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Abstract— Due to the increasing popularity of cloud computing, more and more data owners are motivated to outsource their 

data to cloud servers for great convenience and reduced cost in data management. However, sensitive data should be encrypted 

before outsourcing for privacy requirements, which obsoletes data utilization like keyword-based document retrieval. In this 

paper, we present a secure multi-keyword ranked search scheme over encrypted cloud data, which simultaneously supports 

dynamic update operations like deletion and insertion of documents. Specifically, the vector space model and the widely-used 

TFxIDF model are combined in the index construction and query generation. We construct a special tree-based index structure 

and propose a “Greedy Depth-first Search” algorithm to provide efficient multi-keyword ranked search. The secure kNN 

algorithm is utilized to encrypt the index and query vectors, and meanwhile ensure accurate relevance score calculation between 

encrypted index and query vectors. In order to resist statistical attacks, phantom terms are added to the index vector for 

blinding search results. Due to the use of our special tree-based index structure, the proposed scheme can achieve sub-linear 

search time and deal with the deletion and insertion of documents flexibly. 

Index Terms— Encryption, Diverse-keyword ranked search, Dynamic update, cloud computing. 

 

1 INTRODUCTION 

CLOUD computing has been considered as a 

newmmodel of enterprise IT infrastructure, which can 

organize huge resource of computing, storage and 

applications, and enable users to enjoy ubiquitous, 

convenient and on-demand network access to a shared 

pool of configurable computing resources with great 

efficiency and minimal economic overhead. Attracted by 

these appealing features, both individuals and enterprises 

are motivated to outsource their data to the cloud, instead 

of purchasing software and hardware to manage the data 

themselves. Despite of the various advantages of cloud 

services, outsourcing sensitive information (such as e-

mails, per-sonal health records, company finance data, 

government documents, etc.) to remote servers brings 

privacy con-cerns. The cloud service providers (CSPs) 

that keep the data for users may access users’ sensitive 

information without authorization. A general approach to 

protect the data confidentiality is to encrypt the data 

before outsourcing . However, this will cause a huge cost 

in terms of data usability. For example, the existing tech-

niques on keyword-based information retrieval, which 

are widely used on the plaintext data, cannot be directly 

applied on the encrypted data. Downloading all the data 

from the cloud and decrypt locally is obviously 

impractical. In order to address the above problem, 

researcher-s have designed some general-purpose 

solutions with fully homomorphic encryption or 

oblivious RAMs. However, these methods are not  

 

practical due to their high computational overhead for 

both the cloud sever and user. On the contrary, more 

practical special-purpose solutions, such as searchable 

encryption (SE) schemes have made specific 

contributions in terms of efficiency, functionality and 

security. Searchable encryption schemes enable the 

client to store the encrypted data to the cloud and 

execute keyword search over ciphertext domain. So far, 

abundant works have been proposed under different 

threat models to achieve various search functionality, 

such as single keyword search, similarity search, multi-

keyword boolean search, ranked search, multi-keyword 

ranked search, etc. Among them, multi-keyword ranked 

search achieves more and more attention for its practical 

applicability. Recently, some dynamic schemes have 

been proposed to support inserting and deleting 

operations on document collection. These are significant 

works as it is highly possible that the data owners need 

to update their data on the cloud server. But few of the 

dynamic schemes support efficient multi-keyword 

ranked search. 

 

II. EXISTING SYSTEM 

 

Searchable encryption schemes enable the clients to 

store the encrypted data to the cloud and execute 

keyword search over cipher text domain. Due to 

different cryptography primitives, searchable encryption 

schemes can be constructed using public key based 
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cryptography or symmetric key based cryptography 

.Song et al. proposed the first symmetric  searchable 

encryption (SSE) scheme, and the search time of their 

scheme is linear to the size of the data collection. Goh 

proposed formal security definitions for SSE and 

designed a scheme based on Bloom filter. The search 

time of Goh’s scheme is O (n), where n is the cardinality 

of the document collection. Curtmola et al. proposed two 

schemes (SSE-1 and SSE-2) which achieve the optimal 

search time. Their SSE-1 scheme is secure against 

chosen-keyword attacks (CKA1) and SSE-2 is secure 

against adaptive chosen-keyword attacks (CKA2). These 

early works are single keyword boolean search schemes, 

which are very simple in terms of functionality. 

