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Abstract— The goal of Nearest Neighbour (NN) search is to find the objects in a dataset A that are closest to a query 

point q. Existing algorithms presume that the dataset is indexed by an R-tree and searching a query point q in a large 

volume of a dataset, is a tedious task that effects the quality and usefulness of the NNQ processing algorithms which 

determined by the time as well as space complexity. The simplest solution to the NNS problem is to compute the 

distance from the query point to every other point in the database. However, due to these complexities issue, the 

various research techniques have been proposed. It is a technique which has applications in various fields such as 

pattern recognition, moving object recognition etc. In this paper, a comprehensive analysis on data structures, 

processing techniques and variety of algorithms in this field is done along with different way to categorize the NNS 

techniques is presented. This different category such as weighted, additive, reductional, continuous, reverse, principal 

axis, which are analyzed and compared in this paper. Complexity of different data structures used in different NNS 

algorithms is also discussed. 

 

1. INTRODUCTION 

 

Originally nearest neighbour decision rule and pattern 

classification was proposed by P. E. Hart and T. M. Cover 

in 1966 – 67, and now it is very popular in application 

and research field. Its simplicity is one of the main reason 

of its popularity and efficient in programming. Earlier 

using the nearest neighbour rule, the searching result 

needs high memory and computation requirements. But 

after several year of research, it’s already modify a lot and 

used in different field of high computations field such as 

robotics, industrial management, telematics system, etc., 

along with advantage over high volume dataset. There are 

number of research paper where the NN rule is widely 

discussed and used such as pattern recognition, 

application for predicting economic events, vehicle 

telematics, and robotics.  

The query processing technique is applied generally 

small dataset, but when the dataset is large (in high 

volume), high dimensions and uncertain, then the nearest 

neighbour decision rule come into vital role. There is 

numerous numbers of k-nearest neighbour algorithms 

available and recent development is lead to it in fast 

processing. 

A NNS problem can be defined in two ways, metric and 

non-metric. The focus of this research paper is on the  

 

 

problems defined on a metric space. The distance formula 

in non-metric space is converted to a distance in metric 

space. Different metric distance functions can be defined 

on the searching space. Table 1 shows a list of formulas 

along with space that have presented different 

categorizing and analyzed of NNS. 

 

II. NNS DATA STRUCTURES 

 

One of the main parts in NNS is data structure which 

used in each technique. Now there are different data 

structures that can use for solving this problem. By paying 

attention to different applications and data, each of these 

techniques has to use structure for maintaining, indexing 

points and searching. Some of these structures are 

techniques for NNS such as LSH, Ball-Tree, kd -Tree and 

etc.[2]; and the other are infrastructures in some 

techniques such as R-tree, R* Tree, B-Tree, X-Tree and 

etc. A brief overview about some of these data structures 

is presented as follow. 

LSH (Locality Sensitive Hashing) is one of the best 

algorithms that can be used as a technique. The LSH 

algorithm is probably the one that has received most 

attention in practical context. Its main idea is to hash the 

data points using several hash function so as to ensure 
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that, for each function the probability of collision is much 

higher for points which are close to each other than for 

those which are far apart.  

 

 
Table 1. Distance Equations 

  

In LSH algorithm at first preprocessing should have 

been done. In preprocessing all data points hash by all 

functions and determine their buckets. In searching step 

query point q is hashed and after determining buckets all 

of its data points retrieve as the answer [2,5]. 

 

One of the other structures that use as a technique is 

kd-Tree that creates for a set with n points in d -

dimensional space recursive. kd-Tree and its variance 

remain probably the most popular data structure used for 

searching in multidimensional space at least in main 

memory. In this structure, in each step the existence space 

is divided by paying attention to points dimensionsThis 

division is continued recursively until that in each zone 

just a point is remained. Finally the data structure that 

produced is a binary tree with n level and depth. For 

searching nearest neighbor a circle is drawn with query 

point q as center and | p – q | as radius that p is in query 

point q zone. With assisting of points that are interfered 

with the circle, the radius and p are updated. This 

operation is continued until up to dating is possible and 

finally NN is reported [6-9]. 

Quad-Tree and Oct -Tree act similar to kd-Tree, as 

Quad–Tree used in two dimensional spaces and for 

creating tree in it, each zone in each repetition is divided 

to four parts. Oct-Tree used in 3D and each zone in each 

repetition is divided to eight parts. Searching operation in 

these two structures are similar to kd-Tree [10 – 14]. 

