

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 4, Issue 6, June 2017

 318

An Investigation on Nearest Neighbor Search

Techniques
[1]

 Upinder Kaur,
[2]

(Dr.) Pushpa R Suri

Research Scholar, (Professor),

Dept. of Computer Science and Applications, KUK.

Abstract— The goal of Nearest Neighbour (NN) search is to find the objects in a dataset A that are closest to a query

point q. Existing algorithms presume that the dataset is indexed by an R-tree and searching a query point q in a large

volume of a dataset, is a tedious task that effects the quality and usefulness of the NNQ processing algorithms which

determined by the time as well as space complexity. The simplest solution to the NNS problem is to compute the

distance from the query point to every other point in the database. However, due to these complexities issue, the

various research techniques have been proposed. It is a technique which has applications in various fields such as

pattern recognition, moving object recognition etc. In this paper, a comprehensive analysis on data structures,

processing techniques and variety of algorithms in this field is done along with different way to categorize the NNS

techniques is presented. This different category such as weighted, additive, reductional, continuous, reverse, principal

axis, which are analyzed and compared in this paper. Complexity of different data structures used in different NNS

algorithms is also discussed.

1. INTRODUCTION

Originally nearest neighbour decision rule and pattern

classification was proposed by P. E. Hart and T. M. Cover

in 1966 – 67, and now it is very popular in application

and research field. Its simplicity is one of the main reason

of its popularity and efficient in programming. Earlier

using the nearest neighbour rule, the searching result

needs high memory and computation requirements. But

after several year of research, it’s already modify a lot and

used in different field of high computations field such as

robotics, industrial management, telematics system, etc.,

along with advantage over high volume dataset. There are

number of research paper where the NN rule is widely

discussed and used such as pattern recognition,

application for predicting economic events, vehicle

telematics, and robotics.

The query processing technique is applied generally

small dataset, but when the dataset is large (in high

volume), high dimensions and uncertain, then the nearest

neighbour decision rule come into vital role. There is

numerous numbers of k-nearest neighbour algorithms

available and recent development is lead to it in fast

processing.

A NNS problem can be defined in two ways, metric and

non-metric. The focus of this research paper is on the

problems defined on a metric space. The distance formula

in non-metric space is converted to a distance in metric

space. Different metric distance functions can be defined

on the searching space. Table 1 shows a list of formulas

along with space that have presented different

categorizing and analyzed of NNS.

II. NNS DATA STRUCTURES

One of the main parts in NNS is data structure which

used in each technique. Now there are different data

structures that can use for solving this problem. By paying

attention to different applications and data, each of these

techniques has to use structure for maintaining, indexing

points and searching. Some of these structures are

techniques for NNS such as LSH, Ball-Tree, kd -Tree and

etc.[2]; and the other are infrastructures in some

techniques such as R-tree, R* Tree, B-Tree, X-Tree and

etc. A brief overview about some of these data structures

is presented as follow.

LSH (Locality Sensitive Hashing) is one of the best

algorithms that can be used as a technique. The LSH

algorithm is probably the one that has received most

attention in practical context. Its main idea is to hash the

data points using several hash function so as to ensure

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 4, Issue 6, June 2017

 319

that, for each function the probability of collision is much

higher for points which are close to each other than for

those which are far apart.

Table 1. Distance Equations

In LSH algorithm at first preprocessing should have

been done. In preprocessing all data points hash by all

functions and determine their buckets. In searching step

query point q is hashed and after determining buckets all

of its data points retrieve as the answer [2,5].

One of the other structures that use as a technique is

kd-Tree that creates for a set with n points in d -

dimensional space recursive. kd-Tree and its variance

remain probably the most popular data structure used for

searching in multidimensional space at least in main

memory. In this structure, in each step the existence space

is divided by paying attention to points dimensionsThis

division is continued recursively until that in each zone

just a point is remained. Finally the data structure that

produced is a binary tree with n level and depth. For

searching nearest neighbor a circle is drawn with query

point q as center and | p – q | as radius that p is in query

point q zone. With assisting of points that are interfered

with the circle, the radius and p are updated. This

operation is continued until up to dating is possible and

finally NN is reported [6-9].