Afterward, abundant works have been proposed under 

different threat models to achieve various search 

functionality, such as single keyword search, similarity 

search multi-keyword boolean search ranked search and 

multi-keyword ranked search Multi-keyword boolean 

search allows the users to input multiple query keywords 

to request suitable documents. Among these works, 

conjunctive keyword search schemes only return the 

documents that contain all of the query keywords. 

Disjunctive keyword search schemes return all of the 

documents that contain a subset of the query keywords. 

Predicate search schemes are proposed to support both 

conjunctive and disjunctive search. All these multi 

keyword search schemes retrieve search results based on 

the existence of keywords, which cannot provide 

acceptable result ranking functionality. Ranked search 

can enable quick search of the most relevant data. 

Sending back only the top-k most relevant documents 

can effectively decrease network traffic. Some early 

works have realized the ranked search using order-

preserving techniques, but they are designed only for 

single keyword search. Cao et al.realized the first 

privacy-preserving multi-keyword ranked search 

scheme, in which documents and queries are represented 

as vectors of dictionary size. With the ―coordinate 

matching‖, the documents are ranked according to the 

number of matched query keywords. However, Cao et 

al.’s scheme does not consider the importance of the 

different keywords, and thus is not accurate enough. In 

addition, the search efficiency of the scheme is linear 

with the cardinality of document collection. Sun et al. 

presented a secure multi-keyword search scheme that 

supports similarity-based ranking. The authors 

constructed a searchable index tree based on vector 

space model and adopted cosine measure together with 

TF×IDF to provide ranking results. Sun et al.’s search 

algorithm achieves better- 

 

DISADVANTAGES OF EXISTING SYSTEM 

 

 Lower search efficiency 

 No Keyword privacy 

 

III. PROBLEM FORMULATION 

 

3.1 Notations and Preliminaries 

 

• W – The dictionary, namely, the set of keywords, 

denoted as W = {w1; w2; :::; wm}. 

 

• m – The total number of keywords in W. 

 

• Wq – The subset of W, representing the keywords in 

the query. 

 

• F – The plaintext document collection, denoted as a 

collection of n documents F = {f1; f2; :::; fn}. Each 

document f in the collection can be considered as a 

sequence of keywords. 

 

• n – The total number of documents in F. 

 

• C – The encrypted document collection stored in the 

cloud server, denoted as C = {c1; c2; :::; cn}. 

 

• T – The unencrypted form of index tree for the whole 

document collection F. 

 

• I – The searchable encrypted tree index generated from 

T . 

 

• Q – The query vector for keyword set Wq. 

 

• TD – The encrypted form of Q, which is named as 

trapdoor for the search request. 

 

• Du – The index vector stored in tree node u whose 

dimension equals to the cardinality of the dictionary 

 

• W. Note that the node u can be either a leaf node or an 

internal node of the tree. 

 

• Iu – The encrypted form of Du. 

 

Vector Space Model and Relevance Score Function. 

Vector space model along with TF×IDF rule is widely 

used in plaintext information retrieval, which efficiently 

supports ranked multi-keyword search [34]. Here, the 

term frequency (TF) is the number of times a given term 

(keyword) appears within a document, and the inverse 

document frequency (IDF) is obtained through dividing 

the cardinality of document collection by the number of 

documents containing the keyword. In the vector space 

model, each document is denoted by a vector, whose 

elements are the normalized TF values of keywords in 

this document. Each query is also denoted as a vector Q, 

whose elements are the normalized IDF values of query 

keywords in the document collection. Naturally, the 

lengths of both the TF vector and the IDF vector are 

equal to the total number of keywords, and the dot 
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product of the TF vector Du and the IDF vector Q can be 

calculated to quantify the relevance between the query 

and corresponding document. Following are the 

notations used in our relevance evaluation function: 

 

• Nf;wi – The number of keyword wi in document f. 

