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Abstract - Now a day’s size of the data used in today’s enterprises worlds has been growing at exponential rates day by day. This 

had triggered need to process and analyze the large volumes of data for business decision making quickly as well. MapReduce is 

considered as a core-processing engine of Hadoop, which is prominently used to cater continuously increasing demands on 

computing resources imposed by massive data sets. Highly scalable feature of MapReduce processing, allows parallel and 

distributed processing on multiple computing nodes. This paper talks about various scheduling methodologies and most 

appropriate one can be used for improving MapReduce processing .Also tried to identify scheduling methods scaling or processing 

limitations along with the situations wherein they can be best suited. Map Reduce is used majorly for short jobs, which eventually 

require low response time. The current Hadoop implementation assumes underline computing nodes in a cluster are homogeneous, 

have same processing capability and memory. Hadoop’s scheduler suffers from severe performance degradation in heterogeneous 

environments. In heterogeneous environment, Longest Approximate Time to End (LATE) scheduling can be most efficient in 

comparison to other scheduling .It has been seen in various studies that LATE has improved Hadoop response times by 

approximately two times in a clusters. 
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I. INTRODUCTION 

 

Traditional data storage and processing capabilities were 

limited and was dependent on available hardware, storage 

and processing requirements, which deemed to be very 

different from today. Thus, those approaches and 

databases are facing tremendous threat while coping Big 

Data processing and storing demands. 

Now a days Industry is focusing and making huge 

investment to conclude how to make better use of Big 

Data and identify beneficial business insights to lead a 

better business decisions .Which help business or industry 

to increase profit. MapReduce is a highly scalable 

programming model capable of processing huge volume 

of data in parallel execution fashion on a huge number of 

commodity computing nodes. Google [3] recently 

popularized it.MapReduce paradigm has been 

implemented in many open source projects, but most 

prominently adopted by the Apache Hadoop later [4]. 

MapReduce follows a flexible computation model with a 

simple interface consisting of a map and reduce functions. 

Application developers can customize these two functions 

implementations. Main advantage of Map Reduce 

paradigm is efficient node failure handling while hiding 

the complexity to manage fault-tolerance from the  

 

programmer. In case of a homogeneous environment, all 

nodes are considered identical in both in terms of 

computation power and disk capacity. In event of node 

crash Map Reduce identifies another idle or underutilized 

node to reruns failed tasks on it. There may be case when 

a node is processing a task poorly or slowly which is 

known as straggler task which may be time taking, rather 

than waiting for task to complete Map Reduce runs a 

backup copy of slow running on another machine which 

is able to finish task quickly. Without speculative 

execution, a job will be as slow as the misbehaving task. 

Straggler task can occur due to various reasons e.g. faulty 

hardware and misconfiguration. It has been observed that 

speculative execution can improve job response times by 

44%. 

Speculative execution problem aggravates in 

Heterogeneous environment, which deteriorate 

MapReduce performance due to difference in nodes 

storage and processing capacity. 

 

2. HADOOP 

 

Hadoop is an open source-processing engine designed to 

process extremely high volumes of structured or 

unstructured data. Hadoop is based on distributed 

processing which provides resilience, fault tolerance and 
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scalability along with efficient Big data processing. 

Primarily Hadoop has two main components HDFS and 

MapReduce: Hadoop distributed file system (HDFS), 

which stores data in structured relational form or 

unstructured form or any variety of data. HDFS is a 

highly distributed file system that ensures high turnaround 

times to retrieve data along with high storage scalability. 

Second component of Hadoop is MapReduce, which is 

meant for managing and running applications on multiple 

distributed servers. It is a framework for executing high 

performance distributed data processing MapReduce is 

based on divide and aggregate paradigm. HDFS, or the 

Hadoop Distributed File System, allows unlimited storage 

with minimal impact on data retrieval time. 

Figure2 below depicts Hadoop and it’s both components. 

 

 
Figure2. 

