
ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering
 (IJERCSE)
 Vol 4, Issue 8 , August 2017

Preventing Obfuscated Malware via Differential

 Fault Analysis

 Shubhangi.D.C, [2] Amena Roohi
 [1] Head Of the Department [2] Post-Graduate Student
[1][2]
 Department of Computer Science & Engineering, VTU PG Centre, Kalaburagi, Karnataka, India.

Abstract— The rapid growth of Smartphone sales has come hand in hand with a similar increase in the number and
sophistication of malicious software targeting these platforms. Malware analysis is a thriving research area with a substantial
amount of still unsolved problems. A major source of security problems is precisely the ability to incorporate third-party
applications from available online markets. In the case of smart phones, the impressive growth both in malware and begin apps
is making increasingly unaffordable any human driven analysis of potentially dangerous apps. Malware samples consists of
hiding and obfuscating modules containing malicious functionality in places that static analysis tools overlook ALTERDROID,
is a open source tool for detecting, through reverse engineering, obfuscated functionality in components distributed as parts of
an app package. Such components are often part of a malicious app and are hidden outside its main code components, as code
components may be subject to static analysis by market operators. The key idea in ALTERDROID consists of analyzing the
behavioural differences between the original app and an altered version where a number of modifications. The Malware
applications are shown in the screen, and then the user can uninstall the malicious application. The experimental results
obtained by testing ALTERDROID over relevant apps and malware samples support the quality and viability of our proposal.

Keywords— Computer security, Malware, Mobile computing, obfuscated

[1]

1. INTRODUCTION

Stock prediction has recently grown to be a huge research
Smartphone is quickly becoming the dominant device for
accessing Internet resources. Sales of smart phones
overtook PC sales in the global market in 2010.
Shipments of smart phones surpassed those of feature
phones in Western Europe in 2011. According to May
2011 Nielsen survey, smart phones outsold feature phones
in the US in this same period. Compared to 5.9 billion
worldwide mobile phone subscribers, Smartphone usage
(835 million) is still steadily increasing. IDC predicts
Smartphone shipments will approach one billion in 2015.
Smart phones offer many more functions than traditional
mobile phones. In addition to a preinstalled mobile
operating system, such as IOS, Android, or Windows
Mobile, most smart phones also typically support carrier
networks, Wi-Fi connectivity, and Bluetooth so that users
can access the Internet to download and run various third
party applications. Most Smartphone support Multimedia
Message Service (MMS) and include embedded sensors
such as GPS, gyroscopes, and accelerometers, as well as a
high-resolution camera, a microphone, and a speaker.
 Smartphone‗s increasing popularity raises many
security concerns. Their central data management makes
them easy targets for hackers. Since the first mobile
phone viruses emerged in 2004, Smartphone users have
reported significant malware attacks. In the last seven
months of Because of their unique characteristics, 2011,
malware attacks on the Android platform increased 3,325
percent. As the use of Smartphone continues its rapid

growth, subscribers must be assured that the services they
offer are reliable, secure, and trustworthy. In a
Smartphone threat model, a malicious user publishes
malware disguised as a normal application through an app
store or website. Users will unintentionally download the
malware to a Smartphone, which carries a large amount of
sensitive data. After infiltrating a Smartphone, the
malware attempts to control its resources, collect data, or
redirect the Smartphone to a premium account or
malicious website. This model divides a Smartphone into
three layers:
 Application layer includes all of the
 Smartphone‗s apps, such as social networking
 software,email,textmessaging,and
 synchronization software.
 Communication layer includes the carrier
 networks, Wi- Fi connectivity, Bluetooth
 network, Micro USB ports, and Micro SD slots.
 Malware can spread through any of these
 channels.
 Resource layer includes the flash memory,
 camera, microphone, and sensors within a
 Smartphone. Because smart phones contain
 sensitive data, malware targets their

resources to control them and manipulate data from them.
 An attack forms a loop starting with the launch of the
malware, moving through the Smartphone‗s application,