• N – The total number of documents. 

• Nwi – The number of documents that contain key-word 

wi. 

• TF′f;wi – The TF value of wi in document f. 

• IDF′wi – The IDF value of wi in document collection. 

•TFu;wi – The normalized TF value of keyword wi 

stored in index vector Du. 

• IDFwi – The normalized IDF value of keyword wi in 

document collection. 

 

 The relevance evaluation function is defined as: 

      Σ 

RScore(Du; Q) = Du · Q =            TFu;wi × IDFwi : (1) 
                                                                wi Wq 
 

If u is an internal node of the tree, TFu;wi is calculated 

from index vectors in the child nodes of u. If the u is a 

leaf node, TFu;wi is calculated as:TF 

 

 

 

 

 

 

where TF ′f;wi = 1 + ln Nf;wi . And in the search vector 

Q, IDFwi is calculated as: 

 

 

 

 

 

 

 

Keyword Balanced Binary Tree. The balanced binary 

tree is widely used to deal with optimization problems 

[35], [36]. The keyword balanced binary (KBB) tree in 

our scheme is a dynamic data structure whose node 

stores a vector D. The elements of vector D are the 

normalized TF values. Sometimes, we refer the vector D 

in the node u to Du for simplicity. Formally, the node u 

in our KBB tree is defined as follows: 

 

u = ID; D; Pl; Pr; FID ;         (4) 

 

where ID denotes the identity of node u, Pl and Pr are 

respectively the pointers to the left and right child of 

node u. If the node u is a leaf node of the tree, FID stores 

the identity of a document, and D denotes a vector 

consisting of the normalized TF values of the keywords 

to the document. If the node u is an internal node, FID is 

set to null, and D denotes a vector consisting of the TF 

values which is calculated as follows: 

 

D[i] = max{u:Pl → D[i]; u:Pr → D[i]}; i = 1; :::; m: (5) 

 

The detailed construction process of the tree-based index 

is illustrated in Section 4, which is denoted as Build 

IndexTree(F). 

 

3.2 The System and Threat Models 

The system model in this paper involves three different 

entities: data owner, data user and cloud server, as 

illustrated in Fig. 1. 

 

Data owner has a collection of documents F = {f1; f2; 

:::; fn}that he wants to outsource to the cloud server in 

encrypted form while still keeping the capa-bility to 

search on them for effective utilization. In our scheme, 

the data owner firstly builds a secure searchable tree 

index I from document collection F, and then generates 

an encrypted document collection C for F. Afterwards, 

the data owner outsources the encrypted collection C and 

the secure index I to the cloud server, and securely 

distributes the key information of trapdoor generation 

(including keyword IDF values) and document 

decryption to the authorized data users. Besides, the data 

owner is responsible for the update operation of his 

documents stored in the cloud server. While updating, 

the data owner generates the update information locally 

and sends it to the server. 

 

Data users are authorized ones to access the documents 

of data owner. With t query keywords, the authorized 

user can generate a trapdoor TD according to search 

control mechanisms to fetch k encrypted documents 

from cloud server. Then, the data user can decrypt the 

documents with the shared secret key. 

 

Cloud server stores the encrypted document collection C 

and the encrypted searchable tree index I for data owner. 

Upon receiving the trapdoor TD from the data user, the 

cloud server executes search over the index tree I, and 

finally returns the corresponding collection of top-k 

ranked encrypted documents. Besides, upon receiving 

the update information from the data owner, the server 

needs to update the index I and document collection C 

according to the 

received information. 