 

Also we can point to Ball-Tree [15, 16]. A Ball-Tree is 

a binary tree where each node represents a set of points, 

called Pts(N). Given a data set, the root node of a Ball-

Tree represents the full set of points in the data set. A 

node can be either a leaf node or a non-leaf node. A leaf 

node explicitly contains a list of the points represented by 

the node. A non-leaf node has two children nodes: 

N.child1and N.child2. Points are organized spatially. 

Each node has a distinguished point called a Pivot. 

Depending on the implementation, the Pivot may be one 

of the data points, or it may be the centroid of Pts(N). 

Each node records the maximum distance of the points it 

owns to its pivot. 

 

For searching in this tree, the algorithms such as KNS1, 

KNS2, KNS3 and KNSV can be used. As these 

algorithms have rules for pruning points. One of the other 

important extant structures is R-Tree that also named 

spatial access method. R-trees are a generalized B-tree. R-

trees can handle multidimensional data. R-Trees can be 

used in Temporal and Spatial Data and also in 

commercial database management systems such as 

Oracle, MySQL and Postgre SQL. Furthermore in spaces 

which points are moveable, R-Tree is one of the most 

usable structures. This tree one of data structures which 

operate based on local indexing. This local indexing is 

defined as rectangular vicinity named MBR (Minimum 

Bounding Rectangle). MBR is the smallest local rectangle 

that contains its all points and subset nodes. R-Tree uses 

three concept distance for searching: MinDist, MaxDist 

and MinMaxDist. Also this tree is a balance tree and all of 

its leaves are in the same level. For R-Tree there are two 

algorithms for searching nearest neighbor to HS and RKV 

that HS is a breadth search Algorithm and RKV is a 

branch and bound algorithm that use depth search [17 - 

21]. 

 

Another structure that can be used for NNS is M-Tree 

that is inspirited from R-Tree and B-Tree with the 

difference that pay more attention to memory and I/O.M-
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Tree is defined by paying attention to different situation 

and tries to prune more points. Searching in this is similar 

to R-Tree but with priority queue searching algorithm is 

optimum. For indexing points in metric space M-Tree is 

used such as VP-Trees, Cover-Trees, MVP-Trees and 

BK-Trees [22, 23]. And another structures for NNS that is 

created by R-Tree idea are R*-Tree, R+-Tree, TPR-Tree, 

X-Tree, SS-Tree, SR-Tree, A-Tree and BD-Tree. At the 

end of this section the complexity of some of the 

structures are compared in table 2. 

 
Table 2. Computational Complexity of Data 

Structures 

  

3. Nearest Neighbor Search Technique 

One of the most important reasons that have made it 

pervasive is widespread of application and its extent. This 

wide spreading caused heterogeneous data, conditions and 

system environment and made the solution hard. So it is 

necessary to create a technique that has the best result. 

With this reason for solving NNS problem, different 

technique with different approach has been created. Each 

of these techniques can be divided to two parts. The first 

part consists suitable structure for indexing and 

maintaining data points that is discussed in the last 

section. It is necessary to mention that some of these 

structures itself can be used as a technique for NNS, such 

as KD-Tree, Ball-Tree and LSH. 

 

The second part consists a suitable algorithm for 

finding the nearest points to query point q. linear 

searching and kNN can be mentioned as simple and first 

techniques [2]. In linear searching for each query point q, 

its distance from all points in S is calculated and each 

point that has the lowest distance is chosen as a result. 

The main problem in this technique is unsalable that in 

high dimensional or by increasing the points in space, the 

speed of searching is really decreased. 

 

kNN technique for the first time in T. M. Cover et. al. 

[24] has been presented for classification and used simple 

algorithm. A naive solution for the NNS problem is using 

linear search method that computes distance from the 

query to every single point in the dataset and returns the k 

closest points. This approach is guaranteed to find the 

exact nearest neighbors. However, this solution can be 

expensive for massive datasets. By paying attention to 

this initial algorithm, different techniques have been 

presented that each of them tries to improve kNN’s 

performance. In present study, a new, suitable and 

comparable categorizing from these techniques is 

presented. By paying attention to this, these techniques 

have been categorized to different groups that are 

discussed as follow. 

