

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 4, Issue 9, September 2017

 12

Enhancing Map Reduce Performance in

Heterogeneous Distributed Environment
[1]

Suyash Mishra,
[2]

Dr. Anuranjan Mishra
[1]

Ph.D. Computer science,
[2]

H.O.D (CS, IT),
[1][2]

Noida International University, G.B Nagar (U.P), India.

Abstract - Now a day’s size of the data used in today’s enterprises worlds has been growing at exponential rates day by day. This

had triggered need to process and analyze the large volumes of data for business decision making quickly as well. MapReduce is

considered as a core-processing engine of Hadoop, which is prominently used to cater continuously increasing demands on

computing resources imposed by massive data sets. Highly scalable feature of MapReduce processing, allows parallel and

distributed processing on multiple computing nodes. This paper talks about various scheduling methodologies and most

appropriate one can be used for improving MapReduce processing .Also tried to identify scheduling methods scaling or processing

limitations along with the situations wherein they can be best suited. Map Reduce is used majorly for short jobs, which eventually

require low response time. The current Hadoop implementation assumes underline computing nodes in a cluster are homogeneous,

have same processing capability and memory. Hadoop’s scheduler suffers from severe performance degradation in heterogeneous

environments. In heterogeneous environment, Longest Approximate Time to End (LATE) scheduling can be most efficient in

comparison to other scheduling .It has been seen in various studies that LATE has improved Hadoop response times by

approximately two times in a clusters.

Key Words— Big data, HDFS, Hadoop, Map-Reduce, Scheduling Algorithm, LATE

I. INTRODUCTION

Traditional data storage and processing capabilities were

limited and was dependent on available hardware, storage

and processing requirements, which deemed to be very

different from today. Thus, those approaches and

databases are facing tremendous threat while coping Big

Data processing and storing demands.

Now a days Industry is focusing and making huge

investment to conclude how to make better use of Big

Data and identify beneficial business insights to lead a

better business decisions .Which help business or industry

to increase profit. MapReduce is a highly scalable

programming model capable of processing huge volume

of data in parallel execution fashion on a huge number of

commodity computing nodes. Google [3] recently

popularized it.MapReduce paradigm has been

implemented in many open source projects, but most

prominently adopted by the Apache Hadoop later [4].

MapReduce follows a flexible computation model with a

simple interface consisting of a map and reduce functions.

Application developers can customize these two functions

implementations. Main advantage of Map Reduce

paradigm is efficient node failure handling while hiding

the complexity to manage fault-tolerance from the

programmer. In case of a homogeneous environment, all

nodes are considered identical in both in terms of

computation power and disk capacity. In event of node

crash Map Reduce identifies another idle or underutilized

node to reruns failed tasks on it. There may be case when

a node is processing a task poorly or slowly which is

known as straggler task which may be time taking, rather

than waiting for task to complete Map Reduce runs a

backup copy of slow running on another machine which

is able to finish task quickly. Without speculative

execution, a job will be as slow as the misbehaving task.

Straggler task can occur due to various reasons e.g. faulty

hardware and misconfiguration. It has been observed that

speculative execution can improve job response times by

44%.

Speculative execution problem aggravates in

Heterogeneous environment, which deteriorate

MapReduce performance due to difference in nodes

storage and processing capacity.

2. HADOOP

Hadoop is an open source-processing engine designed to

process extremely high volumes of structured or

unstructured data. Hadoop is based on distributed

processing which provides resilience, fault tolerance and

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 4, Issue 9, September 2017

 13

scalability along with efficient Big data processing.

Primarily Hadoop has two main components HDFS and

MapReduce: Hadoop distributed file system (HDFS),

which stores data in structured relational form or

unstructured form or any variety of data. HDFS is a

highly distributed file system that ensures high turnaround

times to retrieve data along with high storage scalability.