The cloud server in the proposed scheme is considered 

as ―honest-but-curious‖, which is employed by lots of 

works on secure cloud data search [25], [26], [27]. 

Specifically, the cloud server honestly and correctly 

executes encrypted search index tree request top-k 

ranked encrypted documents Semi-trusted result cloud 

server search control (trapdoors) access control (data 

decryption keys) 
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Fig. 1. The architecture of ranked search over 

encrypted cloud data 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Distribution of term frequency (TF) for (a) 

keyword “subnet”, and (b) keyword “host”. 

 

instructions in the designated protocol. Meanwhile, it is 

curious to infer and analyze received data, which helps it 

acquire additional information. Depending on what 

information the cloud server knows, we adopt the two 

threat models proposed by Cao et al. [26]. 

 

Known Cipher text Model. In this model, the cloud 

server only knows the encrypted document collection C, 

the searchable index tree I, and the search trapdoor TD 

submitted by the authorized user. That is to say, the 

cloud server can conduct cipher text-only attack (COA) 

[37] in this model. 

 

Known Background Model. Compared with known 

Cipher text model, the cloud server in this stronger 

model is equipped with more knowledge, such as the 

term frequency (TF) statistics of the document 

collection. This statistical information records how many 

documents are there for each term frequency of a 

specific keyword in the whole document collection, as 

shown in Fig. 2, which could be used as the keyword 

identity. Equipped with such statistical information, the 

cloud server can conduct TF statistical attack to deduce 

or 

even identify certain keywords through analyzing 

histogram and value range of the corresponding 

frequency distributions [24], [25], [27]. 

 

3.3 Design Goals 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. An example of the tree-based index with the 

document collection F = ffiji = 1; :::; 6g and cardinality 

of the dictionary m = 4. In the construction process of 

the tree index, we first generate leaf nodes from the 

documents. Then, the internal tree nodes are generated 

based on the leaf nodes. This figure also shows an 

example of search process, in which the query vector Q 

is equal to (0; 0:92; 0; 0:38). In this example, we set the 

parameter k = 3 with the meaning that three documents 

will be returned to the user. According to the search 

algorithm, the search starts with the root node, and 

reaches the first leaf node f4 through r11 and r22. The 

relevance score of f4 to the query is 0:92. After that, the 

leaf nodes f3 and f2 are successively reached with the 

relevance scores 0:038 and 0:67. Next, the leaf node f1 

is reached with score 0:58 and replace f3 in RList. 

Finally, the algorithm will try to search subtree rooted 

by r12, and find that there are no reasonable results in 

this subtree because the relevance score of r12 is 0:52, 

which is smaller than the smallest relevance score in 

RList 

 

To enable secure, efficient, accurate and dynamic multi-

keyword ranked search over outsourced encrypted cloud 

data under the above models, our system has the 

following design goals. 

 

Dynamic: The proposed scheme is designed to pro-vide 

not only multi-keyword query and accurate result 

ranking, but also dynamic update on document 

collections. 

 

Search Efficiency: The scheme aims to achieve sub 

linear search efficiency by exploring a special tree-based 

index and an efficient search algorithm. 

 

Privacy-preserving: The scheme is designed to pre-vent 

the cloud server from learning additional information 

about the document collection, the index tree, and the 

query. The specific privacy requirements are 

summarized as follows, 
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1) Index Confidentiality and Query Confidentiality: 
The underlying plaintext information, including key-

words in the index and query, TF values of key-words 

stored in the index, and IDF values of query keywords, 

should be protected from cloud server; 

 

2) Trapdoor Unlinkability: The cloud server should not 

be able to determine whether two encrypted queries 

(trapdoors) are generated from the same search request; 

 

3) Keyword Privacy: The cloud server could not  

Identify the specific keyword in query, index or 

document collection by analyzing the statistical 

information like term frequency. Note that our proposed 

scheme is not designed to protect access pattern, i.e., the 

sequence of returned documents. 