 

3.1. Weighted techniques 

 

In such these groups of techniques, by give weight to 

points the effect of each of them on final result is denoted 

that one of the main applications of this group is its usage 

in information classification. Some of these techniques 

are mentioned as follow: Weighted k-Nearest Neighbor 

(Weighted-kNN), Modified k-Nearest Neighbor 

(Modified-kNN) and Pseudo k-Nearest Neighbor 

(Pseudo-kNN). 
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Surveying the position of each point compare to other 

points for query point q is one of the most application 

methods which Weighted -kNN use it. In this technique if 

distance is defined as weight, it names distance Weighted-

kNN. Usually each of the points has different distance 

from query point q, so nearer points have more effects. In 

this technique calculating weight based on distance of 

points S. A. Dudani et. al [25, 26]. 

If space has imbalance data, it is better to use Neighbor 

Weighted-kNN instance of Weighted-kNN. If in a set of 

data same of the classes have many members in compare 

to others, its score very high and so more query belong to 

this class. For solving this problem it is necessary that the 

classes with more members gain low weight and the 

classes with less members gain high weight. The weight 

for each class calculated in S. Tan et. al [27, 28]. 

 

For example in point classification for presenting better 

answer instead of distance, product of distance and weight 

must be used. Here by paying attention to space weight is 

calculated by one of these techniques. In more problems 

choosing neighbors based on distance have some 

problems such as low Accuracy and incorrect answers. 

Modified -kNN method which use for classification, tries 

to solve these problems. At first a preprocessing is done 

on all of the points and gives a validity value to each 

point. This value defines based on each point H nearest 

neighbor. 

 

3.2. Reductional techniques 

 

One of the necessary needs in data processing is extra 

data and its suitable summarize. This is introduced in 

spaces which has massive data or data that need high 

memory. These techniques caused improving 

performance of systems by decreasing data. Condensed k-

Nearest Neighbor (Condensed -kNN), Reduced k-Nearest 

Neighbor (Reduced-kNN), Model Based k-Nearest 

Neighbor (ModelBased-kNN) and Clustered k-Nearest 

Neighbor (Clustered-kNN) are discussed in this section 

[29 – 35]. 

 

Data that are considered as unnecessary information, 

identical with other data, are deleted in Condensed-kNN. 

There are two approaches, A) It is assumed that the data 

are labeled. Then instead of saving the data along with 

their classes, sample data is saved so that there will be no 

duplicate data in the dataset. B) Data might be without 

label; thus the desired cluster can be found by clustering 

and sample data is obtained from the center of the cluster. 

kNN operation then, is carried out on the remainder of the 

data [29 – 31]. 

Another approach, which uses the nearest neighbor to 

reduce information volume, is Reduced-kNN (a 

developed version of condensed -kNN). In addition to 

removing identical data, null data is also deleted. This 

even shrinks more the data volume and facilitates the 

system response to queries. Moreover, smaller memory 

space is required for processing. One of the drawbacks is 

increase in complexity of computations and costs of 

execution of the algorithm consequently. In general, these 

two approaches are time consuming [29, 32]. 

The next technique to reduce information volume is 

ModelBased-kNN. As the technique dictates, a data 

model is first extracted from the information and replaces 

the data. This removes a great portion of the information 

volume. It is noticeable, however, that the data model 

needs to resemble well the whole data. In place of the 

whole data, for instance, one may use the data that show 

the points (usually the central point), number of the 

member, distance of the farthest data from the 

resemblance and the class label in some cases. 

Modelbased-kNN employs “largest local neighborhood” 

and “largest global neighborhood” to create a simpler 

structure and definition of the model so that the data are 

modeled step by step [33, 34].  

3.3. Additive Techniques 

 

In this group of techniques it is tried to increase system 

operation accuracy by increasing data volume. Another 

aim of these techniques is paying attention to all of points 

together that can affect each other. Nearest Feature Line 

(NFL), Local Nearest Neighbor (Local-kNN), Center 

Based Nearest Neighbor (CenterBased-kNN) and Tunable 

Nearest Neighbor (Tunable-kNN) are discussed in this 

section [36 – 41]. 

 

When the number of points for classification is not 

enough, accuracy of the final result is unacceptable. It is 

necessary to have another technique for increasing data 

volume and the accuracy consequently. One answer, 

Euclidean and 2D spaces, is NFL technique. By 

converting each two points in a class (future points) into a 

line, not only NFL increases the data volume but it adds 

to effect of the points in each class. Future points (FP) 

symbolize features of a class and there are two FPs at 
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least in each class. The lines drawn between the two FPs 

are called future lines (FL). Instead of calculating distance 

between q and other data points, perpendicular distance 

between q and each FL is measured (Figure 1a). 

