTH - 1

downto 0);

ReadEn : in STD_LOGIC;

DataOut: out STD_LOGIC_VECTOR(DATA_WIDTH -

1 downto 0)

); end component;

 -- COMPONENT DECLARATION OF CLOCK

DIVIDER

 component CLK_DIVIDER

Port (

CLK : in STD_LOGIC;

RST : in STD_LOGIC;

EN : in STD_LOGIC;

INDataRate : in STD_LOGIC_VECTOR (2 downto 0);

OUTDataRate : in STD_LOGIC_VECTOR (2 downto

0);

WriteEn : out STD_LOGIC;

ReadEn : out STD_LOGIC);

end component;

begin

-- INSTANCE OF STANDARD FIFO

FIFO: STD_FIFO

GENERIC MAP (

FIFO_DEPTH => FIFO_DEPTH,

DATA_WIDTH => DATA_WIDTH)

PORT MAP (

CLK => CLK,

RST => RST,

WriteEn => WriteEn,

DataIn => DataIn,

ReadEn => ReadEn,

DataOut => DataOut

); -- INSTANCE OF CLOCK DIVIDER

 CLKDIV: CLK_DIVIDER

PORT MAP (

 CLK => CLK,

 RST => RST,

 EN => EN,

 INDataRate=> INDataRate,

 OUTDataRate=> OUTDataRate,

WriteEn => WriteEn,

ReadEn => ReadEn);

end Behavioral;

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 5, Issue 1, January 2018

 133

3.3 fifo.vhd

In following code we have maintained first in first out

buffer. This buffer is used to store the incoming and

outgoing packets.

library IEEE;

USE IEEE.STD_LOGIC_1164.ALL;

USE IEEE.NUMERIC_STD.ALL;

 entity STD_FIFO is

Generic (constant DATA_WIDTH : positive := 8;

constant FIFO_DEPTH : positive := 256);

Port (

CLK : in STD_LOGIC;

RST : in STD_LOGIC;

WriteEn : in STD_LOGIC;

DataIn : in STD_LOGIC_VECTOR (DATA_WIDTH - 1

downto 0);

ReadEn : in STD_LOGIC;

DataOut: out STD_LOGIC_VECTOR(DATA_WIDTH -

1 downto 0)

); end STD_FIFO;

architecture Behavioral of STD_FIFO is

signal Full : STD_LOGIC;

signal Empty : STD_LOGIC;

begin -- Memory Pointer Process

fifo_proc : process (CLK)

type FIFO_Memory is array (0 to FIFO_DEPTH - 1) of

STD_LOGIC_VECTOR (DATA_WIDTH - 1 downto 0);

variable Memory : FIFO_Memory;

variable Head : natural range 0 to FIFO_DEPTH -1;

variable Tail : natural range 0 to FIFO_DEPTH - 1;

variable Looped : boolean;

begin

if rising_edge(CLK) then

if RST = '1' then

 Head := 0;

 Tail := 0;

 Looped := false;

 Full <= '0';

 Empty <= '1';

else

if (ReadEn = '1') then

if ((Looped = true) or (Head /= Tail)) then --

Update data output

 DataOut <= Memory(Tail); -- Update Tail pointer as

needed

if (Tail = FIFO_DEPTH - 1) then

 Tail := 0;

 Looped := false;

else

 Tail := Tail + 1;

end if; end if; end if;

if (WriteEn = '1') then

if ((Looped = false) or (Head /= Tail)) then

 Memory(Head) := DataIn; -- Write Data to Memory

 -- Increment Head pointer as needed

if (Head = FIFO_DEPTH - 1) then

 Head := 0;

 Looped := true;

else

 Head := Head + 1;

end if; end if; end if; -- Update Empty and Full flags

if (Head = Tail) then

if Looped then

 Full <= '1';

else

 Empty <= '1';

end if;

else

 Empty<= '0';

 Full <= '0';

end if; end if; end if;

end process;

end Behavioral;

3.4 testbench.vhd

library IEEE;

USE IEEE.STD_LOGIC_1164.ALL;

USE IEEE.NUMERIC_STD.ALL;

USE IEEE.MATH_REAL.ALL;

-- ENTITY DESCRIPTION

entity TESTBENCH is

end TESTBENCH;

-- ARCHITECTURE DESCRIPTION

architecture Behavioral of TESTBENCH is

constant DATA_WIDTH : positive := 8;

constant FIFO_DEPTH : positive := 1024;

signal CLK : STD_LOGIC;

signal RST : STD_LOGIC := '0';

signal EN : STD_LOGIC := '0';

signal INDataRate: STD_LOGIC_VECTO(2 downto 0)