 

3. MAPREDUCE- PROCESSING OF BIGDATA 

 

MapReduce is a programming model designed for 

processing large volumes of data in parallel fashion by 

breaking the work into a set of independent sub 

processing units.one of the MapReduce most significant 

advantages is that it hides many system level details and 

complexities from programmer and provides convenient 

to programmer. It processes data by dividing the progress 

into two phases: Map and Reduce. Each Map function 

takes a split data file as its input data, which can be 

locates in the distributed file system and keeps the 

key/value data. The split data file can be co-located with 

the Map function or not. If data and the Map function do 

not reside in the same node, then the system will attempt 

to move the split file to the Map function where it exists. 

This is why MapReduce follows “Moving data closer to 

compute” concept to reduce processing time. Further 

Reduce function is applied to all values that associated 

with the same intermediate key and generates output 

key/value pairs as the result. The MapReduce framework 

works on master/slave architecture. There is a single 

master node, which has JobTracker and several slave 

nodes, which runs assigned task, and Tasktrackers 

maintain assigned task’s progress status which executes 

one per node in the cluster. The JobTracker acts as 

interface between users who submits the job and the 

underline framework. Users submit map/reduce jobs to 

the JobTracker and jobs are executes basis of a first 

come/first-served basis. The JobTracker manages the 

allocation of map and reduce tasks to the slave nodes 

running tasktrackers. The Tasktrackers accepts and run 

tasks based on instruction from the JobTracker, manages 

data transfer between the map, and reduce phases.  

 

1. Map – The master node takes the input, partitions it up 

into smaller sub-problems, and distributes them to slave 

nodes. A slave node may do this again in turn, leading to 

a multilevel tree structure. Map takes one pair of data 

with a type in one data domain, and returns a list of pairs 

in a different domain: Map (k1, v1) → list (K2, v2) 

 

 2. Execute user-submitted Map logic – Map logic will is 

run once for each K1 key value, produce output grouped 

by key values K2.  

 

3. Send the Map output to the Reduce processors – the 

Map Reduce system designates a node to run Reduce 

function, assigns the K2 key value to each processor, and 

provides that node with all the Map-produced data 

associated with that key value.  

 

4. Execute the user-provided Reduce code – Reduce is run 

exactly once for each K2 key value produced by the Map 

step.  

 

5. Generate the final output – the Map Reduce system 

combines all the Reduce output, and sorts them by K2 to 

produce the outcome. Below diagram elaborates above-

mentioned steps using word count example following big 

data Map Reduce processing.. 
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Figure3. 

In a homogeneous environment where all nodes are same 

in both computing speed and disk capacity. In case of 

node failure, MapReduce attempts to reruns failed tasks 

on a different idle/less-occupied node. There may be case 

when a node is processing a task poorly/slowly known as 

straggler; Map Reduce runs a speculative copy of 

straggler task (“backup task”) on another machine able to 

process quickly. In absence of speculative execution, a 

job will be as slow as the misbehaving task. Stragglers 

can arise due to numerous reasons including faulty 

hardware and misconfiguration. Google [8] .It has been 

observed that speculative execution can improve job 

response times by 44%.In Heterogeneous environment 

this problem is deteriorate the execution of speculative 

execution due to difference in nodes storage and 

processing capability. 

 

4. SPEECULATIVE EXECUTION IN HADOOP 

 

When HADOOP observes that s node is processing a task 

poorly/slowly which is known as straggler; Map Reduce 

runs a speculative copy of straggler task (“backup task”) 

on another machine able to process quickly. The selection 

of idle or underutilized node is done on basis of three 

conditions utmost priority is allocated to any failed tasks 

and secondly, non-running tasks are considered for 

processing. For maps, nodes where local data resides at 

node are chosen first. Thirdly, Hadoop selects a 

speculative task to execute. For selection of speculative 

tasks, Hadoop monitors task progress using a progress 

score between zero and one. For a map, the progress score 

is the fraction of input data read. For a reduce task, the 

execution is divided into three steps, each steps is given 

credited for 1/3 of the score: 

• Copy phase, when the task receives map outputs. 