 

IV. THE PROPOSED SCHEMES 

 

In this section, we firstly describe the unencrypted 

dynamic multi-keyword ranked search (UDMRS) 

scheme which is constructed on the basis of vector space 

model and KBB tree. Based on the UDMRS scheme, 

two secure search schemes (BDMRS and EDMRS 

schemes) are con-structed against two threat models, 

respectively. 

 

4.1 Index Construction of UDMRS Scheme 

 In Section 3, we have briefly introduced the 

KBB index tree structure, which assists us in introducing 

the index construction. In the process of index 

construction, we first generate a tree node for each 

document in the collection. These nodes are the leaf 

nodes of the index tree. Then, the internal tree nodes are 

generated based on these leaf nodes. The formal 

construction process of the index is presented in 

Algorithm 1. An example of our index tree is shown in 

Fig. 3. Note that the index tree T built here is a plaintext. 

 

Following are some notations for Algorithm  1. Be-sides, 

the data structure of the tree node is defined as ID; D; 

Pl; Pr; FID , where the unique identity ID for each tree 

node is generated through the function GenID(). 
 

• CurrentN odeSet – The set of current processing nodes 

which have no parents. If the number of nodes is even, 

the cardinality of the set is denoted as 2h(h ∈ Z + ), else 

the cardinality is denoted as (2h + 1). 

 

• T empN odeSet – The set of the newly generated nodes. 

In the index, if Du[i] = 0 for an internal node u, there is 

at least one path from the node u to some leaf, which 

indicates a document containing the keyword wi. In 

addition, Du[i] always stores the biggest normalized TF 

value of wi among its child nodes. Thus, the possible 

largest relevance score of its children can be easily 

estimated. 

 

4.2 Search Process of UDMRS Scheme 

The search process of the UDMRS scheme is a recursive 

procedure upon the tree, named as ―Greedy Depth-first 

Search (GDFS)‖ algorithm. We construct a result list 

denoted as RList, whose element is defined as RScore; 

FID . Here, the RScore is the relevance score of the 

document fFID to the query, which is calculated 

according to Formula (1). The RList stores the k 

accessed documents with the largest relevance scores to 

the query. The elements of the list are ranked in 

descending order according to the RScore, and will be 

updated timely during the search process. Following are 

some other notations, and the GDFS algorithm is 

described in Al-gorithm 2. 

• RScore(Du; Q) – The function to calculate the rele-

vance score for query vector Q and index vector Du 

stored in node u, which is defined in Formula (1). 
 

• k th score – The smallest relevance score in current 

RList, which is initialized as 0. 
 

• hchild – The child node of a tree node with higher 

relevance score. 
 

• lchild – The child node of a tree node with lower 

relevance score.  

Since the possible largest relevance score of documents  

rooted by the node u can be predicted, only a part of the 

nodes in the tree are accessed during the search process. 

Fig. 3 

shows an example of search process with the document 

collection F = {fi|i = 1; :::; 6}, cardinality of the 

dictionary m = 4, and query vector • Q = (0; 0:92; 0; 

0:38) 

 

Algorithm 1 BuildIndexTree(F) 

 

Input: the document collection F = {f1; f2; :::; fn} with 

the identifiers FID = {FID|FID = 1; 2; :::; n}. 

Output: the index tree T 
 

1: for each document fFID in F do 

2: Construct a leaf node u for fFID, with u:ID = 

GenID(), u:Pl = u:Pr = null, u:FID = FID, and D[i] = 

TFfFID;wi for i = 1; :::; m;— 

3: Insert u to CurrentN odeSet; 

4: end for 

5: while the number of nodes in CurrentN odeSet is 

larger 

than 1 do 

6: if the number of nodes in CurrentN odeSet is even, i.e. 