:= "000";

signal OUTDataRate: STD_LOGIC_VECTOR (2 downto

0) := "000";

signal DataIn : STD_LOGIC_VECTOR

(DATA_WIDTH - 1 downto 0) := "00000000";

signal DataOut : STD_LOGIC_VECTOR

(DATA_WIDTH - 1 downto 0) := "00000000";

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 5, Issue 1, January 2018

 134

constant clock_period : time := 1 ns;

-- COMPONENT DECLARATION OF DESIGN

component LEAKY_BUCKET

Generic (

constant DATA_WIDTH : positive := 8;

constant FIFO_DEPTH : positive := 256);

Port (

CLK : in STD_LOGIC;

RST : in STD_LOGIC;

EN : in STD_LOGIC;

INDataRate : in STD_LOGIC_VECTOR(2 downto

0);

OUTDataRate : in STD_LOGIC_VECTOR(2 downto

0);

DataIn : in STD_LOGIC_VECTOR (DATA_WIDTH -

1 downto 0);

DataOut : out STD_LOGIC_VECTOR (DATA_WIDTH

- 1 downto 0));

end component;

-- Variable for Input Data Rate --

-- 0: 2Mbps | MaxCountValue = 500 for InputClockFre =

1GHz --

-- 1: 4Mbps | MaxCountValue = 250 for InputClockFre =

1GHz --

-- 2: 6Mbps | MaxCountValue = 167 for InputClockFre =

1GHz --

-- 3: 8Mbps | MaxCountValue = 125 for InputClockFre =

1GHz --

-- 4: 10Mbps | MaxCountValue = 100 for InputClockFre

= 1GHz --

-- 5: 12Mbps | MaxCountValue = 84 for InputClockFre =

1GHz --

-- 6: 14Mbps | MaxCountValue = 72 for InputClockFre =

1GHz --

-- 7: 16Mbps | MaxCountValue = 63 for InputClockFre =

1GHz --

begin

-- INSTANCE OF DESIGN

UUT: LEAKY_BUCKET

GENERIC MAP (

FIFO_DEPTH => FIFO_DEPTH,

DATA_WIDTH => DATA_WIDTH)

PORT MAP (

CLK => CLK,

RST => RST,

EN => EN,

INDataRate => INDataRate,

OUTDataRate => OUTDataRate,

DataIn => DataIn,

DataOut => DataOut);

clock_process: process begin

CLK <= '0';

wait for (clock_period/2);

CLK <= '1';

wait for (clock_period/2);

end process;

stimulus_process: process

variable s1: positive := 200;

-- Some seed value

variable s2: positive := 500;

-- Some seed value

variable RandomNum: real; -- variable to store the

random number between 0.0 to 1.0

variable Count : natural range 0 to 100000 -1;

variable walking_pattern : natural range 0 to 1000000 - 1

:= 0;

variable InputDataRate, OutputDataRate:

STD_LOGIC_VECTOR (2 downto 0) := "000";

begin

RST <= '1';

wait for (5*clock_period);

RST <= '0';

wait until CLK'event and CLK='1';

EN <= '1';

-- Input Data Rate : 2MBps, Output Data Rate : 2MBps

InputDataRate := "000";

INDataRate <= InputDataRate;

OutputDataRate := "000";

OUTDataRate <= OutputDataRate;

wait until CLK'event and CLK='1';

EN <= '0';

repeat_my_dear_design_for_input_data_rate_2MBps: for

i in 0 to 10 loop

case (InputDataRate) is

when "000" => Count := 500;

when "001" => Count := 250;

when "010" => Count := 167;

when "011" => Count := 125;

when "100" => Count := 100;

when "101" => Count := 84;

when "110" => Count := 72;

when "111" => Count := 63;

when others => Count := 500;

end case;

DataIn <=

std_logic_vector(to_unsigned(walking_pattern,DATA_W

IDTH));

walking_pattern := walking_pattern + 1;

wait_my_dear_design_for_input_data_rate_2MBps: for j

in 0 to Count-1 loop

wait until CLK'event and CLK='1';

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 5, Issue 1, January 2018

 135

end loop;

end loop;

-- Input Data Rate : 4MBps, Output Data Rate : 2MBps

EN <= '1';

InputDataRate := "001";

INDataRate <= InputDataRate;

OutputDataRate := "000";

OUTDataRate <= OutputDataRate;

wait until CLK'event and CLK='1';

EN <= '0';

repeat_my_dear_design_for_input_data_rate_4MBps: for

i in 0 to 10 loop

case (InputDataRate) is

when "000" => Count := 500;

when "001" => Count := 250;

when "010" => Count := 167;

when "011" => Count := 125;

when "100" => Count := 100;

when "101" => Count := 84;

when "110" => Count := 72;

when "111" => Count := 63;

when others => Count := 500;

end case;