 

With high efficiency of the technique in small dataset, 

by increasing size of dataset the computation complexities 

is increased. There is a risk of wrong determination of 

nearest FL in NFL for distant q and FPs To deal with the 

drawback, Local-kNN was introduced, so that FPs are 

chosen among k nearest neighbors of q in each class. This 

ensures accurate determination of nearest FL, though 

great deal of computation is required. For classification, 

first kNN for each class is computed. 

 

If k=2, distance between q and the FL is created from 

2NN of each class and if k = 3, distance between q to 

future plane created from 3NN of each class are obtained. 

Finally, the class with shortest distance to q is taken as the 

result 

 

3.4. Reverse Techniques 

 

Reverse techniques are the most important and most 

application techniques in NNS. This group is variety that 

in present paper some of them are discussed. In this group 

of techniques the approach of problem is changed and 

data points are taken more attention than query points. 

Reverse Nearest Neighbor (Reverse-kNN) and Mutual 

Nearest Neighbor (Mutual-kNN) are described in this 

section [42 – 48]. 

 

The straightest way to find reserve-kNN of query point 

q is to calculated the nearest point in the dataset based on 

the distance equation of each p; this creates regions 

centered by p with radius of . Then, when point q is 

located in one of the regions, the point p in the regions is 

the answer. Noticeably, the for L2-norm and L -norm are 

circle and rectangular respectively. In spite of kNN, 

Reserve-kNN technique may have empty set as answer 

and given the distance function and dimension of the data, 

number of points in the set is limited. If L2-norm is the 

case, for instance, we have 6 and 12 points at most under 

3D and 2D spaces respectively. For L -norm there are 

equal points. A comparison between kNN and Reserve-

kNN is carried out in follow [42-47]. 

 

 

3.5. Continuous Techniques 

 

Techniques that are presented in this section are 

suitable for points that are introduced in continuous space 

instead of discrete space. In this section continuous 

Nearest Neighbor (Continuous -kNN) and Range Nearest 

Neighbor (Range-kNN) are evaluated [49, 50]. 

 

3.6. Principal Axis Techniques 

 

In this group of techniques data environment is divided 

in several subset. Each these sets have an Axis which data 

are mapped on them. In this section Principal Axis 

Nearest Neighbor (Principal Axis-kNN) and Orthogonal 

Nearest Neighbor (Orthogonal-kNN) are introduced [51-

54]. 

 

One of the techniques to find kNN is Principal Axis-

kNN. As the method implies, the dataset is divided into 

several subsets. The dividing is continued until every 

subset is smaller than a specific threshold (e.g. 'nc'). 

Along with dividing, a principle axis tree (PAT) is 

developed so that the leaf’s nodes have 'nc' data points at 

most (Figure 3a). Each node in PAT has a principle axis 

which is used for mapping data and calculating distance 

as well as pruning. For search operation, first the node 

where the q is located is searched through a binary query. 

Then, the node and/or sibling nodes are searched to find 

kNN of query point q (Figure 3b). To have faster process, 

some regions are pruned using the principle axis [51, 52]. 

 

 

IV. ASSESSMENT AND COMPARISON OF 

TECHNIQUES 

 

Each of the presented techniques in this paper is 

suitable for using in spaces with special data but it can't 

be used generally. So in this section, these techniques are 

compared and evaluated. These comparison and 

evaluation are presented. In table 3 presented each 

technique's idea and applications. 
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    Table 3. Nearest Neighbor Techniques 

  

 
  

 

V. CONCLUSION 

 

In  this paper, the metric and non -metric spaces are 

defined. The first one is used in NNS problem. Diverse 

distance formulas which are used in this problem to find 

the nearest data point are described and then different 

structures are introduced. These structures are used for 

indexing points and making the searching operation 

faster. Some of these structures such as: Ball -Tree, LSH 

and KD -Tree are considered as technique for NNS 

problem. Finally, a new categorization based on the 

functionality of different techniques for NNS problem is 

introduced. Techniques with similar functionality are 

grouped together in this categorization. This 

categorization consists of six groups; Weighted, 

Reductional, Additive, Reverse, Continuous, Principal 

Axis techniques. In each group, the main features of the 

group are described and each technique is introduced 

briefly. Finally, a complete comparison of these 

techniques is done. 
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