Quad-Tree and Oct -Tree act similar to kd-Tree, as

Quad–Tree used in two dimensional spaces and for

creating tree in it, each zone in each repetition is divided

to four parts. Oct-Tree used in 3D and each zone in each

repetition is divided to eight parts. Searching operation in

these two structures are similar to kd-Tree [10 – 14].

Also we can point to Ball-Tree [15, 16]. A Ball-Tree is

a binary tree where each node represents a set of points,

called Pts(N). Given a data set, the root node of a Ball-

Tree represents the full set of points in the data set. A

node can be either a leaf node or a non-leaf node. A leaf

node explicitly contains a list of the points represented by

the node. A non-leaf node has two children nodes:

N.child1and N.child2. Points are organized spatially.

Each node has a distinguished point called a Pivot.

Depending on the implementation, the Pivot may be one

of the data points, or it may be the centroid of Pts(N).

Each node records the maximum distance of the points it

owns to its pivot.

For searching in this tree, the algorithms such as KNS1,

KNS2, KNS3 and KNSV can be used. As these

algorithms have rules for pruning points. One of the other

important extant structures is R-Tree that also named

spatial access method. R-trees are a generalized B-tree. R-

trees can handle multidimensional data. R-Trees can be

used in Temporal and Spatial Data and also in

commercial database management systems such as

Oracle, MySQL and Postgre SQL. Furthermore in spaces

which points are moveable, R-Tree is one of the most

usable structures. This tree one of data structures which

operate based on local indexing. This local indexing is

defined as rectangular vicinity named MBR (Minimum

Bounding Rectangle). MBR is the smallest local rectangle

that contains its all points and subset nodes. R-Tree uses

three concept distance for searching: MinDist, MaxDist

and MinMaxDist. Also this tree is a balance tree and all of

its leaves are in the same level. For R-Tree there are two

algorithms for searching nearest neighbor to HS and RKV

that HS is a breadth search Algorithm and RKV is a

branch and bound algorithm that use depth search [17 -

21].

Another structure that can be used for NNS is M-Tree

that is inspirited from R-Tree and B-Tree with the

difference that pay more attention to memory and I/O.M-

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 4, Issue 6, June 2017

 320

Tree is defined by paying attention to different situation

and tries to prune more points. Searching in this is similar

to R-Tree but with priority queue searching algorithm is

optimum. For indexing points in metric space M-Tree is

used such as VP-Trees, Cover-Trees, MVP-Trees and

BK-Trees [22, 23]. And another structures for NNS that is

created by R-Tree idea are R*-Tree, R+-Tree, TPR-Tree,

X-Tree, SS-Tree, SR-Tree, A-Tree and BD-Tree. At the

end of this section the complexity of some of the

structures are compared in table 2.

Table 2. Computational Complexity of Data

Structures

3. Nearest Neighbor Search Technique

One of the most important reasons that have made it

pervasive is widespread of application and its extent. This

wide spreading caused heterogeneous data, conditions and

system environment and made the solution hard. So it is

necessary to create a technique that has the best result.

With this reason for solving NNS problem, different

technique with different approach has been created. Each

of these techniques can be divided to two parts. The first

part consists suitable structure for indexing and

maintaining data points that is discussed in the last

section. It is necessary to mention that some of these

structures itself can be used as a technique for NNS, such

as KD-Tree, Ball-Tree and LSH.

The second part consists a suitable algorithm for

finding the nearest points to query point q. linear

searching and kNN can be mentioned as simple and first

techniques [2]. In linear searching for each query point q,

its distance from all points in S is calculated and each

point that has the lowest distance is chosen as a result.

