
ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 4, Issue 9, September 2017

 131

Live Migration of Delta Compressed Virtual

Machines using MPTCP
[1]

Anu V.R.,
[2]

Dr. Elizabeth Sherly
[1]

Research Scholar, [2]
 Professor

[1]

M.G .University Kerala,
[2]

IIITMK, Kerala

Abstract - Since explained by Clark in 2005, live migration become an inevitable standard feature of hypervisors. Performance

optimization process of live migration is an active area of research due to its significance in data centers. Major criteria to improve

performance optimization is to reduce the amount of data transferred while migration. To reduce amount of data transferred in

migration we use delta compression method .The algorithm used for the same is LZ4; because of better compression ratio and

faster decompression rate. To utilize multiple paths simultaneously we use MPTCP transmission network instead of conventional

TCP. From the experiments we evaluated that delta compression with LZ4 method reduce the amount of data transferred

effectively and reduce down time and total migration time during live migration. Utilizing sub flow feature of MPTCP allow to use

multiple paths to the destination server, further reduce total migration time. So the method discussed here is a two-fold solution for

the performance optimization issue of live migration.

Keywords- Cloud computing, Delta compression, Live migration, Virtualization, TCP.

I. INTRODUCTION

With the introduction of virtualization technology, many

organization are deploying their services on virtual

machines (VMs) which are hosted by physical servers in

cloud data centres. Most of these services demands

support from low latency networking and 24 x 7 services

without any interruption. As the policy of cloud data

centres to users are „pay as to go‟, as the demand varies,

data centres can scale up or down the number of VMs

which are active for the hosted services. Server

consolidation is another high lighting feature of cloud

data centre in which the VMs in different servers are

consolidated into fewer number of servers to maintain

proper power management and power efficiency. Modern

data centres are performing fault tolerance management

and hardware maintenance without interrupting the online

services provided by the VMs. Live migration is the key

feature of virtualization technology used to implement all

the above mentioned functions of data centres. Live

migration transfers CPU , memory and storage states of

VM from source server to destination ,ideally without any

down time which keeps the migration process as „ live

migration‟. Total migration time, down time, bandwidth

allotted, page dirty rate are the major factors which affects

the performance of live migration. Many researchers are

providing various strategies to optimize the live migration

performance.

Performance optimization of live migration will be

improved by reducing the major factors like total

migration time, down time, amount of data transferred

and page dirtying rate .In these factors the change of page

dirtying rate cannot be predicted and controlled

externally ,it depends on the nature of application or

service running on the VM. By managing other factors,

performance improvement of live migration can be done

broadly in two ways was such as 1) reduce the amount

of data transferred between the servers 2) utilize more

number of paths to transfer the data quickly between the

servers. The goal of this paper is to improve the VM live

migration performance within the available network

bandwidth by utilizing more paths simultaneously with

reduced amount of data transfer between the servers. Here

we utilize delta compression method for reduced data

transfer and the multiple path feature of MPTCP protocol

for effective utilization of bandwidth [1].

This paper is organized as follows. Section II describes

motivation for this work, review and related work.

Section III details literature review on Delta compression

and MPTCP. Section IV describes the background

knowledge about basic system. Section V provides

mathematical model of the system. Section VI explains

our proposed system model and implementation. Section

VII describes the experimental setup and section VIII

presents detailed analysis.

II. MOTIVATION

Majority of applications and services hosted on cloud data

centres demands uninterrupted service without any

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 4, Issue 9, September 2017

 132

latency. So it has to be ensured that there is no

performance degradation or resource unavailability even

at the time of hardware maintenance like server

consolidation, load balancing or server management .Live

migration is the only choices which maintain ideally no

downtime and very low performance degradation .Hence

improving live migration performance is a mandatory

requirement in data centres. In this work we contributed

two levels of performance improvement in live migration,

initially by reducing the amount of data transferred during

migration by introducing improved delta compression and

encoding scheme on VM snapshots and perform data

transfer between servers using MPTCP.