Second component of Hadoop is MapReduce, which is

meant for managing and running applications on multiple

distributed servers. It is a framework for executing high

performance distributed data processing MapReduce is

based on divide and aggregate paradigm. HDFS, or the

Hadoop Distributed File System, allows unlimited storage

with minimal impact on data retrieval time.

Figure2 below depicts Hadoop and it’s both components.

Figure2.

3. MAPREDUCE- PROCESSING OF BIGDATA

MapReduce is a programming model designed for

processing large volumes of data in parallel fashion by

breaking the work into a set of independent sub

processing units.one of the MapReduce most significant

advantages is that it hides many system level details and

complexities from programmer and provides convenient

to programmer. It processes data by dividing the progress

into two phases: Map and Reduce. Each Map function

takes a split data file as its input data, which can be

locates in the distributed file system and keeps the

key/value data. The split data file can be co-located with

the Map function or not. If data and the Map function do

not reside in the same node, then the system will attempt

to move the split file to the Map function where it exists.

This is why MapReduce follows “Moving data closer to

compute” concept to reduce processing time. Further

Reduce function is applied to all values that associated

with the same intermediate key and generates output

key/value pairs as the result. The MapReduce framework

works on master/slave architecture. There is a single

master node, which has JobTracker and several slave

nodes, which runs assigned task, and Tasktrackers

maintain assigned task’s progress status which executes

one per node in the cluster. The JobTracker acts as

interface between users who submits the job and the

underline framework. Users submit map/reduce jobs to

the JobTracker and jobs are executes basis of a first

come/first-served basis. The JobTracker manages the

allocation of map and reduce tasks to the slave nodes

running tasktrackers. The Tasktrackers accepts and run

tasks based on instruction from the JobTracker, manages

data transfer between the map, and reduce phases.

1. Map – The master node takes the input, partitions it up

into smaller sub-problems, and distributes them to slave

nodes. A slave node may do this again in turn, leading to

a multilevel tree structure. Map takes one pair of data

with a type in one data domain, and returns a list of pairs

in a different domain: Map (k1, v1) → list (K2, v2)

 2. Execute user-submitted Map logic – Map logic will is

run once for each K1 key value, produce output grouped

by key values K2.

3. Send the Map output to the Reduce processors – the

Map Reduce system designates a node to run Reduce

function, assigns the K2 key value to each processor, and

provides that node with all the Map-produced data

associated with that key value.

4. Execute the user-provided Reduce code – Reduce is run

exactly once for each K2 key value produced by the Map

step.

5. Generate the final output – the Map Reduce system

combines all the Reduce output, and sorts them by K2 to

produce the outcome. Below diagram elaborates above-

mentioned steps using word count example following big

data Map Reduce processing..

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 4, Issue 9, September 2017

 14

Figure3.

In a homogeneous environment where all nodes are same

in both computing speed and disk capacity. In case of

node failure, MapReduce attempts to reruns failed tasks

on a different idle/less-occupied node. There may be case

when a node is processing a task poorly/slowly known as

straggler; Map Reduce runs a speculative copy of

straggler task (“backup task”) on another machine able to

process quickly. In absence of speculative execution, a

job will be as slow as the misbehaving task. Stragglers

can arise due to numerous reasons including faulty

hardware and misconfiguration. Google [8] .It has been

observed that speculative execution can improve job

response times by 44%.In Heterogeneous environment

this problem is deteriorate the execution of speculative

execution due to difference in nodes storage and

processing capability.

4. SPEECULATIVE EXECUTION IN HADOOP

When HADOOP observes that s node is processing a task

poorly/slowly which is known as straggler; Map Reduce

runs a speculative copy of straggler task (“backup task”)

on another machine able to process quickly. The selection

of idle or underutilized node is done on basis of three

conditions utmost priority is allocated to any failed tasks

and secondly, non-running tasks are considered for

processing. For maps, nodes where local data resides at

node are chosen first. Thirdly, Hadoop selects a

speculative task to execute. For selection of speculative

tasks, Hadoop monitors task progress using a progress

score between zero and one. For a map, the progress score

is the fraction of input data read. For a reduce task, the

execution is divided into three steps, each steps is given

credited for 1/3 of the score:

• Copy phase, when the task receives map outputs.