All Rights Reserved © 2017 IJERCSE 28

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering
 (IJERCSE)
 Vol 4, Issue 8, August 2017

communication, and resource layers, on to premium
accounts/malicious websites, and back to the malicious
user shows such an attack. Smartphone also feature high-
quality audio and video recording capabilities. Sensitive
pieces of information that can be captured by these
devices could be easily leaked by malware residing on the
Smartphone. Even apparently harmless capabilities have
swiftly turned into a potential menace. For example [1],
access to the accelerometer or the gyroscope can be used
to infer the location of screen taps and, therefore, to guess
what the user is typing (e.g., passwords or message
contents). Similarly, the Radio Data System (RDS)
embedded in most AM/FM channels can be exploited to
inject attacks on Software Defined Radio (SDR) systems.
A major source of security problems is precisely the
ability to incorporate third-party applications from
available online markets. Thus, security measures at the
market level constitute a primary line of defence. Many
market operators carry out a revision process over
submitted apps that involve some form of security testing.
Official details about such revisions remain unknown, but
the constant presence of malware in many markets and
recent research studies suggest that operators cannot
afford to perform an exhaustive analysis over each app
submitted for release to the general public. This is further
complicated by the fact that determining which
applications are malicious and which are not is still a
formidable challenge, particularly for the so-called gray
ware namely, apps that are not fully malicious but that
constitute a threat to the user security and privacy.

1.1 Malware
Smartphone malware falls into three main categories:
viruses, Trojans, and spyware. Viruses are typically
disguised as a game, security patch, or other desirable
application, which a user downloads to a Smartphone.
Viruses can also spread through Bluetooth. Two
Bluetooth viruses have been reported in smartphones:
 Blue jacking sends unsolicited messages over
 Bluetooth to a Bluetooth-enabled device within a
 limited range(usually around 33 feet).
 Blue snarfing accesses unauthorized information
 in a smartphone through a Bluetooth connection.

Most smartphone Trojans are related to activities such as
recording calls, instant messaging, finding a location via
GPS, or forwarding call logs and other vital data.
According to [6],
Smart Message System Trojans comprise a large category

of mobile malware that run in an application‗s
background and send SMS messages to a premium rate
account owned by an attacker. Hippo SMS, for example,
increases user‗s phone charges by sending SMS messages
to premium mobile accounts and blocks service
provider‗s messages alerting users of the additional
charges. Spyware collects information about users
without their knowledge. According to a 2011 report,
spyware was the dominant malware affecting Android
phones, accounting for 63 percent of the samples
identified.

1.2 Mobile Threat Model
Types of Threat In mobile threat model include main two
types of threats: gray ware, and Anti-spyware. It
distinguish between the three predicated on their
distribution method, lucidity, and notice to utilize. The
main focuses especially on malware; personal spyware
and gray ware use different attack vectors, have different
motivations, and require different bulwark mechanisms.

1.2.1 Gray ware:
Gray ware refers to a malignant software or code that is
considered to fall in the "grey area" between mundane
software and a virus. Gray ware [7] is a term for which all
other maleficent or exasperating software such as adware,
spyware, track ware, and other maleficent code and
malevolent shareware fall under.

1.2.2 Anti-spyware
Anti-spyware is a type of software that is designed to
detect and abstract unwanted spyware programs. Spyware
is a type of malware that is installed on a computer
without the utilizer's cognizance in order to amass
information about them. This can pose a security risk to
the utilize, but more frequently spyware degrades system
performance by taking up processing puissance, installing
supplemental software, or redirecting users' browser
activity.

1.2.3 Obfuscated Smartphone Malware
Smartphone had the impressive growth both in malware
and benign apps are making increasingly unaffordable
any human driven analysis of potentially dangerous apps.
This has consolidated the need for intelligent analysis
techniques to aid malware analysts in their daily
functions. Furthermore, Smartphone malware is becoming
increasingly stealthy and recent specimens are relying on
advanced code obfuscation techniques to evade detection
by security analysts. For instance, Droid KungFu has been

All Rights Reserved © 2017 IJERCSE 29

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering
 (IJERCSE)
 Vol 4, Issue 8, August 2017

one of the major Android malware outbreaks. It started on
June 2011 and has already at least six known different
variants. It has been mostly distributed through official or
alternative markets by piggybacking the malicious
payload into a variety of legitimate applications. Such a
payload is encrypted into the app‗s assets folder and
decrypted at runtime using a key stored in a local variable
and located at one class. Another remarkable example is
Ginger Master, the first malware using root exploits for
privilege escalation on Android 2.3. The main payload
was stored as PNG and JPEG pictures in the assets file,
which were interpreted as code once loaded by a small
hook within the app. More sophisticated obfuscation
techniques, particularly in code, are starting to materialize
(e.g., stego malware). These techniques and trends create
an additional obstacle to malware analysts, who see their
task further complicated and have to ultimately rely on
carefully controlled dynamic analysis techniques to detect
the presence of potentially dangerous pieces of code.