When TCP/IP was designed, host had only a single

interface and routers or gateways were equipped with

several physical interfaces. Today most devices have

more than one interfaces, especially mobile phones came

up with both 3G/4G network and Wi-Fi add more multi

homed devices on internet. But now a days also 95 % of

total internet traffic uses TCP and it demands a manual

switch over between different network interfaces and it

affect the performance of services running on the host.

TCP services has to stop and re-establish during this

switch over [2].

Many solutions were put forward by the internet research

community to tackle the issue such as shim6, host identity

protocol (HIP), some transport layer protocol solutions

like extensions to TCP were introduced. SCTP (stream

control transmission Protocol) was another option to

introduce to handle the situation and even though

implemented in several operating systems, it is now

limited to specific applications because it demands

modifications to services when it is used and also middle

boxes got identification issue while using this. But again

SCTP cannot support simultaneous use of multiple paths

[4, 5].

Instead of TCP protocol here we use MPTCP protocol, so

multiple path selection or less traffic path selection is

possible which will reduce the migration time.

Conventional TCP protocol is a connection oriented three

way handshaking protocol which establish the connection

between two nodes with tuples such as (IP source, TCP port

source, IP destination, TCP port destination)[6].So if any of the

value is missing in this tuple there is a high chance to lose

the connection. But with the introduction of sub flow

management in MPTCP even if the master connection is

lost it can maintain communication with additional sub

flows. While migration is progressing, due to varying

dirty rate the amount of date transferred will be varied

.But this variation can be effectively managed with the

introduction of this two level optimization. Overall

complexity will not be increased by the introduction of

this method because performance improvement is done in

two different levels.

In Delta compression method, instead of transferring the

state of VMs during migration, current and previous

versions of VM snapshots are compared and only the

change will send to the destination. This change is called

delta [7, 8]. This delta is encoded with an encoding

algorithms at source server and sent to the destination. For

encoding, here we use LZ4 algorithm which gives better

compression ratio and high speed of compression. After

migration, decompression is performed and updated VMs

are regenerated at destination side. Since only delta is

migrated, a much reduced amount of data is transferred

from source to destination. Additionally we transfer delta

using MPTCP protocol, so simultaneously multiple paths

or less traffic paths can be used for data transfer. This

reduces total migration time and which improves live

migration performance.

III. LITERATURE REVIEW

MPTCP (an extension of TCP) is an advance

communication protocol formalized in RFC 6824[14],

standardised by IETF and used in cloud datacentres for

effective implementation of fat tree topologies. MPTCP

gives provision to change the endpoints of the connection

and have capability to add middle boxes in to on going

communication.[2].MPTCP enables fat tree topologies

effectively which TCP cannot utilize with same cost as

conventional TCP.[1] MPTCP is easily deployable with

ECMP(Equal Cost Multi Path) switches. MPTCP can be

utilized instead of TCP when there is path diversity and

provides seamless mobility, bandwidth aggregation. Since

data flow is split over several path MPTCP provides

better confidentiality and difficult for the attacker to

reconstruct the whole connection flow. MPTCP provides

lower response time by utilizing multiple paths for data

transfer and hence congested paths can be avoided .One

of the great advantage of MPTCP is backward

compatibility, applications running in TCP can run in

MPTCP without any change. [1] Provides performance

improvement of MPTCP, which involves the path

selection procedure and congestion control mechanism of

MPTCP. [2] Put light on embedding middle boxes into

the internet architecture with MPTCP. Experiments show

that connection redirection, connection migration and

virtual machine migration are efficient and perform well

with MPTCP. [3] Discussed the high level design of

MPTCP with compatibility goals. This paper describes

implementation of MPTCP using Open-stack.

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 4, Issue 9, September 2017

 133

Demonstrated how different mechanisms at network and

transport layer can significantly improve the performance

of live migration with MPTCP and also explains the use

of MPTCP in bandwidth aggregation. [13] Proved the

capability of MPTCP for data transfer in mobile devices

using wireless communication in 3G/4G networks.

MPTCP utilize network resources effectively, [14] details

design and congestion control for MPTCP.MPTCP never

harm other traffic and always chose a network with less

traffic and help to control congestion effectively.[4] tries

to implement multipath TCP in today‟s Internet with

ordinary middle boxes such as NAT and firewalls and

provides solutions for limited receiver buffer between

multiple flows.