• Sort phase, when map outputs are sorted by key.

• Reduce phase, when a user-defined function executes on

the list of map outputs with each key.

In each steps, the score is the fraction of data processed.

For example, a task halfway through the copy step gets a

progress score of 1/ 2 * 1/3=1/6 ,While a task halfway

through Sort step gets progress score

1/3+(1/2*1/3)=3/6=1/2 , while a task halfway through the

reduce step scores 1/ 3 + 1/ 3 + (1/ 2 * 1/ 3) = 5 /6 .

Hadoop monitors average progress score of each category

of tasks (maps and reduces) to compute a maximum time

allowed for execution for speculative execution. All tasks

beyond the allowed time is considered as “Slow”. The

speculative scheduling works quite well in homogenous

environments because of similar processing speeds of

each nodes tasks begin processing at same time and finish

is roughly the same times and speculation only begin

when the slow task is running. During multiple jobs,

Hadoop uses a FIFO scheduling to compute the order of

running a job where the first submitted job will be

running first job, followed by next submitted job in

sequence etc.

Hadoop scheduler follow below implicit assumptions

during working on speculative scheduling.

1. All nodes are considered of similar hardware

configuration hence possess same as benmap or reduce)

takes approximately same amount of time.

Above Hadoop assumption of holds quite well in

Homogeneous environment however, assumptions 1 and

2 suffers processing in heterogeneous cluster. However,

in homogeneous environment also, assumptions 3, 4 and 5

can be violated and can result into performance degrade.

Due to this constraint, Yahoo disabled speculative

execution on some jobs because it degrades performance,

and monitors faulty machines via different alternative

approaches. Facebook also adopted similar method and

disables speculation for reduce tasks. Tasks in

MapReduce should be small else, a single large task will

bring down the entire job processing and destroy the data

parallelism feature objective of MapReduce. In a well-

behaved MapReduce job, the separation of input into

equal parts and the division of the key space among

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 4, Issue 9, September 2017

 15

reducers ensures roughly equal amounts of work. If this is

not the case, then launching a few extra speculative tasks

is not harmful as long as obvious stragglers are also

detected.

When there is heterogeneous environment so it's hard to

utilize the power of each node correctly this may cause

performance degradation

5. SCHEDULING IN HADOOP MAPREDUCE

There are various scheduling approaches, which has been

recommended to reduce speculative tasks .Major

scheduling algorithms, below are listed which are

prominently used in MapReduce. Each scheduling

features, advantages, and disadvantages has been

elaborated to decide which scheduling is best suited for

which scenario..

5.1 FIFO SCHEDULING

In FIFO scheduling, jobs are processed and prioritized on

their sequence of arrival basis. This approach is quite easy

to implement and cost of implementation is not high. This

is best suited for single type of job; however, this suffers

from performance issues while multiple kind of jobs are

assigned. Performance also degrades on the processing of

shorter job in comparison to process long jobs.

Advantages: This is simple to implement and efficient for

mono kind of jobs.

Disadvantages: Has no priority consideration or size of

the job consideration.

5.2 FAIR SCHEDULING

In Fair scheduling assignment of resources to jobs is done

is such a manner so that all jobs get, on average, an equal

amount of resources over time. Job uses the entire

resources when there is a single job in a cluster. When

new jobs arrives, tasks slots that free up are assigned to

the new jobs, so that each job gets fair amount of CPU

time. Unlike the default Hadoop scheduler, which makes

a queue of jobs, this makes short jobs finish in reasonable

time while not starving long jobs fair scheduling can also

work with job priorities - the priorities are used as weights

to determine the fraction of total compute time that each

job gets.