1.2.4 Fault Injection:
Fault injection is a technique for improving the coverage
of a test by introducing faults to test code paths, in
particular error handling code paths that might otherwise
rarely be followed. It is often used with stress testing and
is widely considered to be an important part of developing
robust software. Robustness testing (also known as
Syntax Testing, Fuzzing or Fuzz testing) is a type of fault
injection commonly used to test for vulnerabilities in
communication interfaces such as protocols, command
line parameters, or APIs. The propagation of a fault
through to an observable failure follows a well defined
cycle. When executed, a fault may cause an error, which
is an invalid state within a system boundary [8]. An error
may cause further errors within the system boundary,
therefore each new error acts as a fault, or it may
propagate to the system boundary and be observable.
When error states are observed at the system boundary
they are termed failures. This mechanism is termed the
fault-error failure cycle and is a key mechanism in
dependability.

2. OVERVIEW

ALTERDROID, an open source tool for detecting,
through reverse engineering, obfuscated functionality in
components distributed as parts of an app package. Such
components are often part of a malicious app and are
hidden outside its main code components (e.g. within data
objects), as code components may be subject to static

analysis by market operators. The key idea in
ALTERDROID consists of analyzing the behavioural
differences between the original app and an altered
version where a number of modifications (faults) have
been carefully introduced.
Such modifications are designed to have no observable
effect on the app execution, provided that the altered
component is actually what it should be (i.e., it does not
hide any unwanted functionality). For example, replacing
the value of some pixels in a picture or a few characters in
a string encoding an error message should not affect the
execution. However, if after doing so it is observed that a
dynamic class loading action crashes or a network
connection does not take place, it may well be that the
picture was actually a piece of code or the string a
network address or a URL.
At high level, ALTERDROID has two differentiated
major components: fault injection and differential analysis
[4]. The first one takes a candidate app—the entire
package—as input and generates a fault-injected one. This
is done by first extracting all components in the app and
then identifying those suspicious of containing obfuscated
functionality. Such identification is done on an anomaly-
detection basis by comparing specific statistical features
of the component‗s contents with a predefined model for
each possible type of resource (i.e., code, pictures and
video, text files, databases, etc.).
Faults are then injected into candidate components, which
are subsequently repackaged, together with the unaltered
ones, into a new app [8]. This process admits
simultaneous injection of different faults into different
components and it is driven by a search algorithm that
attempts to identify where the obfuscated functionality is
hidden. Both the original and the fault-injected apps are
then executed under identical conditions (i.e., context and
user inputs), and their behaviour is monitored and
recorded in the form of two behavioural signatures.
Such signatures are merely sequential traces of the
activities executed by the app, such as for example
opening a network connection, sending or receiving data,
loading a dynamic component, sending an SMS,
interacting with the file system, etc. Both behavioural
signatures are then treated as in a stringto- string
correction problem, in such a way that computing the
Levenshtein (edit) distance between them returns the list
of observable differences in terms of insertions, deletions,
and substitutions.
Such a list, called the differential signature, is finally
matched against a rule-set where each rule encodes a
relationship between the type of presumably hidden

All Rights Reserved © 2017 IJERCSE 30

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering
 (IJERCSE)
 Vol 4, Issue 8, August 2017

functionality and certain patterns in the differential
signature. The functional components of ALTERDROID,
a prototype implementation of our differential fault
analysis model for Android apps. The system includes
instantiations for key tasks such as identifying
components to be fault-injected and a search-based
approach to track down obfuscated components in an app.
ALTERDROID‗s functional architecture supports
distributed deployment of different modules, which
allows running various analysis tasks in parallel and also
potentially offloading them to the cloud. Differential fault
analysis for detecting obfuscated malware functionality in
smartphone apps. The models for fault injection
operators, behavioural signatures and rule-based analysis
of differential behaviour are described.

decrypted at runtime.