DataIn <=

std_logic_vector(to_unsigned(walking_pattern,DATA_W

IDTH));

walking_pattern := walking_pattern + 1;

wait_my_dear_design_for_input_data_rate_4MBps: for j

in 0 to Count-1 loop

wait until CLK'event and CLK='1';

end loop;

end loop;

-- Input Data Rate : 6MBps, Output Data Rate : 2MBps

EN <= '1';

InputDataRate := "010";

INDataRate <= InputDataRate;

OutputDataRate := "000";

OUTDataRate <= OutputDataRate;

wait until CLK'event and CLK='1';

EN <= '0';

repeat_my_dear_design_for_input_data_rate_6MBps: for

i in 0 to 10 loop

case (InputDataRate) is

when "000" => Count := 500;

when "001" => Count := 250;

when "010" => Count := 167;

when "011" => Count := 125;

when "100" => Count := 100;

when "101" => Count := 84;

when "110" => Count := 72;

when "111" => Count := 63;

when others => Count := 500;

end case;

DataIn <=

std_logic_vector(to_unsigned(walking_pattern,DATA_W

IDTH));

walking_pattern := walking_pattern + 1;

wait_my_dear_design_for_input_data_rate_6MBps: for j

in 0 to Count-1 loop

wait until CLK'event and CLK='1';

end loop;

end loop;

-- Input Data Rate : 8MBps, Output Data Rate : 2MBps

EN <= '1';

InputDataRate := "011";

INDataRate <= InputDataRate;

OutputDataRate := "000";

OUTDataRate <= OutputDataRate;

wait until CLK'event and CLK='1';

EN <= '0';

repeat_my_dear_design_for_input_data_rate_8MBps: for

i in 0 to 10 loop

case (InputDataRate) is

when "000" => Count := 500;

when "001" => Count := 250;

when "010" => Count := 167;

when "011" => Count := 125;

when "100" => Count := 100;

when "101" => Count := 84;

when "110" => Count := 72;

when "111" => Count := 63;

when others => Count := 500;

end case;

DataIn <=

std_logic_vector(to_unsigned(walking_pattern,DATA_W

IDTH));

walking_pattern := walking_pattern + 1;

wait_my_dear_design_for_input_data_rate_8MBps: for j

in 0 to Count-1 loop

wait until CLK'event and CLK='1';

end loop;

end loop;

kill_time_my_dear_design: for i in 0 to 1000000 loop

wait until CLK'event and CLK='1';

 end loop;

-- Hard Stop

assert false

report "Simulation Completed"

severity failure;

end process;

end Behavioral;

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 5, Issue 1, January 2018

 136

The register level schematic view of the implementation

is shown in fig. 7. This register level is generated by using

vertex 5 board in Xilinx.

Fig. 7 Schematic view of implementation

4. RESULTS

Fig. 8 and fig. 9 shows the wave form generated from

hardware implementation. In both figures we can see that

if we change the input value from 000 to 101 the output

rate remains constant.

Fig. 8 Wave form

Fig. 9 Wave form

The total memory consumption is only 197520 kilobytes.

It is very much less then the software implementation.

The timing details of the implementation are as follows:

Minimum period: 5.088 (Maximum Frequency: 196.524

MHz.

Minimum Input arrival time before clock: 3.612ns.

Maximum output required time after clock: 2.826 ns.

Total Real time to Xst completion is 37:00 second and

Total CPU time to Xst completion is 36.51 second. Table

1 shows the device utilization of the implementation.

2138 Slice Registers are used out of 12480. It means only

17 % of available registers are used. Similarly 4129 Slice

LUTs are used out of 12480. It means only 33% of Slice

LUTs are used.

Table – 1

Device Utilization

Logic Utilization Used Available Utilization

Number of Slice

Registers

2138 12480 17%

Number of Slice

LUTs

4129 12480 33%

Number of Fully

used LUT-FF pairs

1739 4528 38%

Number of bonded

IOBs

25 172 14%

Number of BUFG/

BUFGCTRLs

1 32 3%

The total power consumption is 0.338 W. The power

consumption in dynamic stage is 0.017 W and the power

consumption in quiescent stage is 0.321 W.

5. CONCLUSION

Thus In this paper we showed the results generated by

Valgrind and Massif Visualizer profiling tools. Profiling

data shows that software implementation is taking more

memory and also it is not optimized. Leaky Bucket

algorithm is used to control the flow of data on

communication channel. If we used software

implementation then the processing overhead is very high.