Advantages:

1. Less complex

2. Works well with both small and large clusters

3. Provides faster response for small jobs mixed with

larger jobs Disadvantages

Disadvantages: Does not consider the job weight of each

node

5.3 CAPACITY SCHEDULAR

Capacity scheduling is based on queues concept , which

are assigned resources, and they uses FIFO strategy in

itself. At the time of scheduling, all queues are monitored,

if a queue does not use its allocated capacity, the

underutilized capacity can be utilized by assigning to

other queues. Jobs with a higher priority can access to

resources sooner than lower priority jobs. Yahoo!

developed capacity scheduler.

Advantages: Optimized utilization of resources and

throughput in multitenant cluster environment.

Disadvantages: Does not ensure guaranteed access with

the potential to reuse unused capacity and prioritize jobs

within queues over large cluster.

5.4 DYNAMIC PRIORITY SCHEDULING

In dynamic priority scheduling of Hadoop, users are

allowed to increase and decrease their queue priorities

continuously to meet the current workloads requirements.

Scheduler is aware of the current demand and makes it

more expensive to boost the priority under peak usage

times. Thus users who move their workload to low usage

times are being discounted. Priorities can only be

increased within a specified quota limit. All users are

assigned a quota, which is deducted and calculated

periodically in configurable accounting intervals.

Deducible budget is determined by a per-user

consumption rate, which may vary time to time directly

by the user. It maintains capacity distribution dynamically

among concurrent users based on priorities of the users. It

ensures users to get Map or Reduce slot on a proportional

share basis per time unit. These time slots can be

configured and called as allocation interval. This model

encourages users with small tasks than users with longer

time-consuming jobs.

Following are primitive features of Dynamic priority

scheduling.

1. Discourages the free riding and gaming by users.

2. Possible starvation of low-priority tasks can be reduced

by using the standard approach in Hadoop of restricting

the time each task allowed to run on a node.

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 4, Issue 9, September 2017

 16

3. Define a time budgets for different users and let them

individually decide whether the current price of

preempting running tasks is within their budget or if they

should wait until the current users run out of their budget.

Advantages: Can be easily configured in comparison to

other scheduling methods.

Disadvantages: All unfinished low priority processes gets

lost at the time of system crash.

5.5 DELAY SCHEDULING

In delay scheduling when a node requests a task, if the

head-of-line job cannot launch a local task, task is not

processed that time and delayed at moment, look at

subsequent jobs. However, if a job has been delayed from

processing long enough, job is allowed to launch non-

local tasks, to avoid starvation. The key objective behind

delay scheduling is that although the first slot we consider

giving to a job is unlikely to have data for it, tasks finish

so quickly that some slot with data for it will be

processed.

5.6 RESOURCE AWARE SCHEDULING

Resource Aware Scheduling in Hadoop is a biggest

research Challenges in Cloud Computing. Job Tracker

running at master node take scheduling decisions in

Hadoop. The Job Tracker maintains a queue of currently

running jobs, states of Task Trackers in a cluster and

nodes, and list of allocated tasks to each Task Tracker.

Each Task Tracker node is currently configured with a

maximum number of available computation slots. Each

Task Tracker node monitors resources such as CPU

utilization, disk channel IO in bytes/s, and the number of

page faults per unit time for the memory subsystem.

Below Are two resource aware scheduling approaches:

I. Dynamic Free Slot Advertisement

II. Free Slot Priorities/Filtering

6 HOW MAPREDCUE ASSUMPTIONS ARE

VIOLETED IN HETEROGENEOUS

ENVIROUNMENT

6.1 HETEROGENITY

The first two assumptions are about homogeneous nature

of clusters nodes. There may be multiple generations of

hardware in a non-virtualized data center. However, in a

virtualized data center, multiple virtual machines run on

each physical host, such as Amazon EC2, colocation of

VMs may cause heterogeneity [8] having different

processing capacity.

Enhancing MapReduce performance in heterogeneous

environments and propose solutions to improve its

performance. Each approach attempts to improve one of

underperforming areas of Map reduce features in a

heterogeneous cluster.