 P. Sv¨ard, J. Tordsson [7], proposes a page reordering

technique that reduces the amount of transmitted data by

sending the memory pages in reverse order of usage

frequency to reduce re-transfer rate. Xiang Song [15]

proposes a method for Parallelizing live VM migration

operations, includes applying data parallelism and

pipeline parallelism to most primitive operations. P Svärd,

B Hudzia [1, 7] propose a live migration algorithm where

the VM in-memory state is compressed during transfer

and reordering the packets while transferring.

IV. BACKGROUND

a. Live Migration with Open stack: Live migration solves

the problem of migrating virtual machines from one

server to another without affecting the services provided

by guest applications and the approach first demonstrated

by Clark [3].Even though the major strategies for

migration includes pre-copy or post-copy methods, the

typical migration process implements the following steps.

Initially all pages are marked dirty and transfer the whole

memory state of guest from source VM to destination.

Then iteratively transfer all dirty pages from source to the

destination. Once the number of dirty pages are below

certain threshold value, stop the execution of VM at

source and transfer all state information of CPU, Memory

and storage as fast as possible to destination and

synchronize all the VM image(s) on guest at destination.

Immediately after successful VM migration at destination,

broadcast an Ethernet packet to announce new location of

NIC(s). Furthermore, the whole migration process is

completely transparent to the services running in the

migrated VM and do not need to be migration-aware in

any manner. In all migration strategies the whole VMs or

states of VMs will be transferred from source to

destination .But the major concern is that, since VMs are

rich in size, while progressing migration process, huge

amount of data need to be transferred between the servers.

An optimization method required to be implemented for

reducing the amount of data transferred at the time of

migration. Here we use delta compression and encoding

algorithm.

There are many tools available to implement Live VM

migration in data centres [21]. Open stack is one of the

popular open source cloud platforms which is based on

several services like nova, swift, glance, horizon which

exchanges messages through AMPQ (Active Message

Queuing Protocol) .Neutron is the service which provides

network as service in open stack. Here we utilize Neutron

along with KVM hypervisor and QEMU for live

migration. The detailed procedure for live migration is as

follows. First request is received by controller for

migration via nova compute API. Nova conductor verifies

availability of storage for live migrations. Then

compatibility of transfer between hosts are checked using

AMPQ RPC call. Nova compute generate instance

directory and create empty instance disks for live

migration [16].An additional delta compression module is

added at nova compute module. After preparing instances

for migration at source side, delta compression of instance

is done and encoded with LZ4 algorithm and sent to the

destination.

b. MPTCP

Major aim of introduction of MPTCP is to realize

resource pooling across the network to increase the

resilience of connectivity between different paths and

increase the efficiency of resource usage and thus

improve throughput [17]. MPTCP can handle multiple

paths between two end points with following

compatibility goals,

o The performance of MPTCP should not be poor

as any of a single path flow on the best route.

o The capacity taken by a multi path flow should

not be more than a single path flow using that

route

o To reduce congestion multipath flow should avoid

most congested routes.

MPTCP service model is in order, byte oriented and

reliable as that of TCP. The transport layer is divided into

two sub layers for implementing MPTCP. The upper sub

layer called semantic layer manages application oriented

transport functions like connection establishment, packet

reordering, congestion control etc. and operates in end to

end.

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 4, Issue 9, September 2017

 134

Fig 1: Protocol Architecture of MPTCP

While the lower sub layer called Flow endpoint layer

collects a set of sub-flows that can be seen as one TCP

flow. MPTCP have a shim layer represented in fig. 1 .The

shim layer works between the application and the TCP

stack which combines several TCP connections called

sub-flows in MPTCP.A 5-tuple representation is used to

characterize a sub-flow as (IP source, TCP port source,

IP destination, TCP port destination) and assigned with a

sub- flow id generated by MPTCP stack [2]. To perform

packet reordering on several sub-flows, MPTCP add a

global sequence number (GSN) shared among sub-flows

and exchanged through TCP options. To map the multiple

TCP sub- flows in MPTCP, the GSN is mapped with Sub-

flow Sequence Numbers (SSN) through Data Sequence

Signal (DSS).