2h then 

7: for each pair of nodes u and u in CurrentN odeSet do 

8: Generate a parent node u for u and u , with u:ID 

= GenID(), u:Pl = u, u:Pr = u, u:FID = 0 and D[i] = 

max{u :D[i]; u :D[i]} for each i = 1; :::; m; 

9: Insert u to T empN odeSet; 

                                                                                                                                 423



ISSN (Online) 2394-2320 

 

 

International Journal of Engineering Research in Computer Science and Engineering  

(IJERCSE)  

Vol 4, Issue 6, June 2017 
 

 

10: end for 

11: else 

12: for each pair of nodes u and u of the former 

(2h − 2) nodes in CurrentN odeSet do 

13: Generate a parent node u for u and u ; 

14: Insert u to T empN odeSet; 

15: end for 

16: Create a parent node u1 for the (2h − 1)-th and 2h-th 

node, and then create a parent node u for u1 and the (2h 

+ 1)-th node; 

17: Insert u to T empN odeSet; 

18: end if 

19: Replace CurrentN odeSet with T empN odeSet and 

then clear T empN odeSet; 

20: end while 

21: return the only node left in CurrentN odeSet, 

namely, 

the root of index tree T ; 

 

Algorithm 2 GDFS(IndexTreeNode u) 

 

1: if the node u is not a leaf node then 

2: if RScore(Du; Q) > k th score then 

3: GDFS(u:hchild); 

4: GDFS(u:lchild); 

5: else 

6: return 

7: end if 

8: else 

9: if RScore(Du; Q) > k th score then 

10: Delete the element with the smallest relevance score 

from RList; 

11: Insert a new element RScore(Du; Q); u:FID and 

sort all the elements of RList; 

12: end if 

13: return 

14: end if 

 

V. PERFORMANCE ANALYSIS 

 

We implement the proposed scheme using C++ language 

in Windows 7 operation system and test its efficiency on 

a real-world document collection: the Request for 

Comments (RFC) [39]. The test includes 1) the search 

precision on different privacy level, and 2) the efficiency 

of index construction, trapdoor generation, search, and 

update. Most of the experimental results are obtained 

with an Intel Core(TM) Duo Processor (2.93 GHz), 

except that the efficiency of search is tested on a server 

with two Intel(R) Xeon(R) CPU E5-2620 Processors (2.0 

GHz), which has 12 processor cores and supports 24 

parallel threads. 

 

5.1 Precision and Privacy 

The search precision of scheme is affected by the 

dummy keywords in EDMRS scheme. Here, the 

’precision’ is defined as that in [26]: Pk = k 

=k, where k is the number of real top-k documents in the 

retrieved k documents. If a smaller standard deviation is 

set for the random 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Time cost for index tree construction: (a) for the 

different sizes of document collection with the fixed 

dictionary, m = 4000, and (b) for the different sizes of 

dictionary with the fixed document collection, n = 1000. 

 

TABLE 3 

Storage consumption of index tree. 

               

 

 

 

 

              Σ 

variable "v, the EDMRS scheme is supposed to obtain 

higher precision, and vice versa. The results are shown 

in Fig. 4(a). 

In the EDMRS scheme, phantom terms are added to the 

index vector to obscure the relevance score calculation, 

so that the cloud server cannot identify keywords by 

analyzing the TF distributions of special keywords. 

Here, we quantify the obscureness of the relevance score 

by ―rank privacy‖, which is defined as: 

 

 

 

 

 

 

where ri is the rank number of document in the retrieved 

top-k documents, and ri is its real rank number in the 

whole ranked results. The larger rank privacy denotes 

the higher security of the scheme, which is illustrated in 

Fig. 4(b). 

In the proposed scheme, data users can accomplish 

different requirements on search precision and privacy 

by adjusting the standard deviation , which can be 

treated as a balance parameter. 

We compare our schemes with a recent work proposed 

by Sun et al. [27], which achieves high search efficiency. 