• Sort phase, when map outputs are sorted by key. 

• Reduce phase, when a user-defined function executes on 

the list of map outputs with each key. 

 

In each steps, the score is the fraction of data processed. 

For example, a task halfway through the copy step gets a 

progress score of 1/ 2 * 1/3=1/6 ,While a task halfway 

through Sort step gets progress score 

1/3+(1/2*1/3)=3/6=1/2 , while a task halfway through the 

reduce step scores 1/ 3 + 1/ 3 + ( 1/ 2 * 1/ 3 ) = 5 /6 . 

Hadoop monitors average progress score of each category 

of tasks (maps and reduces) to compute a maximum time 

allowed for execution for speculative execution. All tasks 

beyond the allowed time is considered as “Slow”. The 

speculative scheduling works quite well in homogenous 

environments because of similar processing speeds of 

each nodes tasks begin processing at same time and finish 

is roughly the same times and speculation only begin 

when the slow task is running. During multiple jobs, 

Hadoop uses a FIFO scheduling to compute the order of 

running a job where the first submitted job will be 

running first job, followed by next submitted job in 

sequence etc. 

 

Hadoop scheduler follow below implicit assumptions 

during working on speculative scheduling. 

 

1. All nodes are considered of similar hardware 

configuration hence possess same as benmap or reduce) 

takes approximately same amount of time. 

 

Above Hadoop assumption of holds quite well in 

Homogeneous environment however, assumptions 1 and 

2 suffers processing in heterogeneous cluster. However, 

in homogeneous environment also, assumptions 3, 4 and 5 

can be violated and can result into performance degrade. 

Due to this constraint, Yahoo disabled speculative 

execution on some jobs because it degrades performance, 

and monitors faulty machines via different alternative 

approaches. Facebook also adopted similar method and 

disables speculation for reduce tasks. Tasks in 

MapReduce should be small else, a single large task will 

bring down the entire job processing and destroy the data 

parallelism feature objective of MapReduce. In a well-

behaved MapReduce job, the separation of input into 

equal parts and the division of the key space among 
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reducers ensures roughly equal amounts of work. If this is 

not the case, then launching a few extra speculative tasks 

is not harmful as long as obvious stragglers are also 

detected. 

When there is heterogeneous environment so it's hard to 

utilize the power of each node correctly this may cause 

performance degradation 

 

5. SCHEDULING IN HADOOP MAPREDUCE 

 

There are various scheduling approaches, which has been 

recommended to reduce speculative tasks .Major 

scheduling algorithms, below are listed which are 

prominently used in MapReduce. Each scheduling 

features, advantages, and disadvantages has been 

elaborated to decide which scheduling is best suited for 

which scenario.. 

 

5.1 FIFO SCHEDULING 

In FIFO scheduling, jobs are processed and prioritized on 

their sequence of arrival basis. This approach is quite easy 

to implement and cost of implementation is not high. This 

is best suited for single type of job; however, this suffers 

from performance issues while multiple kind of jobs are 

assigned. Performance also degrades on the processing of 

shorter job in comparison to process long jobs. 

Advantages: This is simple to implement and efficient for 

mono kind of jobs. 

Disadvantages: Has no priority consideration or size of 

the job consideration. 

 

5.2 FAIR SCHEDULING 

In Fair scheduling assignment of resources to jobs is done 

is such a manner so that all jobs get, on average, an equal 

amount of resources over time. Job uses the entire 

resources when there is a single job in a cluster. When 

new jobs arrives, tasks slots that free up are assigned to 

the new jobs, so that each job gets fair amount of CPU 

time. Unlike the default Hadoop scheduler, which makes 

a queue of jobs, this makes short jobs finish in reasonable 

time while not starving long jobs fair scheduling can also 

work with job priorities - the priorities are used as weights 

to determine the fraction of total compute time that each 

job gets. 