Fig 2: MPTCP Connection establishment

Fig 2. Narrates the MPTCP connection establishment

between two nodes. The connection is established through

TCP socket interface through connect system call. This

first TCP connection is called the master connection.

A random key is generated along with this process and

this key is hashed later and used to authenticate additional

sub-flows [3]. It is same as the three way handshake

connection mechanism in TCP. To manage additional

sub-flow, the host can open a new sub-flow as soon as the

acknowledgement signal for DSS is received.

Fig 3: MPTCP Sub-flow initiation

Both client and server can create sub-flows either through

a new connection or announce a token (IP, port) that the

peer can connect to. Strategies are not yet standardised for

the sub- flow connection opening/closing and it as per

local policies. Due to the presence of NAT, it is wiser to

initiate sub- flows from client side.

Since additional sub-flows are also there, many features

have to be taken care of while MPTCP is implemented

like congestion control, flow control, acknowledgement

management, last packet recovery, failure management,

data distribution over paths, managing out of sequence

data arrival, path management. In our optimization

method we are interested only in congestion control and

data distribution over paths features.

Congestion control: MPTCP allows more sub-flows for

improving throughput, robustness and thus utilizing

networking resources more effectively than conventional

TCP .But TCP fairness in the sub- flow paths are always a

controversial issue. Sharing the same resources by the

sub-flows creates bottleneck in network path in real

scenario [4]. Buffering policies, single resource pooling

principle are some methods suggested to manage

congestion control. There is no standardized algorithms to

manage congestion control effectively in MPTCP. From

different references it is understood that developing local

congestion control algorithms is optimum as per

application requirements. Sender regulates its throughput

according to the available network. In each sub-flow level

a congestion window is maintained, by changing the

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 4, Issue 9, September 2017

 135

window size as per the requirement will minimize the

congestion and improves the network performance. At the

receiving end there is a global receiving window for

established sub- flows. Four different algorithms have

been proposed by [17] to manage congestion control by

adjusting window size are Uncoupled, Fully coupled,

Linked Increase, and RTT compensator. [16] Tries to

give a solution for congestion control by shifting quantity

of traffic from more congested paths to less congested one

according to the local knowledge on network resources

and congestion status. A fair an efficient traffic shifting

always strives to equalize the extent of congestion on all

available paths namely “Congestion Equality Principle”.

c. Delta compression: Major bottleneck with migration

algorithms are the time taken to transfer pages from

source to destination through the network due to network

congestion and down time during migration, even GB

Ethernet is slower than RAM or disk access. This delay

leads to poor migration throughput and ultimately ended

in long down time and interruption in services. Shortening

downtime is one of the key optimization factor in live

migration process. Lot of research has been carrying out

to reduce the downtime considerably low during

migration process, and effective utilization of bandwidth.

The amount of data transferred during the downtime can

be effectively reduced by delta encoding method. Instead

of transferring all the memory pages, only the dirty pages

are transferred to the destination server. Since the

difference between previous page and current modified

page (delta) are only transferred, the amount of data

transferred is too small as compare with other strategies. P

Svärd, B Hudzia [7, 8] incorporated delta compression

method in live migration process for CPU or memory

intensive virtual servers. In his method, initially all the

RAM pages are marked as dirty and sent to the

destination. Thereafter, only the modified pages are

iteratively transferred. If a longer time an iteration takes,

the more number of pages get dirtied during the process

and has to retransmit to destination. When the remaining

amount of pages are below a threshold value, VM

suspended, avoid more memory writes and transfer all

remaining pages (down time). But longer the downtime,

more amount of memory get dirtied and need to be

retransferred. Compression reduces the size of VM by

transferring only the dirty pages between the servers at

the time of migration. Transfer time is one of the prime

factor in which the performance of VM migration

measures. The transfer time can be calculated as the ratio

between the amount of RAM remaining and the

bandwidth allotted. Since compressed delta pages are only

transferred, the transfer time is improved much as

compared with transfer time in normal live migration

.This helps to improve the total migration time also.

V. MATHEMATICAL MODEL

Mathematical model of Delta compression: The data

transmitted in round i can be calculated as:

 {

 (1)

Let K be the page dirtying rate and R be the memory

transmission rate .Let is the ratio between dirty page

rate with memory transfer rate and it is small at initial

time.