The algorithms that were identified to improve processing

can be categorized into below two categories:

1. Data Locality Algorithms.

2. Fault Tolerance Algorithms.

6.1.1. DATA LOCALITY ALGORITHMS

Data placement strategy plays vital role, as in case of

homogeneous environment all nodes are assumed similar

in processing capability and storage capacity. In

heterogeneous Hadoop cluster, a high-performance node

can complete processing local data faster than low-

performance node. Data placement strategy advocate how

data placement can be optimized in Heterogeneous

Hadoop Clusters to improve MapReduce performances.

6.1.1.1 DATA PLACEMENT IN HETEROGENEOUS

HADOOP CLUSTERS

In heterogeneous Hadoop cluster, a high-performance

node can complete processing local data faster than low-

performance node. After the fast node finished processing

data residing in its local disk, the fast node has to take

care of processing of the unprocessed data in remote slow

node. The overhead of transferring unprocessed data from

slow node to fast node is very high if the amount of

transferred data is huge. An approach to improve Map

Reduce performance in heterogeneous environments is to

reduce the amount of data moved between slow and fast

nodes in a heterogeneous clustering

J. Xie et al. [9] advises a data placement mechanism in

HDFS that distributed and stored a large data set across

multiple heterogeneous nodes in function of nodes

computing capacity. In other words, the number of file.

6.1.1.2 INITIAL DATA PLACEMENT

The initial data placement chops a large input file into a

number of even-sized parts. A data distribution server

handles the responsibility of distributing the file portions

across the nodes of the cluster. It applies the round-robin

algorithm to assign the input file portions to the

heterogeneous nodes based on their computing ratios. A

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 4, Issue 9, September 2017

 17

small value of computing ratio indicates a high speed of

node, meaning that the fast node must process a large

number of fragments. In addition, a large value of

computing ratio of a node indicates a low speed of the

node, meaning that the slow node must process a small

number of file fragments.

6.1.1.3 DATA REDISTRIBUTION

Input file portions distributed by the initial data placement

algorithm [10] might be disrupted due to the following

reasons:

1. New data is added and appended to an existing input

file.

2. Data blocks are deleted from the existing input File

3. New data computing nodes are added into an existing

cluster. To address this dynamic data load-balancing

problem.

6.1.1.4 DATA LOCALITY AWARE TASK

SCHEDULING METHOD FOR HETEROGENEOUS

ENVIRONMENTS

Zhuoyao zhang [9] advocated method to improve data

locality of Map reduce in homogeneous computing

environments. The method considers that noes will finish

is same amount of time as due to same processing

capability of each node .However, this assumption cannot

be very effective in terms of performance in

heterogeneous environment due to numerous factors that

can change the processing speed of the processors such

as, the heterogeneity of the computational resources and

its dynamic workload.

X. Zhang et al. [9] introduced a data locality aware

scheduling method for heterogeneous Hadoop cluster.

There are two factors affect the efficiency of map tasks

execution-waiting time is the shortest time that the task

has to wait before it can be scheduled to one of the nodes

that have the input data, transmission time is the time

needed to copy the input data of the task to the requesting

node.

The goal is to make a balance between the waiting time

and transmission time at runtime when schedule a task to

a node to obtain the optimal task execution time. In event

of task process, request priority is given to task whose

input data is present in the requesting node. If no such

tasks, the method selects the task having input stored in

the nearest to requesting. Further method calculates wait

time and determine transmission time of the allocated

task. If the waiting time is less than transmission time,

then method reserves the task for the node having the

input data. Otherwise, it schedules the task to the

requesting node.