The main problem in this technique is unsalable that in

high dimensional or by increasing the points in space, the

speed of searching is really decreased.

kNN technique for the first time in T. M. Cover et. al.

[24] has been presented for classification and used simple

algorithm. A naive solution for the NNS problem is using

linear search method that computes distance from the

query to every single point in the dataset and returns the k

closest points. This approach is guaranteed to find the

exact nearest neighbors. However, this solution can be

expensive for massive datasets. By paying attention to

this initial algorithm, different techniques have been

presented that each of them tries to improve kNN’s

performance. In present study, a new, suitable and

comparable categorizing from these techniques is

presented. By paying attention to this, these techniques

have been categorized to different groups that are

discussed as follow.

3.1. Weighted techniques

In such these groups of techniques, by give weight to

points the effect of each of them on final result is denoted

that one of the main applications of this group is its usage

in information classification. Some of these techniques

are mentioned as follow: Weighted k-Nearest Neighbor

(Weighted-kNN), Modified k-Nearest Neighbor

(Modified-kNN) and Pseudo k-Nearest Neighbor

(Pseudo-kNN).

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 4, Issue 6, June 2017

 321

Surveying the position of each point compare to other

points for query point q is one of the most application

methods which Weighted -kNN use it. In this technique if

distance is defined as weight, it names distance Weighted-

kNN. Usually each of the points has different distance

from query point q, so nearer points have more effects. In

this technique calculating weight based on distance of

points S. A. Dudani et. al [25, 26].

If space has imbalance data, it is better to use Neighbor

Weighted-kNN instance of Weighted-kNN. If in a set of

data same of the classes have many members in compare

to others, its score very high and so more query belong to

this class. For solving this problem it is necessary that the

classes with more members gain low weight and the

classes with less members gain high weight. The weight

for each class calculated in S. Tan et. al [27, 28].

For example in point classification for presenting better

answer instead of distance, product of distance and weight

must be used. Here by paying attention to space weight is

calculated by one of these techniques. In more problems

choosing neighbors based on distance have some

problems such as low Accuracy and incorrect answers.

Modified -kNN method which use for classification, tries

to solve these problems. At first a preprocessing is done

on all of the points and gives a validity value to each

point. This value defines based on each point H nearest

neighbor.

3.2. Reductional techniques

One of the necessary needs in data processing is extra

data and its suitable summarize. This is introduced in

spaces which has massive data or data that need high

memory. These techniques caused improving

performance of systems by decreasing data. Condensed k-

Nearest Neighbor (Condensed -kNN), Reduced k-Nearest

Neighbor (Reduced-kNN), Model Based k-Nearest

Neighbor (ModelBased-kNN) and Clustered k-Nearest

Neighbor (Clustered-kNN) are discussed in this section

[29 – 35].

Data that are considered as unnecessary information,

identical with other data, are deleted in Condensed-kNN.

There are two approaches, A) It is assumed that the data

are labeled. Then instead of saving the data along with

their classes, sample data is saved so that there will be no

duplicate data in the dataset. B) Data might be without

label; thus the desired cluster can be found by clustering

and sample data is obtained from the center of the cluster.

kNN operation then, is carried out on the remainder of the

data [29 – 31].

Another approach, which uses the nearest neighbor to

reduce information volume, is Reduced-kNN (a

developed version of condensed -kNN). In addition to

removing identical data, null data is also deleted. This

even shrinks more the data volume and facilitates the

system response to queries. Moreover, smaller memory

space is required for processing. One of the drawbacks is

increase in complexity of computations and costs of

execution of the algorithm consequently. In general, these

two approaches are time consuming [29, 32].

The next technique to reduce information volume is

ModelBased-kNN. As the technique dictates, a data

model is first extracted from the information and replaces

the data. This removes a great portion of the information

volume. It is noticeable, however, that the data model

needs to resemble well the whole data. In place of the

whole data, for instance, one may use the data that show

the points (usually the central point), number of the

member, distance of the farthest data from the

resemblance and the class label in some cases.