2.1.2 Ginger Master (GM)
GM is the first known malware to use root exploits for
privilege escalation on Android 2.3. Its main goal is to
exfilt rate private information such as the device ID
(IMEI number, MSI number and so on) or the contact list
stored in the phone. GM is generally repackaged with a
root exploit known as Ginger Break, which is stored as a
PNG and a JPEG asset file. Right after infecting the
device, GM connects to the C&C server and fetches new
payloads.

3. RELATED WORK

A new behaviour-based anomaly detection system is used
to detecting meaningful deviations in a mobile
application‗s network behaviour. The main goal of the
proposed system is to protect mobile device users and
cellular infrastructure companies from malicious
applications by:
 Identification of malicious attacks or
 masquerading applications installed on a
 mobile device, and
 Identificationofrepublishedpopular
 applications injected with a malicious code
 (i.e., repackaging).

More specifically, it attempts to detect a new type of
mobile malware with self-updating capabilities that were
recently found on the official Google Android
marketplace. Mobile devices and their application
marketplaces drive the entire economy of the today‗s
mobile landscape. Android platforms alone have
produced staggering revenues, exceeding five billion
USD, which has attracted cybercriminals and increased
malware in Android markets at an alarming rate. To better
understand this slew of threats, it presents Copper Droid,
an automatic VMI-based dynamic analysis system to
reconstruct the behaviours of Android malware. The
novelty of Copper Droid lies in its agnostic approach to
identify interesting OS- and high-level Android specific
behaviours. It reconstructs these behaviours by observing
and dissecting system calls and, therefore, is resistant to
the multitude of alterations the Android runtime is
subjected to over its life-cycle. Android mobile devices
are enjoying a lion‗s market share in smart phones and
mobile devices. This also attracts malware writers to
target the Android platform. Recently, a new Android

Figure 2.1 Basic Architecture of Alterdroid

2.1 Malware Samples
Android malware samples that incorporate hidden
functionality in repackaged apps: Droid KungFu,
AnserverBot, and Ginger Master.

2.1.1 Droid KungFu (DKF)
DKF‗s main goal is to collect details about the infected
Android device, including the IMEI (International Mobile
Station Equipment Identity) number, phone model, and
OS version [3]. It is mostly distributed through open or
alternative markets via repackaging that is, by
piggybacking the malicious payload into various
legitimate applications. Apps infected with DKF are
distributed together with a root exploit hidden within the
app‗s assets, namely, Rage against the Cage (RAC). To
hinder static analysis, this encrypted payload is only

All Rights Reserved © 2017 IJERCSE 31

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering
 (IJERCSE)
 Vol 4, Issue 8, August 2017

malware distribution channel: releasing malicious
firmware‗s with pre-installed malware to the wild. This
poses significant risk since users of mobile devices cannot
change the content of the malicious firmware.

4. PROPOSED APPROACHES

In this paper we describe ALTERDROID, a tool for
detecting, through reverse engineering, obfuscated
functionality in components distributed as parts of an app
package. Such components are often part of a malicious
app and are hidden outside its main code components
(e.g. within data objects), as code components may be
subject to static analysis by market operators. The key
idea in ALTERDROID consists of analyzing the
behavioural differences between the original app and an
altered version where a number of modifications (faults)
have been carefully introduced. Such modifications are
designed to have no observable effect on the app
execution, provided that the altered component is actually
what it should be (i.e., it does not hide any unwanted
functionality).
For example, replacing the value of some pixels in a
picture or a few characters in a string encoding an error
message should not affect the execution. However, if after
doing so it is observed that a dynamic class loading action
crashes or a network connection does not take place, it
may well be that the picture was actually a piece of code
or the string a network address or a URL.
It Performs,
 Inject faults into apps;
 Represent behavioural differences between
 apps;
 Deduce properties from such behavioural
 differences considering injected faults and
 observed differences.
 Framing the rules to detect the malware

4.1 Analysis steps

4.1.1 Classification on installed Apps in Mobile Phone
ALTERDROID is an open source tool for creating
obfuscated functionality in components distributed as
parts of an app package. It consists of analyzing the
behavioural differences between the original app and an
altered version where a number of modifications
(faults).In this module, first creates ALTERDROID tool
for malware detection. Next it first classifies the installed
apps in mobile phone. Classified apps such as predefined
app, system app and plays tore app.