Note that our BDMRS scheme retrieves the search 

results through exact calculation of document vector and 

query vector. Thus, top-k search precision of the 

BDMRS scheme is 100%. But as a similarity-based 
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multi-keyword ranked search scheme, the basic scheme 

in [27] suffers from precision loss due to the clustering 

of sub-vectors during index construction. The precision 

test of [27]’s basic scheme is presented in Table 2. In 

each test, 5 keywords are randomly chosen as input, and 

the precision of returned top 100 results is observed. The 

test is repeated 16 times, and the average precision is 

91%. 

 

5.2 Efficiency 

5.2.1 Index Tree Construction 

The process of index tree construction for document 

collection F includes two main steps: 1) building an 

unencrypted KBB tree based on the document collection 

F, and 2) encrypting the index tree with splitting 

operation and two multiplications of a (m × m) matrix. 

The index structure is constructed following a post order 

traversal of the tree based on the document collection F, 

and O(n) nodes are generated during the traversal. For 

each node, generation of an index vector takes O(m) 

time, vector splitting process takes O(m) time, and two 

multiplications of a (m×m) matrix takes O(m 2 ) time. As 

a whole, the time complexity for index tree construction 

is O(nm 2 ). Apparently, the time cost for building index 

tree mainly depends on the cardinality of document 

collection F and the number of keywords in dictionary 

W. Fig. 5 shows that the time cost of index tree 

construction is almost linear with the size of document 

collection, and is proportional to the number of 

keywords in the dictionary. Due to the dimension 

extension, the index tree construction of EDMRS 

scheme is slightly more time-consuming than that of 

BDMRS scheme. Although the index tree construction 

consumes relatively much time at the data owner side, it 

is noteworthy that this is a one-time operation. On the 

other hand, since the underlying balanced binary tree has 

space complexity O(n) and every node stores two m-

dimensional vectors, the space complexity of the index 

tree is O(nm). As listed in Table 3, when the document 

collection is fixed (n = 1000), the storage consumption 

of the index tree is determined by the size of the 

dictionary. 

 

5.2.2 Trapdoor Generation 

The generation of a trapdoor incurs a vector splitting 

operation and two multiplications of a (m × m) matrix, 

thus the time complexity is O(m 2 
), as shown in Fig. 

6(a). Typical search requests usually consist of just a few 

keywords. Fig. 6(b) shows that the number of query 

keywords has little influence on the overhead of trapdoor 

generation when the dictionary size is fixed. Due to the 

dimension extension, the time cost of EDMRS scheme is 

a little higher than that of BDMRS scheme. 

 

5.2.3 Search Efficiency 

During the search process, if the relevance score at node 

u is larger than the minimum relevance score in result 

list RList, the cloud server examines the children of the 

node; else it returns. Thus, lots of nodes are not accessed 

during a real search. We denote the number of leaf nodes 

that contain one or more keywords in the query as . 

Generally, is larger than the number of required 

documents k, but far less than the cardinality of the 

document collection n. As a balanced binary tree, the 

height of the index is maintained to be log n, and the 

complexity of relevance score calculation is O(m). Thus, 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Time cost for trapdoor generation: (a) for 

different sizes of dictionary with the fixed number of 

query keywords, t = 10, and (b) for different numbers of 

query keywords with the fixed dictionary, m = 4000. 

 

the time complexity of search is O( m log n). Note that 

the real search time is less than m log n. It is because 1) 

many leaf nodes that contain the queried keywords are 

not visited according to our search algorithm, and 2) the 

accessing paths of some different leaf nodes share the 

mutual traversed parts. In addition, the parallel execution 

of search process can increase the efficiency a lot. We 

test the search efficiency of the proposed scheme on a 

server which supports 24 parallel threads. The search 

performance is tested respectively by starting 1, 4, 8 and 

16 threads. We compare the search efficiency of our 

scheme with that of Sun et al. [27]. In the 

implementation of Sun’s code, we divide 4000 keywords 

into 50 levels. Thus, each level contains 80 keywords. 