Modelbased-kNN employs “largest local neighborhood”

and “largest global neighborhood” to create a simpler

structure and definition of the model so that the data are

modeled step by step [33, 34].

3.3. Additive Techniques

In this group of techniques it is tried to increase system

operation accuracy by increasing data volume. Another

aim of these techniques is paying attention to all of points

together that can affect each other. Nearest Feature Line

(NFL), Local Nearest Neighbor (Local-kNN), Center

Based Nearest Neighbor (CenterBased-kNN) and Tunable

Nearest Neighbor (Tunable-kNN) are discussed in this

section [36 – 41].

When the number of points for classification is not

enough, accuracy of the final result is unacceptable. It is

necessary to have another technique for increasing data

volume and the accuracy consequently. One answer,

Euclidean and 2D spaces, is NFL technique. By

converting each two points in a class (future points) into a

line, not only NFL increases the data volume but it adds

to effect of the points in each class. Future points (FP)

symbolize features of a class and there are two FPs at

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 4, Issue 6, June 2017

 322

least in each class. The lines drawn between the two FPs

are called future lines (FL). Instead of calculating distance

between q and other data points, perpendicular distance

between q and each FL is measured (Figure 1a).

With high efficiency of the technique in small dataset,

by increasing size of dataset the computation complexities

is increased. There is a risk of wrong determination of

nearest FL in NFL for distant q and FPs To deal with the

drawback, Local-kNN was introduced, so that FPs are

chosen among k nearest neighbors of q in each class. This

ensures accurate determination of nearest FL, though

great deal of computation is required. For classification,

first kNN for each class is computed.

If k=2, distance between q and the FL is created from

2NN of each class and if k = 3, distance between q to

future plane created from 3NN of each class are obtained.

Finally, the class with shortest distance to q is taken as the

result

3.4. Reverse Techniques

Reverse techniques are the most important and most

application techniques in NNS. This group is variety that

in present paper some of them are discussed. In this group

of techniques the approach of problem is changed and

data points are taken more attention than query points.

Reverse Nearest Neighbor (Reverse-kNN) and Mutual

Nearest Neighbor (Mutual-kNN) are described in this

section [42 – 48].

The straightest way to find reserve-kNN of query point

q is to calculated the nearest point in the dataset based on

the distance equation of each p; this creates regions

centered by p with radius of . Then, when point q is

located in one of the regions, the point p in the regions is

the answer. Noticeably, the for L2-norm and L -norm are

circle and rectangular respectively. In spite of kNN,

Reserve-kNN technique may have empty set as answer

and given the distance function and dimension of the data,

number of points in the set is limited. If L2-norm is the

case, for instance, we have 6 and 12 points at most under

3D and 2D spaces respectively. For L -norm there are

equal points. A comparison between kNN and Reserve-

kNN is carried out in follow [42-47].

3.5. Continuous Techniques

Techniques that are presented in this section are

suitable for points that are introduced in continuous space

instead of discrete space. In this section continuous

Nearest Neighbor (Continuous -kNN) and Range Nearest

Neighbor (Range-kNN) are evaluated [49, 50].

3.6. Principal Axis Techniques

In this group of techniques data environment is divided

in several subset. Each these sets have an Axis which data

are mapped on them. In this section Principal Axis

Nearest Neighbor (Principal Axis-kNN) and Orthogonal

Nearest Neighbor (Orthogonal-kNN) are introduced [51-

54].

One of the techniques to find kNN is Principal Axis-

kNN. As the method implies, the dataset is divided into

several subsets. The dividing is continued until every

subset is smaller than a specific threshold (e.g. 'nc').