Advantages: 

1. Less complex 

2. Works well with both small and large clusters 

3. Provides faster response for small jobs mixed with 

larger jobs Disadvantages 

Disadvantages: Does not consider the job weight of each 

node 

 

5.3 CAPACITY SCHEDULAR 

Capacity scheduling is based on queues concept , which 

are assigned resources, and they uses FIFO strategy in 

itself. At the time of scheduling, all queues are monitored, 

if a queue does not use its allocated capacity, the 

underutilized capacity can be utilized by assigning to 

other queues. Jobs with a higher priority can access to 

resources sooner than lower priority jobs. Yahoo! 

developed capacity scheduler. 

Advantages: Optimized utilization of resources and 

throughput in multitenant cluster environment. 

Disadvantages: Does not ensure guaranteed access with 

the potential to reuse unused capacity and prioritize jobs 

within queues over large cluster. 

 

 

5.4 DYNAMIC PRIORITY SCHEDULING 

In dynamic priority scheduling of Hadoop, users are 

allowed to increase and decrease their queue priorities 

continuously to meet the current workloads requirements. 

Scheduler is aware of the current demand and makes it 

more expensive to boost the priority under peak usage 

times. Thus users who move their workload to low usage 

times are being discounted. Priorities can only be 

increased within a specified quota limit. All users are 

assigned a quota, which is deducted and calculated 

periodically in configurable accounting intervals. 

Deducible budget is determined by a per-user 

consumption rate, which may vary time to time directly 

by the user. It maintains capacity distribution dynamically 

among concurrent users based on priorities of the users. It 

ensures users to get Map or Reduce slot on a proportional 

share basis per time unit. These time slots can be 

configured and called as allocation interval. This model 

encourages users with small tasks than users with longer 

time-consuming jobs. 

Following are primitive features of Dynamic priority 

scheduling. 

1. Discourages the free riding and gaming by users. 

2. Possible starvation of low-priority tasks can be reduced 

by using the standard approach in Hadoop of restricting 

the time each task allowed to run on a node. 
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3. Define a time budgets for different users and let them 

individually decide whether the current price of 

preempting running tasks is within their budget or if they 

should wait until the current users run out of their budget. 

Advantages: Can be easily configured in comparison to 

other scheduling methods. 

Disadvantages: All unfinished low priority processes gets 

lost at the time of system crash. 

 

5.5 DELAY SCHEDULING 

In delay scheduling when a node requests a task, if the 

head-of-line job cannot launch a local task, task is not 

processed that time and delayed at moment, look at 

subsequent jobs. However, if a job has been delayed from 

processing long enough, job is allowed to launch non- 

local tasks, to avoid starvation. The key objective behind 

delay scheduling is that although the first slot we consider 

giving to a job is unlikely to have data for it, tasks finish 

so quickly that some slot with data for it will be 

processed. 

 

5.6 RESOURCE AWARE SCHEDULING 

Resource Aware Scheduling in Hadoop is a biggest 

research Challenges in Cloud Computing. Job Tracker 

running at master node take scheduling decisions in 

Hadoop. The Job Tracker maintains a queue of currently 

running jobs, states of Task Trackers in a cluster and 

nodes, and list of allocated tasks to each Task Tracker. 

Each Task Tracker node is currently configured with a 

maximum number of available computation slots. Each 

Task Tracker node monitors resources such as CPU 

utilization, disk channel IO in bytes/s, and the number of 

page faults per unit time for the memory subsystem. 

Below Are two resource aware scheduling approaches: 

I. Dynamic Free Slot Advertisement 

II. Free Slot Priorities/Filtering 

 

6 HOW MAPREDCUE ASSUMPTIONS ARE 

VIOLETED IN HETEROGENEOUS 

ENVIROUNMENT 

 

6.1 HETEROGENITY 

The first two assumptions are about homogeneous nature 

of clusters nodes. There may be multiple generations of 

hardware in a non-virtualized data center. However, in a 

virtualized data center, multiple virtual machines run on 

each physical host, such as Amazon EC2, colocation of 

VMs may cause heterogeneity [8] having different 

processing capacity. 