 ⁄ (2)

Let be the elapsed time at each round

 (3)

Combining (1), (2) and (3), we have the network traffic

during the round i.

. = (4)

The relation between network traffic and bandwidth

available is

From the (4) improving the utilization of bandwidth the

following scenarios are favorable. Either page dirtying

rate (K) has to be reduced, or memory transfer rate (R)

has to be increased or size has to be reduced [13]. The

page dirtying rate depends up on the change or updation

happened to VM during running and it cannot be

controlled externally. Memory transfer rate is set initially

and cannot be change dynamically as per each

requirement. But a considerable positive change can be

made in the case of VM size, while migrated from one

server to another. Instead of sending the whole VM

snapshots repeatedly, only the difference in the present

and previous snapshots are being sent. But the delta page

has the same size as that of memory page. In most of the

applications a specific part of VM‟s RAM is constantly

dirtied and this fact leads to delta compression is an

effective mechanism to reduce the amount of data

transferred through VM migration. In [7] P Svärd, B

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 4, Issue 9, September 2017

 136

Hudzia used RLE method for compression of delta pages.

The idea behind RLE data compression is to replace the n

occurrence of data item d with single pair nd. The n

consecutive occurrence of a data item are called a run

length of n.

For delta encoding at source end and decoding at

destination end, the difference between current page and

previous page is required. At destination side, it is not

difficult because the sources‟ previous version of VM

page is the destinations‟ current version of VM page [20]

.But in the source side the pages are continuously

overwritten and difficult to get the delta page. To

overcome the difficulty, the pages in the cache are used at

source side to take the delta difference. The pages from

cache is effective only for similar hot page set. If different

pages are used or memory intensive operations are taking

place during migration, this caching mechanism will not

be a feasible solution for providing previous VM pages

for taking delta difference [23, 24]. In existing system, for

page replacement in cache two way set associative

mechanism is used.

Mathematically the performance of live migration with

delta compression is compared with live migration

without compression in the following way. Let be

total migration time without compression, is the

transfer time.

 (1)

If the previous page required for delta compression is

available in cache (cache hit) then total migration time

 is,

 (2)

Where is compression time required in cache hit,

is the cache hit transfer time and is the cache hit

decompression time at destination.

If the required previous page delta compression is not

available in cache then cache miss occurs and total

migration time is,

 (3)

Let be the total number of pages and n is the total

number of iterations and h is cache hit ratio.

Total migration time = ∑

 = ∑

 + ∑

 = n ((.h) + (1- h)) (4)

By comparing total migration time without compression

and with compression both in cache hit and cache miss,

total time gain with delta compression over non

compression is,

 =((1-h)(- -h (-) (5)

Mathematical model of MPTCP: This model describes

the congestion control and sub- flow management of

MPTCP. It works with congestion equality principle

which states that a fair and efficient traffic shifting

implies that every flow strives to equalize the extent of

congestion that it perceives on all its available paths [4].

In a network let S be set of links with capacity c= (c s, s∈

S), which are shared by a set of F flows. A path p ∈ P is

defined as the subset S p ⊆S. The relationship between F

and P can be represented with a matrix R, where r s, p = 1,

where s ∈S p and r s, p = 0 otherwise. Each flow f ∈ F is

associated with a subset of path Pf ⊆ P. This relationship

can also be represented by a matrix called flow matrix T,

where t f, p =1 if p ∈ Pf and t f, p =0 otherwise. Let v f, p be

the rate of flow f on path p and total rate of flow is the

summation of each flow [25]. Let the total rate of flow

U f = ∑ ∈ .

Then utility can be defined as Ds(c s).So in congestion

control we try to determine appropriate rates for the flows

so that it maximize the total utility subject to link capacity

constraints by varying total rate of flow U f.

Corollary to Congestion Equality Principle: In the above

mathematical model if every flow strives to equalize the

extent of congestion that it perceives on all its available

paths by means of shifting traffic, then network resources

will be fairly and efficiently shared by all the flows.