Along with dividing, a principle axis tree (PAT) is

developed so that the leaf’s nodes have 'nc' data points at

most (Figure 3a). Each node in PAT has a principle axis

which is used for mapping data and calculating distance

as well as pruning. For search operation, first the node

where the q is located is searched through a binary query.

Then, the node and/or sibling nodes are searched to find

kNN of query point q (Figure 3b). To have faster process,

some regions are pruned using the principle axis [51, 52].

IV. ASSESSMENT AND COMPARISON OF

TECHNIQUES

Each of the presented techniques in this paper is

suitable for using in spaces with special data but it can't

be used generally. So in this section, these techniques are

compared and evaluated. These comparison and

evaluation are presented. In table 3 presented each

technique's idea and applications.

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 4, Issue 6, June 2017

 323

 Table 3. Nearest Neighbor Techniques

V. CONCLUSION

In this paper, the metric and non -metric spaces are

defined. The first one is used in NNS problem. Diverse

distance formulas which are used in this problem to find

the nearest data point are described and then different

structures are introduced. These structures are used for

indexing points and making the searching operation

faster. Some of these structures such as: Ball -Tree, LSH

and KD -Tree are considered as technique for NNS

problem. Finally, a new categorization based on the

functionality of different techniques for NNS problem is

introduced. Techniques with similar functionality are

grouped together in this categorization. This

categorization consists of six groups; Weighted,

Reductional, Additive, Reverse, Continuous, Principal

Axis techniques. In each group, the main features of the

group are described and each technique is introduced

briefly. Finally, a complete comparison of these

techniques is done.

REFERENCES

1. Andoni, Nearest Neighbor Search - the Old, the

New, and the Impossible, Ph.D. dissertation, Electrical

Engineering and Computer Science, Massachusetts

Institute of Technology, 2009.

2. G. Shakhnarovich, T. Darrell, and P. Indyk,

Nearest Neighbor Methods in Learning and Vision :

Theory and Practice, March 2006.

3. N. Bhatia and V. Ashev, Survey of Nearest

Neighbor Techniques, International Journal of Computer

Science and Information Security, 8(2), 2010, pp. 1-4.

4. S. Dhanabal and S. Chandramathi, A Review of

various k-Nearest Neighbor Query Processing

Techniques, Computer Applications. 31(7), 2011, pp. 14-

22.

5. A. Rajaraman and J. D. Ullman. Mining of

Massive Datasets, December 2011.

6. R. F. Sproull, Refinements to Nearest-Neighbor

Searching in k Dimensional Trees, Algorithmica. 6(4),

1991, pp. 579-589.

7. J. L. Bentley, Multidimensional binary search

trees Used for Associative Searching, Communications of

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 4, Issue 6, June 2017

 324

the ACM. 18(9), 1975, pp. 509-517.

8. R. Panigrahy, An Improved Algorithm Finding

Nearest Neighbor Using Kd-Trees, in 8th Latin American

conference on Theoretical informatics, Bzios, Brazil,

2008, pp. 387-398.

9. A. Nuchter, K. Lingemann, and J. Hertzberg,

Cached KD Tree Search for ICP Algorithms, in 6th

International Conference on 3 -D Digital Imaging and

Modeling, Montreal, Quebec, Canada, 2007, pp. 419-426.

10. V. Gaede and O. Gunther, Multidimensional

access methods, ACM Computing Surveys. 30(2), 1998,

pp. 170-231.

11. H. Samet, The Quadtree and Related

Hierarchical Data Structures, ACM Computing Surveys.

16(2), 1984, pp. 187-260.

12. J. Tayeb, O. Ulusoy, and O. Wolfson, A

Quadtree Based Dynamic Attribute Indexing Method, The

Computer Journal. 41(3), 1998,pp. 185-200.

13. C. A. Shaffer and H. Samet, Optimal Quadtree

Construction Algorithms, Computer Vision, Graphics,

and Image Processing. 37(3), 1987, pp. 402-419.