Enhancing MapReduce performance in heterogeneous 

environments and propose solutions to improve its 

performance. Each approach attempts to improve one of 

underperforming areas of Map reduce features in a 

heterogeneous cluster. 

The algorithms that were identified to improve processing 

can be categorized into below two categories: 

1. Data Locality Algorithms. 

2. Fault Tolerance Algorithms. 

 

6.1.1. DATA LOCALITY ALGORITHMS 

Data placement strategy plays vital role, as in case of 

homogeneous environment all nodes are assumed similar 

in processing capability and storage capacity. In 

heterogeneous Hadoop cluster, a high-performance node 

can complete processing local data faster than low-

performance node. Data placement strategy advocate how 

data placement can be optimized in Heterogeneous 

Hadoop Clusters to improve MapReduce performances. 

 

6.1.1.1 DATA PLACEMENT IN HETEROGENEOUS 

HADOOP CLUSTERS 

In heterogeneous Hadoop cluster, a high-performance 

node can complete processing local data faster than low- 

performance node. After the fast node finished processing 

data residing in its local disk, the fast node has to take 

care of processing of the unprocessed data in remote slow 

node. The overhead of transferring unprocessed data from 

slow node to fast node is very high if the amount of 

transferred data is huge. An approach to improve Map 

Reduce performance in heterogeneous environments is to 

reduce the amount of data moved between slow and fast 

nodes in a heterogeneous clustering 

J. Xie et al. [9] advises a data placement mechanism in 

HDFS that distributed and stored a large data set across 

multiple heterogeneous nodes in function of nodes 

computing capacity. In other words, the number of file. 

 

6.1.1.2 INITIAL DATA PLACEMENT 

The initial data placement chops a large input file into a 

number of even-sized parts. A data distribution server 

handles the responsibility of distributing the file portions 

across the nodes of the cluster. It applies the round-robin 

algorithm to assign the input file portions to the 

heterogeneous nodes based on their computing ratios. A 
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small value of computing ratio indicates a high speed of 

node, meaning that the fast node must process a large 

number of fragments. In addition, a large value of 

computing ratio of a node indicates a low speed of the 

node, meaning that the slow node must process a small 

number of file fragments. 

 

6.1.1.3 DATA REDISTRIBUTION 

Input file portions distributed by the initial data placement 

algorithm [10] might be disrupted due to the following 

reasons: 

1. New data is added and appended to an existing input 

file. 

2. Data blocks are deleted from the existing input File 

3. New data computing nodes are added into an existing 

cluster. To address this dynamic data load-balancing 

problem. 

 

6.1.1.4 DATA LOCALITY AWARE TASK 

SCHEDULING METHOD FOR HETEROGENEOUS 

ENVIRONMENTS 

Zhuoyao zhang [9] advocated method to improve data 

locality of Map reduce in homogeneous computing 

environments. The method considers that noes will finish 

is same amount of time as due to same processing 

capability of each node .However, this assumption cannot 

be very effective in terms of performance in 

heterogeneous environment due to numerous factors that 

can change the processing speed of the processors such 

as, the heterogeneity of the computational resources and 

its dynamic workload. 

X. Zhang et al. [9] introduced a data locality aware 

scheduling method for heterogeneous Hadoop cluster. 

There are two factors affect the efficiency of map tasks 

execution-waiting time is the shortest time that the task 

has to wait before it can be scheduled to one of the nodes 

that have the input data, transmission time is the time 

needed to copy the input data of the task to the requesting 

node. 

The goal is to make a balance between the waiting time 

and transmission time at runtime when schedule a task to 

a node to obtain the optimal task execution time. In event 

of task process, request priority is given to task whose 

input data is present in the requesting node. If no such 

tasks, the method selects the task having input stored in 

the nearest to requesting. Further method calculates wait 

time and determine transmission time of the allocated 

task. If the waiting time is less than transmission time, 

then method reserves the task for the node having the 

input data. Otherwise, it schedules the task to the 

requesting node. 