Managing congestion control is a significant task in

MPTCP network to reduce any delay between the source

and destination nodes. So supporting to Congestion

Equality Principle the above mentioned corollary point

out that shifting of traffic from overloaded path to other

paths is better to be in equal rate which improves more

efficiency than any other policies.

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 4, Issue 9, September 2017

 137

VI. SYSTEM MODEL

Fig 4: system architecture

The basic algorithm of LZ4 is Lempel Zev Welch

algorithm and here each string is encoded as a token using

a dictionary. The most important design principle behind

LZ4 is its simplicity. The dictionary is created

dynamically in the compression process and no need to

transfer it with the encoded message for decompression at

other end [8, 20].It improves overall performance by

reducing total amount of data transferred while

migration. At decompression of message at destination

the dictionary is created dynamically. For compressing

long data streams multiple blocks are required. For these

multiple blocks a common header is there to handle its

content. A compressed block in LZ4 composed of

sequences. A sequence is a group of literals (constants

which are not compressed bytes), followed by a match

copy and each sequence is starts with a token. Token is an

8 but value separated into two 4 bit fields. So it range is

from 0 to 15.In this 15 bits ,the first high 4 bits of token

is used to represent length of literals to follow and if that

value is zero means there is no literal. If it is 15, then we

need to add some more bytes to indicate the full length.

Each additional byte then represent a value from 0 to 255,

which is added to the previous value to produce a total

length. When the byte value is 255, another byte is output.

There can be any number of bytes following a token.

There is no "size limit"[22].

LZ4 delta compression algorithm at source side,

1. If the previous page is in cache, then

a. Delta page is created for the current

page

b. Delta page is compressed with LZ4

c. LZ4 page is transferred to destination

2. If the page is not in the cache, then

a. Update cache with the page

b. Perform strep 1.

LZ4 delta decompression algorithm at destination side,

 At destination side, search for the encoded page

 If found

 Decode LZ4

 Recreate delta page

 Recreate original page from delta page

VII. EXPERIMENTAL SETUP

Experimenting with MPTCP is a challenging task under

real scenario .Receiver/sender buffer capacity, window

management, RTT management, congestion control and

shifting traffic while in congestion are challenging in

experimental set up. This section describes different

phases performed to achieve MPTCP test bed

implementation. The objective is to evaluate MPTCP

performance over TCP while performing delta

compression live migration. Experimental set up for

performing live migration contains three nodes with open

stack cluster and use traffic generator to congest the

network to analyse the performance of nodes through

MPTCP at congestion control. The cluster nodes are

installed with Ubuntu 14.04 LTS 64 bit server with

MPTCP version 0.89.The open stack cluster run Nova

compute at each node .Every node is equipped with a dual

port gigabit Ethernet card where one interface for open

stack management and other is for VM communication.

The hypervisor used is KVM QEMU (version 2.0.0) and

also include libvirt 1.2.2. We use iperf and netperf-

wrapper to congest the network. The TCP sub-flow

management of MPTCP is used for managing the network

traffic. We use the congestion control mechanisms

available in MPTCP to shift traffic from congested paths

to less traffic path .In the experiment network a 5 port

gigabit switch is used.

In our experiment we add additional delta compression

and decompression module into each compute node in the

network. While performing live migration, VM is delta

compressed by the compression module and sent through

the MPTCP network to destination where it is

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 4, Issue 9, September 2017

 138

decompressed by decompression module. Here we use

LZ4 delta algorithm for compression and decompression.

VIII. EVALUATION

a) Live migration under MPTCP: In this scenario,

initially we migrate a VM which runs OS and basic

applications with a total size of 2GB.Progressing the

migration process we transferred more VMs with bigger

size and analyse downtime and total migration time .For 2

GB VM, when TCP is used in the network, migration

TMT is 25 s and downtime is 210ms and when MPTCP is

used, TMT is 15s and downtime is 210ms (same in both

cases).While using LZ4 algorithm for encoding and

decoding compression ratio is 0.79.

b) Delta compression live migration under MPTCP:

Here we conducted live migration of VMs through delta

compression. Delta compression is a method for storing

data in the form of changes between versions called „delta

„instead of the full data sets, so the amount of data

transferred is reduced. This improves total migration time

(TMT).For that we include the delta compression module

at source server and decompression module at destination

node. Before transferring VMs through MPTCP network;

it is delta compressed and encoded with LZ4 algorithm.