4.1.2 Explore Application Manifest
Applications are identified with file extension ―APK‖.
Each APK package runs in its own Environment. The
process ownership is identified with the APK id in the
manifest of the file application. The manifest file is called
―AndroidManifest.xml‖ and is located in the
application‗s root directory. The contents of manifest file
identify components, classes, services, access rights etc.
In this module it store working procedure and original
behaviour of the app.

4.1.3 Detect Application Enabled Permissions
The permissions required by the application to access
components and services in Android Environment [5].
The permission offered by the application to allow access
to its components and services. It allocates the permission
to the app and disables the permission to the original app.
Malware can be detected based on these methods
ALTERDROID monitors the execution of different
activities:

Crypto: generated when calls to the cryptographic
 API are invoked;
Net-open, net-read, net-write: associated with
 network I/O activities (opening a connection,
 receiving, and sending data);
File-open, file-read, file-write: associated with file
 system I/O activities (opening, reading, and writing);
SMS, call: generated whenever a text message or a
 phone call is sent or received;
Leak: generated whenever the app leaks private
 information, as determined by Taint droid; and
DEX load: generated when an app loads native code.

Advantages:

o ALTERDROID is designed and built to allow
ease of tailoring and flexibility in functionality

o It provides powerful model for fault injection
operators, behavioural signatures and rule based
analysis of different behaviour.

All Rights Reserved © 2017 IJERCSE 32

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering
 (IJERCSE)
 Vol 4, Issue 8, August 2017

4.1.4 Remove or Uninstall malicious apps
Android malware samples that incorporate hidden
functionality in repackaged apps: Droid KungFu,
Anserver Bot, and Ginger Master. Ginger Master, the first
malware using root exploits for privilege escalation on
Android 2.3.
The main payload was stored as PNG and JPEG pictures
in the assets file, which were interpreted as code once
loaded by a small hook within the app .In this module it
uninstall or remove the malicious apps.

5. EVALUATION

We next report a number of experimental results obtained
with our prototype implementation of ALTERDROID.
These results illustrate how our system can be used by
market operators and security analysts to facilitate the
analysis of complex obfuscated mobile malware. We first
present the results of testing ALTERDROID against two
datasets of Smartphone malware samples found in the
wild, including a performance analysis of the entire
differential fault analysis process. We finally discuss in
more detail three representative case studies.

5.1 Other Recent Specimens:
We have analyzed some of the most recent specimens
hitting both official and unofficial markets. Although
obfuscation techniques and algorithms might vary, results
confirm that malware keeps hiding payloads within app
resources such as images or XML files. The most
significant analysed specimens were:
Emmental: this malware sample targets users of several
banks worldwide, collecting one-time passwords used to
authorize transactions. Apps infected with Emmental are
distributed together with an initial configuration
containing a phone number where certain SMSs are sent
and several Command and Control (C&C) URLs. To
hinder static analysis, this configuration is only decrypted
at runtime using Blowfish. According to a report from
Trend Micro, Emmental was still active as of 2014.
Gamex: this specimen introduces an update component
that enables it to retrieve new payloads, at runtime, from a
C&C server. Its main goal is to exfiltrate private
information such as the device ID (IMEI number, MSI
number, and so on). Gamex obfuscates the main payload
using XOR operations while hiding it into the app
resources—specifically, a file called logos.png.
SmsSpy: this malware is similar to Emmental in terms of
sophistication and distribution strategy . It also uses
Blowfish to encrypt its payload and hinder analysis. The

payload is generally stored in a file called data.xml and
the decryption key is hardcoded in the app code.

6. CONCLUSION AND FUTURE ENHANCEMENTS

In this work ALTERDROID tool is used to identify the
malware analysis based on the differential analysis.
Differential fault analysis in the way implemented by
ALTERDROID is a powerful and novel dynamic analysis
technique that can identify potentially malicious
components hidden within an app package. Additionally,
empowering dynamic analysis with a fault injection
approach can be used to differentiate ―gray‖ from
legitimate behaviour when analyzing gray ware. This is a
good complement to static analysis tools, more focused
on inspecting code components but possibly missing
pieces of code hidden in data objects or just obfuscated.
Finally, we believe that differential fault analysis is an
effective technique to detect stego malware— malware
using advanced hiding methods such as steganography.