According to [27], the higher level the query keywords 

reside, the higher the search efficiency is. In our 

experiment, we choose ten keywords from the 1st level 

(the highest level, the optimal case) for search efficiency 

comparison. Fig. 7 shows that if the query keywords are 

chosen from the 1st level, our scheme obtains almost the 

same efficiency as [27] when we start 4 threads. Fig. 7 

also shows that the search efficiency of our scheme 

increases a lot when we increase the number of threads 

from 1 to 4. However, when we continue to increase the 

threads, the search efficiency is not increased 

remarkably. Our search algorithm can be executed in 

parallel to improve the search efficiency. But all the 

start-ed threads will share one result list RList in 

mutually exclusive manner. When we start too many 

threads, the threads will spend a lot of time for waiting to 

read and write the RList. 
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An intuitive method to handle this problem is to 

construct multiple result lists. However, in our scheme, it 

will not help to improve the search efficiency a lot. It is 

because that we need to find k results for each result list 

and time complexity for retrieving each result list is O( 

m log n=l). In this case, the multiple threads will not 

save much time, and selecting k results from the multiple 

result list will further increase the time consumption. In 

the Fig. 8, we show the time consumption when we start 

multiple threads with multiple result lists. The 

experimental results prove that our scheme will obtain 

better search efficiency when we start multiple threads 

with only one result list. 

 

5.2.4 Update Efficiency 

In order to update a leaf node, the data owner needs to 

update log n nodes. Since it involves an encryption 

operation for index vector at each node, which takes 

O(m 2 ) time, the time complexity of update operation is 

thus O(m 2 log n). We illustrate the time cost for the 

deletion of a document. Fig. 9(a) shows that when the 

size of dictionary is fixed, the deletion of a document 

takes nearly logarithmic time with the size of document 

collection. And Fig. 9(b) shows that the update time is 

proportional to the size of dictionary when the document 

collection is fixed. In addition, the space complexity of 

each node is O(m). Thus, space complexity of the 

communication package of updating a document is O(m 

log n). 

 

6 CONCLUSION AND FUTURE WORK 

 

In this paper, a secure, efficient and dynamic search 

scheme is proposed, which supports not only the 

accurate multi-keyword ranked search but also the 

dynamic deletion and insertion of documents. We 

construct a special keyword balanced binary tree as the 

index, and propose a ―Greedy Depth-first Search‖ 

algorithm to obtain better efficiency than linear search. 

In addition, the parallel search process can be carried out 

to further reduce the time cost. The security of the 

scheme is protected against two threat models by using 

the secure kNN algorithm. Experimental results 

demonstrate the efficiency of our proposed scheme. 

There are still many challenge problems in symmetric 

SE schemes. In the proposed scheme, the data owner is 

responsible for generating updating information and 

sending them to the cloud server. Thus, the data owner 

needs to store the unencrypted index tree and the 

information that are necessary to recalculate the IDF 

values. Such an active data owner may not be very 

suitable for the cloud computing model. It could be a 

meaningful but difficult future work to design a dynamic 

searchable encryption scheme whose updating operation 

can be completed by cloud server only, meanwhile 

reserving the ability to support multi-keyword ranked 

search. In addition, as the most of works about 

searchable encryption, our scheme mainly considers the 

challenge from the cloud server. Actually, there are 

many secure challenges in a multi-user scheme. Firstly, 

all the users usually keep the same secure key for 

trapdoor generation in a symmetric SE scheme. In this 

case, the revocation of the user is big challenge. If it is 

needed to revoke a user in this scheme, we need to 

rebuild the index and distribute the new secure keys to 

all the authorized users. Secondly, symmetric SE 

schemes usually assume that all the data users are 

trustworthy. It is not practical and a dishonest data user 

will lead to many secure problems. For exam-ple, a 

dishonest data user may search the documents and 

distribute the decrypted documents to the unauthorized 

ones. Even more, a dishonest data user may distribute 

his/her secure keys to the unauthorized ones. In the 

future works, we will try to improve the SE scheme to 

handle these challenge problems. 
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