As compared with other encoding algorithms LZ4

algorithm shows better compression ratio. Using MPTCP

the „delta‟ packets took various simultaneous paths to

reach the destination, which also improves overall

performance of live migration. From our experiments it is

clear that when MPTCP have eight or more number of

sub flows, it effectively manage congestion control and

show considerable improvement in total migration time.

Fig.5: comparison of TCP vs. MPTCP in terms of total

migration time

Fig.6: comparison of MPTCP vs. TCP in terms of

amount of data transferred.

c) Compare the performance of LZ4 with XBRLE: In [] P

Svard & B.Hudzia described about a delta compressed

live migration technique in TCP network where XBRLE

was used. Since the VM memory pages are in the binary

form, so it is easy to compute the delta page by taking the

difference between the current and previous versions of a

page. In XRBLE method delta page is computed by

applying XOR between current and previous versions of a

page. Size of delta page is same as that of page try to

transfer from source to destination. So to reduce the

amount of data transferred, delta page size is reduced

using RLE algorithm. The reverse of this process produce

the current version of page at destination side.

Fig 7: Comparison of XBRLE vs. LZ4 in terms of TMT

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 4, Issue 9, September 2017

 139

Fig 8: Comparison of XBRLE vs. LZ4 in terms data

transferred.

Since the user input is unpredictable, most of the time it

gives worst input to RLE algorithm which decreases the

efficiency of compression process thus lead to

performance degradation in live migration. In the memory

intensive VM migration cases RLE algorithm generates

the output data which is 2 times more than the size of

input data and it is due to the fewer amount of runs in the

source file. In majority of situation we cannot predict the

dirty bit change rate and if it is too high RLE is not an

effective solution for compression. To overcome these

disadvantages, here we use LZ4 algorithm which is

dictionary based compression technique and independent

of nature of input. LZ4 shows high speed of compression

and better compression ratio than XBRLE method. Better

compression ratio of LZ4 improves downtime and total

migration time (TMT). As compared with compression,

decompression is faster in LZ4.

CONCLUSION

In this paper we introduce a new approach for live

migration by combining delta compression with MPTCP

protocol. We have implemented and evaluated MPTCP

mechanism with LZ4 compression algorithm. This

method has more advantages as compared with

conventional live migration strategies because it reduce

total migration time (TMT)-a major performance metric

of live migration - effectively. With delta compression

and MPTCP the amount of data transferred is reduced in

double rate and this drastically reduce total migration

time.

REFERENCES

[1] Raiciu, Costin, Christoph Paasch, Sebastien

Barre, Alan Ford, Michio Honda, Fabien

Duchene, Olivier Bonaventure, and Mark

Handley. "How hard can it be? Designing and

implementing a deployable multipath TCP." In

Proceedings of the 9th USENIX conference on

Networked Systems Design and Implementation,

pp. 29-29, 2012.

[2] Bonaventure, Olivier. Multipath TCP: An

annotated bibliography. Technical report,, <

https:// github. Com/ obonaventure /mptcp - bib,

April 2015.

[3] Arzani, Behnaz, Alexander Gurney, Shuotian

Cheng, Roch Guerin, and Boon Thau Loo.

"Impact of path characteristics and scheduling

policies on MPTCP performance." In Advanced

Information Networking and Applications

Workshops (WAINA), IEEE 2014 28th

International Conference on, pp. 743-748, 2014.

[4] Cao, Yu, Mingwei Xu, and Xiaoming Fu.

"Delay-based congestion control for multipath

TCP." In Network Protocols (ICNP), 2012 20th

IEEE International Conference on, pp. 1-10.

2012.

[5] Alizadeh, Mohammad, Albert Greenberg, David

A. Maltz, Jitendra Padhye, Parveen Patel, Balaji

Prabhakar, Sudipta Sengupta, and Murari

Sridharan. "Data center tcp (dctcp)." In ACM

SIGCOMM computer communication review,

ACM ,vol. 40, no. 4, pp. 63-74, 2010.