6.2 FAULT TOLERANCE ALGORITHMS

Main advantage of Map reduce is its ability to identify,

manage node failures and hides the complexity of the

fault tolerance from the programmers. Hadoop’s

performance is dependent on its task scheduler, which

considers that the cluster nodes are homogeneous and

tasks make progress linearly. Hadoop’s scheduler uses

these assumptions to decide when to speculatively re-

execute tasks that appear to be stragglers. Hadoop’s

scheduler starts speculative tasks based on a simple

heuristic comparing each task’s progress to the average

progress of each task. This heuristic gives better results in

the homogeneous environments where the stragglers are

obvious. Hadoop’s scheduler can degrade server

performance in heterogeneous environments because the

underlying assumptions are broken.[6]

We will be discussing the algorithms to improve fault

tolerance support in the heterogeneous Hadoop.

6.2.1 LONGEST APPROXIMATE TIME TO END

Longest Approximate Time to End Algorithm (LATE) is

based on approach that if a node has an empty task slot,

Hadoop chooses a task for it from one of three categories.

First, priority is given to a failed tasks Second, non-

running tasks are considered, specially the map tasks that

have local data on this node. Third, speculative execution

task.

Hadoop defines a threshold for speculative execution

using the average progress score of each category of tasks

(maps and reduces). When a task’s progress score is less

than the average off its category, and the task has run at

least one minute, it is flagged as a straggler. LATE always

speculatively executes the task which will finish longest

in the future. LATE estimates the task’s finish time based

on the progress score provided by Hadoop. Hadoop

computes the progress rate of each task as Progress Score,

and then compute the task’s finish time.

There are scenarios where this method can be

unsuccessful, but this runs well in typical Hadoop jobs.

Ideally, we should only launch speculative tasks on fast

nodes --not stragglers. We do this through a simple

heuristic -do not launch speculative tasks on nodes that

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 4, Issue 9, September 2017

 18

are below some threshold, Slow Node Threshold, of total

work performed (sum of progress scores for all succeeded

and in progress tasks on the node). This approach gives

better performance than assigning a speculative task to the

first available node.

Advantages of LATE algorithm [6] has several

advantages. It is robust in heterogeneous environment,

because it will re-launch only the slowest tasks, and only

a small number of tasks.

LATE prioritizes among the slow tasks based on how

much they affect job response time.

LATE also limits the number of speculative tasks to limit

contention for shared resources. Comparatively, Hadoop's

native scheduler has a fixed threshold, after which all

tasks that are slow enough and have an equal chance of

being launched. This fixed threshold can cause

excessively many tasks to be speculated upon.

LATE takes into account node heterogeneity when

deciding where to run speculative tasks. Whereas,

Hadoop's core scheduler assumes that any node, which

completes a task and requests for a new one, is likely to

be a fast node, i.e. that slow nodes will never finish their

original tasks and never be member for running

speculative tasks.

At last but not least, by focusing on estimated time left

instead of progress rate, LATE speculatively executes

only those many tasks that will improve job response

time, rather than any slow tasks.

7. CONCLUSION AND FUTURE WORK

MapReduce has been regarded as prominent

programming paradigm to cope with Big data processing

.Though MapReduce offers numerous advantages but

there are few trade-offs faced in meeting, the rapidly

growing computing demands of Big Data in

heterogeneous environment. There are many scheduling

methodologies proposed .Our aim is to identify and

categorize related scheduling algorithms, their capability

to address MapReduce challenge to work efficiently in

Heterogeneous environment. .This enables better planning

of Big data projects. Future work on this will be develop a

scheduling change in Hadoop MapReduce which will

work efficiently using LATE scheduling approach as this

is described as most suited approach among all proposed

scheduling methodologies .

8 REFERENCES

[1] Dean, J., Ghemawat, S.: MapReduce: Simplified data

processing on large clusters. In: OSDI 2004, San

Francisco, CA, pp. 137–150 (December 2004)

[2] Hadoop MapReduce,

http://hadoop.apache.org/mapreduce/

[3]. Thusoo, A., Shao, Z., Anthony, S., Borthakur, D.,

Jain, N., Sen Sarma, J., Murthy, R., Liu, H.: Data

warehousing and analytics infrastructure at facebook. In:

Proceedings of the 2010 International Conference on

Management of Data, SIGMOD 2010, pp. 1013–1020.