14. D. Meagher, Geometric Modeling Using Octree

Encoding, Computer Graphics and Image Processing.

19(2), 1982, pp. 129-147.

15. T. Liu, A. W. Moore, and A. Gray, New

Algorithms for Efficient High Dimensional

Nonparametric Classification, The Journal of Machine

Learning Research. 7(1), 2006, pp. 1135–1158.

16. S. M. Omohundro, Five Balltree Construction

Algorithms, International Computer Science Institute,

Berkeley, California, USA, Tech, 1989.

17. Y. Manolopoulos, A. Nanopoulos, A. N.

Papadopoulos, and Y. Theodoridis, R-Trees: Theory and

Applications, November 2005.

18. A. Guttman, R-Trees: A dynamic index structure

for spatial searching, ACM SIGMOD Record. 14(2),

1984, pp. 47-57.

19. M. K. Wu, Evaluation of R-trees for Nearest

Neighbor Search, M.Sc. thesis, Computer Science,

University of Houston, 2006.

20. N. Roussopoulos, S. Kelley, and F. Vincent,

Nearest Neighbor Queries, ACM SIGMOD Record.

24(2), 1995, pp.71-79.

21. M. Adler and B. Heeringa, Search Space

Reductions for Nearest Neighbor Queries, in 5th

international conference on Theory and applications of

models of computation, Xian, China, 2008, pp. 554-568.

22. P. Ciaccia, M. Patella, and P. Zezula, M-tree: An

Efficient Access Method for Similarity Search in Metric

Spaces, in 23rd Very Large Data Bases Conference,

Athens, Greece, 1997.

23. T. Skopal, Pivoting M-tree: A Metric Access

Method for Efficient Similarity Search, in Dateso 2004

Annual International Workshop on Databases, Texts,

Specifications and Objects, Desna, Czech Republic, 2004,

pp. 27-37.

24. T. M. Cover and P. E. Hart, Nearest Neighbor

Pattern Classification, IEEE Transactions on Information

Theory. 13(1), 1967, pp. 21-27.

25. S. A. Dudani, The Distance-Weighted k-Nearest-

Neighbor Rule, IEEE Transactions on Systems, Man and

Cybernetics. 6(4), 1976, pp. 325-327.

26. T. Bailey and A. K. Jain, A Note on Distance-

Weighted k-Nearest Neighbor Rules, IEEE Transactions

on Systems, Man and Cybernetics. 8(4), 1978, pp. 311-

313.

27. S. Tan, Neighbor-weighted K-nearest neighbor

for unbalanced text corpus, Expert Systems with

Applications. 28(4), 2005, pp. 667-671.

28. K. Hechenbichler and K. Schliep, Weighted k-

Nearest-Neighbor Techniques and Ordinal Classification,

Collaborative Research Center, LMU University, Munich,

Germany, Tech, 2006.

29. V. Lobo, Ship Noise Classification: A

Contribution to Prototype Based Classifier Design, Ph.D.

dissertation, College of Science and Technology, New

University of Lisbon, 2002.

30. P. E. Hart, The Condensed Nearest Neighbor

Rule, IEEE Transactions on Information Theory. 14(3),

1968, pp. 515-516.

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 4, Issue 6, June 2017

 325

31. F. Angiulli, Fast Condensed Nearest Neighbor

Rule, in 22nd International Conference on Machine

Learning, Bonn, Germany, 2005, pp. 25-32.

32. G. W. Gates, The Reduced Nearest Neighbor

Rule, IEEE Transactions on Information Theory. 18(3),

1972, pp. 431-433.

33. G. Guo, H. Wang, D. Bell, Y. Bi, and K. Greer,

KNN Model-Based Approach in Classification, in OTM

Confederated International

Conferences on the Move to Meaningful Internet

Systems, Catania, Sicily, Italy, 2003, pp. 986-996.