[6] Raiciu, C., Pluntke, C., Barre, S., Greenhalgh,

A., Wischik, D. and Handley, M.,October. Data

center networking with multipath TCP. In

Proceedings of the 9th ACM SIGCOMM

Workshop on Hot Topics in Networks (p. 10).

ACM. 2010.

[7] Svärd, P., Hudzia, B., Tordsson, J. and Elmroth,

E., Evaluation of delta compression techniques

for efficient live migration of large virtual

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 4, Issue 9, September 2017

 140

machines. ACM Sigplan Notices, 46(7), pp.111-

120. 2011.

[8] David Salomon “Dictionary Methods” in Data

Compression: The Complete Reference Fourth

Edition, Springer, pp. 141-259, 2007.

[9] Kwon, S.J., Kim, S.H., Kim, H.J. and Kim, J.S.,

LZ4m: A fast compression algorithm for in-

memory data. In Consumer Electronics (ICCE),

2017 IEEE International Conference pp. 420-

423, 2017, January.

[10] Kane, J. and Yang Compression speed

enhancements to lzo for multi-core systems. In

Computer Architecture and High Performance

Computing (SBAC-PAD), 2012 IEEE 24th

International Symposium pp. 108-115,2012,

October.

[11] Wischik, D., Raiciu, C., Greenhalgh, A. and

Handley, M., March. Design, Implementation

and Evaluation of Congestion Control for

Multipath TCP. In NSDI ,Vol. 11, pp. 8-8, 2011

[12] Bonaventure, O., Handley, M. and Raiciu, C.,

An overview of Multipath TCP. ; Login: 37(5),

p.17, 2012.

[13] Nakasan, C., Ichikawa, K., Iida, H. and

Uthayopas, P., A simple multipath OpenFlow

controller using topology‐based algorithm for

multipath TCP. Concurrency and Computation:

Practice and Experience, 29(13), 2017.

[14] Coudron, M. and Secci, S., An implementation

of Multipath TCP in ns3. Computer Networks,

116, pp.1-11.2017.

[15] Peng, Q., Walid, A., Hwang, J. and Low, S.H.,

Multipath TCP: Analysis, design, and

implementation. IEEE/ACM Transactions on

Networking, 24(1), pp.596-609, 2016.

[16] Chen, Y., Wu, X. and Yang, X., 2011. MAPS:

Adaptive path selection for multipath transport

protocols in the Internet. Duke Univ., Durham,

NC, USA, TR-2011-09.

[17] Chihani, B. and Collange, D. Simulation-based

study of MPTCP (Multipath TCP). arXiv

preprint arXiv:1112.4742, 2011.

[18] Bartík, M., Ubik, S. and Kubalik, P, December.

Lz4 compression algorithm on fpga. In

Electronics, Circuits, and Systems (ICECS),

2015 IEEE International Conference on pp. 179-

182, 2015.

[19] Collet, Y.: “RealTime Data Compression:

Development blog on compression algorithms”.

[Online]. Available: tinyurl.com/qc9yve4

[20] Leelipushpam, P.G.J. and Sharmila, J. Live VM

migration techniques in cloud environment—a

survey. In Information & Communication

Technologies (ICT), 2013 IEEE Conference pp.

408-413, 2013, April.

[21] Waghulde, R., Gurjar, H., Dholakia, V. and

Bhole, G.P., New Data Compression Algorithm

and its Comparative Study with Existing

Techniques. International Journal of Computer

Applications, pp.102-107, 2014.

[22] Fowler, J.E., March. Delta Encoding of Virtual-

Machine Memory in the Dynamic Analysis of

Malware. In Data Compression Conference

(DCC), pp. 592-592, 2016.

[23] Deshpande, U. and Keahey, K., Traffic-sensitive

live migration of virtual machines. Future

Generation Computer Systems, 72, pp.118-128,

2017.

[24] Chihani, B. and Denis, C., 2011. A Multipath

TCP model for ns-3 simulator. arXiv preprint

arXiv:1112.1932.

[25] Barré, S., Paasch, C. and Bonaventure, O,

Multipath TCP: from theory to practice.

NETWORKING 2011, pp.444-457,2011