6.1 Future Works
As future work, we are currently extending
ALTERDROID to support differential fault analysis over
distinguishable components such as those involving Dex
byte code. ALTERDROID open source prototype with a
versatile design that can be the basis for further research
in this area.

REFERENCES

[1] Y. Wang, K. Streff, and S. Raman, ―Smartphone
security challenges,‖ IEEE Computer, vol. 45, no. 12, pp.
52–58, 2012.

[2] L. Cai and H. Chen, ―Touchlogger: inferring
keystrokes on touch screen from smartphone motion,‖ in
Proc. USENIX, ser. HotSec‘11, Berkeley, CA, USA,
2011, pp. 9–9.

[3] E. Fernandes, B. Crispo, and M. Conti, ―Fm 99.9,
radio virus: Exploiting fm radio broadcasts for malware
deployment,‖ IEEE TIFS, 2013.

[4] T. Vidas and N. Christin, ―Sweetening android
lemon markets: Measuring and combating malware in
application marketplaces,‖ in Proc. ACM, ser. CODASPY
‘13. ACM, 2013, pp. 197–208.

[5] J. Oberheide and C. Miller, ―Dissecting the android

All Rights Reserved © 2017 IJERCSE 33

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering
 (IJERCSE)
 Vol 4, Issue 8, August 2017

bouncer,‖ SummerCon2012, New York, 2012.

[6] G. Suarez-Tangil, J. E. Tapiador, P. Peris, and A.
Ribagorda, ―Evolution, detection and analysis of
malware for smart devices,‖ IEEE Comms. Surveys &
Tut., vol. 16, no. 2, pp. 961–987, May 2014.

[7] M. Rangwala, P. Zhang, X. Zou, and F. Li, ―A
taxonomy of privilege escalation attacks in android
applications,‖ Int. J. Secur. Netw., vol. 9, no. 1, pp. 40–55,
Feb. 2014.

[8] S. Chakradeo, B. Reaves, P. Traynor, and W. Enck,
―Mast: Triage for market-scale mobile malware
analysis,‖ in Proc. ACM, ser.W iSec ‘13. New York, NY,
USA: ACM, 2013, pp. 13–24.

[9] M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang,
―Riskranker: scalable and accurate zero-day Android
malware detection,‖ in Proc., ser. MobiSys ‘12. ACM,
2012, pp. 281–294.

[10] Y. Zhou and X. Jiang, ―Dissecting Android
malware: Characterization and evolution,‖ in Proc. IEEE,
ser. SP ‘12. Washington, DC, USA: IEEE Computer
Society, 2012, pp. 95–109.

[11] G. Suarez-Tangil, J. E. Tapiador, and P. Peris-Lopez,
―Stegomalware: Playing hide and seek with malicious
components in smartphone apps,‖ in INSCRYPT 2014,
December 2014.

[12] A. Desnos and et al., ―Androguard: Reverse
engineering, malware and goodware analysis of android
applications,‖ https://code. google.com/p/androguard/,
Visited Feb.2015.

[13] Panxiaobo, ―Apktool: A tool for reverse eng.
android files,‖ https: //code.google.com/p/android-
apktool/, Visited Feb. 2015.

[14] L. K. Yan and H. Yin, ―Droidscope: seamlessly
reconstructing the os and Dalvik semantic views for
dynamic Android malware analysis,‖ in Proc. USENIX,
ser. Security‘12. Berkeley, CA, USA: USENIX
Association, 2012, pp. 29–29.

[15] G. Suarez-Tangil, J. E. Tapiador, P. Peris-Lopez, and
J. Blasco, ―Dendroid: A text mining approach to
analyzing and classifying code structures in android

malware families,‖ Expert Systems with Applications, vol.
41, no. 1, pp. 1104–1117, 2014.

[16] V. I. Levenshtein, ―Binary Codes Capable of
Correcting Deletions, Insertions and Reversals,‖ S.
Physics Doklady, vol. 10, p. 707, 1966.

[17] T. Kumazawa and T. Tamai, ―Counter example-
based error localization of behavior models,‖ in Proc., ser.
NFM‘11. Berlin, Heidelberg: Springer-Verlag, 2011, pp.
222–236.