In this paper we also show the results of hardware

implementation. The hardware implementation of Leaky

Bucket algorithm consumes only 197520 kilobytes of

memory, it also takes less time in execution. We see that

it takes only 2138 out of 12480 of slice registers. Thus

device utilization is also excellent. The total power supply

is 0.338 w out of which .017w is used dynamic stage and

.321w is used in quiescent stage. We conclude that the

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 5, Issue 1, January 2018

 137

execution of this implementation is fast and it consumes

less power. Thus this implementation is efficient for a

network processor.

REFERENCES

[1] J. Zhigang, L. Lemin, “Analysis of the leaky

bucket algorithm for priority services,” Journal of

Electronics China, vol. 13, pp. 333-338, October 1996.

[2] N.Yin, M. Hluchyj, “Analysis of the Leaky

Bucket Algorithm for ON-OFF Data Sources,” Journal of

High Speed Networks, vol. 2, pp. 81-98, January 1931.

[3] C. Chang, Z. Eul, L. Lin “Intelligent leaky

bucket algorithms for sustainable-cell-rate usage

parameter control in ATM networks,” Information

Networking, 2001. Proceedings. 15th International

Conference on, August 2002.

[4] P. Indumathi, S. Shanmugavel, HC. Mahesh,

“Buffered Leaky Bucket Algorithm for Congestion

Control in ATM Networks,” IETE Journal of Research,

vol. 48, pp. 59-67, March 2015.

[5] M. Ahmadi, S. Wong,” Network Processors:

Challenges and Trends,” In Proceedings of the 17th

Annual Workshop on Circuits, Systems and Signal

Processing, ProRisc, pp. 265-269, 2006

[6] A. Kind, R. Pletka, M. Waldvogel “The Role of

Network Processors in Active Networks, IFIP

International Working Conference on Active Networks,

pp. 20-31, 2003.

[7] S.Govind, R.Govindarajan, J. Kuri,”Packet

Reordering in Network Processors,” Parallel and

Distributed Processing Symposium, 2007. IPDPS 2007.

IEEE International, June 2007.

[8] S. Ata., M. Murata, H. Miyahara, “Analysis of

network traffic and its application to design of high-speed

routers”, IEICE Transactions on Information and systems,

pp. 988-995, 2000.

[9] M. Abdelall, A. F. Shalash, H. M. Hassan, M.

Hassan, O.A. Nasr, “Design and implementation of

application-specific instruction-set processor design for

high-throughput multi-standard wireless orthogonal

frequency division multiplexing baseband processor”, IET

Circuits, Devices & Systems, pp.191-203, 2015.

[10] M. Ahmadi, S. Wong, ”Network Processors:

Challenges and Trends”, In Proceedings of the 17th

Annual Workshop on Circuits, Systems and Signal

Processing, ProRisc, pp. 265-269, 2006.

[11] S. Bhagwani, “Comparative Study of Various

Network Processors Processing Elements Topologies”,

Int. Journal of Engineering Science and Innovative

Technology (IJESIT), pp. 157-16, 2013.

[12] P. Cascón, J. Ortega, Y. Luo, E. Murray, A.

Díaz, I. Rojas,” Improving IPS by network processors”,

The Journal of Supercomputing, pp.99-108, 2011.

[13] D. Chaurasiya, P. Singh, A. Joshi, S. K. Pandey,

“Analysis of Network Processor Processing Elements

Topologies”, Int. Journal of Advanced Research in

Computer Science and Software Engineering

(IJARCSSE), pp.66-70, 2012.

[14] J. Fu, O. Hagsand,”Designing and Evaluating

Network Processor Applications", In Proc. of 2005 IEEE

Workshop on High Performance Switching and Routing

(HPSR) Hong Kong, pp. 142-146, 2005.

[15] J. Fu, O. Hagsand O, G. Karlsson, “Queuing

Behavior and Packet Delays in Network Processor

Systems”, In Modeling, Analysis, and Simulation of

Computer and Telecommunication Systems, 2007.

MASCOTS '07. 15th International Symposium on,

pp.217-224, 2007.

[16] J. Guo, J. Yao, L. Bhuyan, “An Efficient Packet

Scheduling Algorithm in Network Processors”, IEEE

Infocom, pp.807-818, 2005.

[17] Y. Kanada,” High-Level Portable Programming

Language for Optimized Memory Use of Network

Processors”, Communications and Network, pp.55-69,

2015.

[18] A. Kind, R. Pletka, W. Marcel,” The Role of

Network Processors in Active Networks”, International

Federation for Information Processing, pp. 20–31, 2004.