34. G. Guo, H. Wang, D. Bell, Y. Bi, and K. Greer,

An KNN Model-Based Approach and its Application in

Classification in Text Categorization, in 5th International

Conference on Computational Linguistics and Intelligent

Text Processing, Seoul, Korea, 2004, pp. 559-570.

35. Z. Yong, L. Youwen, and X. Shixiong, An

Improved KNN Text Classification Algorithm Based on

Clustering, Journal of Computers. 4(3), 2009, pp. 230-

237.

36. S. Z. Li and J. Lu, Face Recognition Using the

Nearest Feature Line Method, IEEE Transactions on

Neural Networks. 10(2), 1999, pp. 439-443.

37. S. Z. Li, K. L. Chan, and C. Wang, Performance

Evaluation of the Nearest Feature Line Method in Image

Classification and Retrieval, IEEE Transactions on

Pattern Analysis and Machine Intelligence. 22(11), 2000,

pp. 1335-1339.

38. W. Zheng, L. Zhao, and C. Zou, Locally nearest

neighbor classifiers for pattern classification, Pattern

Recognition. 37(6), 2004, pp. 1307-1309.

39. Q. B. Gao and Z. Z. Wang, Center Based Nearest

Neighbor Classifier, Pattern Recognition. 40(1), 2007, pp.

346-349.

40. Y. Zhou, C. Zhang, and J. Wang, Tunable

Nearest Neighbor Classifier, in 26th DAGM Symposium

on Artificial Intelligence, Tubingen, Germany, 2004, pp.

204-211.

41. Y. Zhou, C. Zhang, and J. Wang, Extended

Nearest Feature Line Classifier, in 8th Pacific Rim

International Conference on Artificial Intelligence,

Auckland, New Zealand, 2004, pp. 183-190.

42. F. Korn and S. M. ukrishnan, Influence Sets

Based on Reverse Nearest Neighbor Queries, ACM

SIGMOD Record. 29(2), 2000, pp. 201-212.

43. C. Yang and K. I. Lin, An Index Structure for

Efficient Reverse Nearest Neighbor Queries, in 17th

International Conference on Data Engineering,

Heidelberg, Germany, 2001, pp. 485-492.

44. R. Benetis, C. S. Jensen, G. Karciauskas, and S.

Saltenis, Nearest Neighbor and Reverse Nearest Neighbor

Queries for Moving Objects, The VLDB Journal. 15(3),

2006, pp. 229-249.

45. Y. Tao, M. L. Yiu, and N. Mamoulis, Reverse

Nearest Neighbor Search in Metric Spaces, IEEE

Transactions on Knowledge and Data Engineering. 18(9),

2006, pp. 1239-1252.

46. I. Stanoi, D. Agrawal, and A. E. Abbadi, Reverse

Nearest Neighbor Queries for Dynamic Databases, in

ACM SIGMOD Workshop on Research Issues in Data

Mining and Knowledge Discovery, Dallas, Texas, USA,

2000, pp.44-53.

47. E. Achtert, C. Bohm, P. Kroger, P. Kunath, M.

Renz, and A. Pryakhin, Efficient Reverse k-Nearest

Neighbor Search in Arbitrary Metric Spaces, in ACM

SIGMOD International Conference on Management of

Data, Chicago, Illinois, USA, 2006, pp. 515-526.

48. Y. Gao, B. Zheng, G. Chen, and Q. Li, On

Efficient Mutual Nearest Neighbor Query Processing in

Spatial Databases, Data & Knowledge Engineering.

68(8), 2009, pp. 705-727.

49. Y. Tao, D. Papadias, and Q. Shen, Continuous

Nearest Neighbor Search, in 28th international conference

on Very Large Data Bases, Hong Kong, China, 2002, pp.

287-298.

50. H. Hu and D. L. Lee, Range Nearest-Neighbor

Query, IEEE Transactions on Knowledge and Data

Engineering. 18(1), 2006, pp. 78 -91.