[18] G. Suarez-Tangil, F. Lombardi, J. E. Tapiador, and
R. Di Pietro, ―Thwarting obfuscated malware via
differential fault analysis,‖ IEEE Computer, vol. 47, no. 6,
pp. 24–31, June 2014.

[19] C. Zheng, S. Zhu, S. Dai, G. Gu, X. Gong, X. Han,
and W. Zou, ―Smartdroid: an automatic system for
revealing UI-based trigger conditions in Android
applications,‖ in Proc. ACM, ser. SPSM ‘12. New York,
NY, USA: ACM, 2012, pp. 93–104.

[20] V. Rastogi, Y. Chen, and W. Enck,
―Appsplayground: automatic security analysis of
smartphone applications,‖ in Proc. ACM, ser. CODASPY
‘13. New York, NY, USA: ACM, 2013, pp. 209–220.

[21] Android, ―Android developers,‖ Visited Feb. 2015,
http:// developer.android.com/.

[22] Google, ―Droidbox: Android application sandbox,‖
https://code.google.com/p/droidbox, 2012.

[23] W. Enck, P. Gilbert, B.-G. Chun, and al.,
―Taintdroid: an information-flow tracking system for
realtime privacy monitoring on smartphones,‖ in Proc.
USENIX, ser. OSDI‘10. Berkeley, CA, USA: USENIX
Association, 2010, pp. 1–6.

[24] R. Hasan, N. Saxena, T. Haleviz, S. Zawoad, and D.
Rinehart, ―Sensing-enabled channels for hard-to-detect
command and control of mobile devices,‖ in Proc. ACM
SIGSAC, ser. ASIA CCS ‘13. New York, NY, USA:
ACM, 2013, pp. 469–480.

[25]C-skill,―Rageagainstthecage,
‖https://github.com/bibanon/androiddevelopmentcodex/
wiki/rageagainstthecage, 2011.

All Rights Reserved © 2017 IJERCSE 34

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering
 (IJERCSE)
 Vol 4, Issue 8, August 2017

[26] C. Skill, ―Gingerbreak,‖ http://c skills. blogspot.hk
/2011/04/ yummy-yummy-gingerbreak.html, 2011.

[27] M. Zheng, M. Sun, and J. C. Lui, ―Droidray: A
security evaluation system for customized android
firmwares,‖ in Proc. ACM, ser. ASIA CCS ‘14. New
York, NY, USA: ACM, 2014, pp. 471–482.

[28] D. Sancho, F. Hacquebord, and R. Link, ―Finding
holes: Operation emmental,‖ Trend Micro, Tech. Rep.,
2014, http://www. trendmicro. com/cloud-content/us
/pdfs/security -intelligence/ white papers/
wp- finding-holes-operation -emmental.pdf.

[29]Symantec,―Android.gamex,‖http://www.symantec.c
om/security response/ writeup.jsp? docid= 2012 - 051015-
1808-99.

[30] F-secure, ―Smsspy,‖ https:// www.f-secure.com/
weblog / archives /00002202.html.

[31] M. Lindorfer, S. Volanis, A. Sisto, and al.,
―Andradar: Fast discovery of android applications in
alternative markets,‖ in Detection of Intrusions and
Malware, and Vulnerability Assessment, ser. LNCS, S.
Dietrich, Ed., 2014, vol. 8550, pp. 51–71.

[32] D. Arp, M. Spreitzenbarth, M. H¨ ubner, H. Gascon,
and K. Rieck, ―Drebin: Effective and explainable
detection of android malware in your pocket,‖ in Proc.
NDSS, February 2014.

[33] C. Linn and S. Debray, ―Obfuscation of executable
code to improve resistance to static disassembly,‖ in Proc.
10th ACM CCS. ACM, 2003, pp. 290–299.

[34] V. Rastogi, Y. Chen, and X. Jiang,
―Droidchameleon: evaluating android anti-malware
against transformation attacks,‖ in Proc. ACM SIGSAC,
ser. ASIACCS, 2013, pp. 329–334.

[35] H. Huang, S. Zhu, P. Liu, and D. Wu, ―A
framework for evaluating mobile app repackaging
detection algorithms,‖ in Trust and Trustworthy
Computing. Springer, 2013, pp. 169–186.