 

6.2 FAULT TOLERANCE ALGORITHMS 

Main advantage of Map reduce is its ability to identify, 

manage node failures and hides the complexity of the 

fault tolerance from the programmers. Hadoop’s 

performance is dependent on its task scheduler, which 

considers that the cluster nodes are homogeneous and 

tasks make progress linearly. Hadoop’s scheduler uses 

these assumptions to decide when to speculatively re-

execute tasks that appear to be stragglers. Hadoop’s 

scheduler starts speculative tasks based on a simple 

heuristic comparing each task’s progress to the average 

progress of each task. This heuristic gives better results in 

the homogeneous environments where the stragglers are 

obvious. Hadoop’s scheduler can degrade server 

performance in heterogeneous environments because the 

underlying assumptions are broken.[6] 

We will be discussing the algorithms to improve fault 

tolerance support in the heterogeneous Hadoop. 

 

6.2.1 LONGEST APPROXIMATE TIME TO END 

Longest Approximate Time to End Algorithm (LATE) is 

based on approach that if a node has an empty task slot, 

Hadoop chooses a task for it from one of three categories. 

First, priority is given to a failed tasks Second, non-

running tasks are considered, specially the map tasks that 

have local data on this node. Third, speculative execution 

task. 

Hadoop defines a threshold for speculative execution 

using the average progress score of each category of tasks 

(maps and reduces). When a task’s progress score is less 

than the average off its category, and the task has run at 

least one minute, it is flagged as a straggler. LATE always 

speculatively executes the task which will finish longest 

in the future. LATE estimates the task’s finish time based 

on the progress score provided by Hadoop. Hadoop 

computes the progress rate of each task as Progress Score, 

and then compute the task’s finish time. 

There are scenarios where this method can be 

unsuccessful, but this runs well in typical Hadoop jobs. 

Ideally, we should only launch speculative tasks on fast 

nodes --not stragglers. We do this through a simple 

heuristic -do not launch speculative tasks on nodes that 
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are below some threshold, Slow Node Threshold, of total 

work performed (sum of progress scores for all succeeded 

and in progress tasks on the node). This approach gives 

better performance than assigning a speculative task to the 

first available node. 

Advantages of LATE algorithm [6] has several 

advantages. It is robust in heterogeneous environment, 

because it will re-launch only the slowest tasks, and only 

a small number of tasks. 

LATE prioritizes among the slow tasks based on how 

much they affect job response time. 

LATE also limits the number of speculative tasks to limit 

contention for shared resources. Comparatively, Hadoop's 

native scheduler has a fixed threshold, after which all 

tasks that are slow enough and have an equal chance of 

being launched. This fixed threshold can cause 

excessively many tasks to be speculated upon. 

LATE takes into account node heterogeneity when 

deciding where to run speculative tasks. Whereas, 

Hadoop's core scheduler assumes that any node, which 

completes a task and requests for a new one, is likely to 

be a fast node, i.e. that slow nodes will never finish their 

original tasks and never be member for running 

speculative tasks. 

At last but not least, by focusing on estimated time left 

instead of progress rate, LATE speculatively executes 

only those many tasks that will improve job response 

time, rather than any slow tasks. 

 

7. CONCLUSION AND FUTURE WORK 

 

MapReduce has been regarded as prominent 

programming paradigm to cope with Big data processing 

.Though MapReduce offers numerous advantages but 

there are few trade-offs faced in meeting, the rapidly 

growing computing demands of Big Data in 

heterogeneous environment. There are many scheduling 

methodologies proposed .Our aim is to identify and 

categorize related scheduling algorithms, their capability 

to address MapReduce challenge to work efficiently in 

Heterogeneous environment. .This enables better planning 

of Big data projects. Future work on this will be develop a 

scheduling change in Hadoop MapReduce which will 

work efficiently using LATE scheduling approach as this 

is described as most suited approach among all proposed 

scheduling methodologies . 
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