ACM, New York (2010)

[4]. Ananthanarayanan, G., Kandula, S., Greenberg, A.,

Stoica, I., Lu, Y., Saha, B., Harris, E.: Reining in the

outliers in map-reduce clusters using mantri. In: OSDI

2010, pp. 1–16. USENIX Asoc., Berkeley (2010)

[5]. Polo, J., Carrera, D., Becerra, Y., Steinder, M.,

Whalley, I.: Performance-driven task co-scheduling for

MapReduce environments. In: Network Operations and

Management Symposium, NOMS, pp. 373–380. IEEE,

Osaka (2010)

[6] Wolf, J., Rajan, D., Hildrum, K., Khandekar, R.,

Kumar, V., Parekh, S., Wu, K.-L., Balmin, A.: Flex: A

Slot Allocation Scheduling Optimizer for Mapreduce

Workloads. In: Gupta, I., Mascolo, C. (eds.) Middleware

2010. LNCS, vol. 6452, pp. 1–20. Springer, Heidelberg

(2010)

[7] Dynamic Proportional share scheduling in Hadoop

Thomas sandholm and Kevin Springer Berlin Heidelberg

Volume 6253, 2010, pp 110-131

[8]Improving Map Reduce Performance through Data

Placement in Heterogeneous Hadoop Clusters- Jiong Xie,

Shu Yin, Xiaojun Ruan, Zhiyang Ding, Yun Tian, James

Majors, Adam Manzanares, and Xiao Qin -Department of

Computer Science and Software Engineering Auburn

University, Auburn, AL 36849-5347

[9] An Empirical Analysis of Scheduling techniques for

Real-time cloud based data processing-linh T.X. Phan

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 4, Issue 9, September 2017

 19

Zhuoyao zhang, Qi Zheng Boon Thau Loo University of

Pennsylvania

[10] Herodotou, H., and Babu, S. Profiling, what-if

analysis, and cost-based optimization of MapReduce

programs. In Proc. Int’ Conf. on Very Large Data Bases

(VLDB) (2011).

[11] MapR. The executive’s guide to big data.

http://www.mapr.com/resources/white-papers.

[12] Pettijohn, E., Guo, Y., Lama, P., and Zhou, X. User-

centric heterogeneity-aware mapreduce job provisioning

in the public cloud. In Proc. Int’l Conference on

Autonomic Computing (ICAC) (2014).

13] Herodotou, H., Lim, H., Luo, G., Borisov, N., Dong,

L., Cetin, F. B., and Babu, S. Starfish: A self-tuning

system for big data analytics. In Proc. Conference on

Innovative Data Systems Research (CIDR) (2011).

[14] Lama, P., and Zhou, X. Aroma: Automated resource

allocation and configuration of mapreduce environment in

the cloud. In Proc. Int’l Conf. on Autonomic computing

(ICAC) (2012).

[15] Li, X., Wang, Y., Jiao, Y., Xu, C., and Yu, W.

Coomr: Cross-task coordination for efficient data

management in mapreduce programs. In Proc. Int’l

Conference for High Performance Computing,

Networking, Storage and Analysis (SC) (2013).

[16] Kambatla, K., Pathak, A., and Pucha, H. Towards

optimizing hadoop provisioning in the cloud. In Proc.

USENIX HotCloud Workshop (2009).

[17] Li, Z., Cheng, Y., Liu, C., and Zhao, C. Minimum

standard deviation difference-based thresholding. In Proc.

Int’l Conference on Measuring Technology and

Mechatronics Automation (ICMTMA) (2010).

[18] Jinda, A., Quian-Ruiz, J., and Dittrich, J. Trojan data

layouts: Right shoes for a running elephant. In Proc. of

ACM Symposium on Cloud Computing (SoCC) (2011).