[36] J. Gao, X. Bai, W.-T. Tsai, and T. Uehara, ―Mobile
application testing: A tutorial,‖ Computer, vol. 47, no. 2,
pp. 46–55, Feb 2014.

[37] M. Egele, T. Scholte, E. Kirda, and C. Kruegel, ―A
survey on automated dynamic malware-analysis
techniques and tools,‖ ACM Comput. Surv., vol. 44, no. 2,
pp. 6:1–6:42, Mar. 2012.

[38] A. Shabtai, L. Tenenboim-Chekina, D. Mimran, L.
Rokach, B. Shapira, and Y. Elovici, ―Mobile malware
detection through analysis of deviations in application
network behavior,‖ Computers & Security, 2014.

[39] K. Tam, S. J. Khan, A. Fattori, and L. Cavallaro,
―Copperdroid: Automatic reconstruction of android
malware behaviors,‖ in NDSS Symp. Internet Society,
February 2015.

[40] D. Kirat, G. Vigna, and C. Kruegel, ―Barecloud:
bare-metal analysis-based evasive malware detection,‖ in
Proc. USENIX SEC‘14., 2014, pp. 287–301.

[41] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, and A.
Sadeghi, ―Xmandroid: A new android evolution to
mitigate privilege escalation attacks,‖ Tech. Universitat
Darmstadt, Tech. Rep., 2011.

[42] J. Calvet, J. M. Fernandez, and J.-Y. Marion,
―Aligot: cryptographic function identification in
obfuscated binary programs,‖ in Proc. ACM, ser. CCS
‘12. ACM, 2012, pp. 169–182.

[43] S. Schrittwieser, S. Katzenbeisser, P. Kieseberg, M.
Huber, M. Leithner, M. Mulazzani, and E. Weippl,
―Covert computation: hiding code in code for
obfuscation purposes,‖ in Proc. 8th ACM SIGSAC, ser.
ASIA CCS ‘13. New York, NY, USA: ACM, 2013, pp.
529–534.

[44] M. Christodorescu, S. Jha, S. Seshia, D. Song, and R.
Bryant, ―Semantics-aware malware detection,‖ in
Security and Privacy, 2005 IEEE Symposium on, May
2005, pp. 32–46.

[45] J. Blasco Al´ıs, ―Information leakage and
steganography: detecting and blocking covert channels,‖
Ph.D. dissertation, Universidad Carlos III de Madrid,
2012.

[46]G.Fisk,M.Fisk,C.Papadopoulos,and
J.Neil,―Eliminating steganography in internet traffic
with active wardens,‖ in 5th Intl. Worksh.on Information
Hiding, ser. IH ‘02.London,UK,UK:

All Rights Reserved © 2017 IJERCSE 35

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering
 (IJERCSE)
 Vol 4, Issue 8, August 2017

Springer-Verlag, 2003, pp.18–35.

[47] E. Li and S. Craver, ―A square-root law for active
wardens,‖ in Proceedings of the thirteenth ACM
multimedia workshop on Multimedia and security. New
York, NY, USA: ACM, 2011, pp. 87– 92.

[48] A. Takanen, J. D. Demott, and C. Miller, Fuzzing for
software security testing and quality assurance. Artech
House, 2008.

[49] A. Gianazza, F. Maggi, A. Fattori, L. Cavallaro, and
S. Zanero, ―Puppetdroid: A user-centric ui exerciser for
automatic dynamic analysis of similar android
applications,‖ arXiv preprint arXiv:1402.4826, 2014.

[50] J. Gray, ―Why do computers stop and what can be
done about it?‖ in Symposium on reliability in distributed
software and database systems. Los Angeles, CA, USA,
1986, pp. 3–12.

[51] R. Natella, D. Cotroneo, J. Duraes, and H. Madeira,
―On fault representativeness of software fault injection,‖
Software Engineering, IEEE Transactions on, vol. 39, no.
1, pp. 80–96, Jan 2013.

[52] G. Suarez-Tangil, M. Conti, J. E. Tapiador, and P.
Peris- Lopez, ―Detecting targeted smartphone malware
with behaviortriggering stochastic models,‖ in ESORICS
2014, ser. LNCS, vol. 8712. Springer International
Publishing, 2014, pp. 183–201

All Rights Reserved © 2017 IJERCSE 36

