
ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 4, Issue 6, June 2017

An Efficient and Reliable Diverse Keyword

Ranked Search Scheme Over Ciphered Cloud Data
[1]

 Ms. Shruthi,
[2]

 Mehul Bhatt,
 [3]

Pushpa J,
[4]

Sobin Baby,
[5]

Akhil K. Manoj
[1]

Asst. Prof.,
[2][3][4]

UG Student
[1][2][3][4]

Dept. of CSE, RR Institute of Technology, Bangalore, Karnataka

Abstract— Due to the increasing popularity of cloud computing, more and more data owners are motivated to outsource their

data to cloud servers for great convenience and reduced cost in data management. However, sensitive data should be encrypted

before outsourcing for privacy requirements, which obsoletes data utilization like keyword-based document retrieval. In this

paper, we present a secure multi-keyword ranked search scheme over encrypted cloud data, which simultaneously supports

dynamic update operations like deletion and insertion of documents. Specifically, the vector space model and the widely-used

TFxIDF model are combined in the index construction and query generation. We construct a special tree-based index structure

and propose a “Greedy Depth-first Search” algorithm to provide efficient multi-keyword ranked search. The secure kNN

algorithm is utilized to encrypt the index and query vectors, and meanwhile ensure accurate relevance score calculation between

encrypted index and query vectors. In order to resist statistical attacks, phantom terms are added to the index vector for

blinding search results. Due to the use of our special tree-based index structure, the proposed scheme can achieve sub-linear

search time and deal with the deletion and insertion of documents flexibly.

Index Terms— Encryption, Diverse-keyword ranked search, Dynamic update, cloud computing.

1 INTRODUCTION

CLOUD computing has been considered as a

newmmodel of enterprise IT infrastructure, which can

organize huge resource of computing, storage and

applications, and enable users to enjoy ubiquitous,

convenient and on-demand network access to a shared

pool of configurable computing resources with great

efficiency and minimal economic overhead. Attracted by

these appealing features, both individuals and enterprises

are motivated to outsource their data to the cloud, instead

of purchasing software and hardware to manage the data

themselves. Despite of the various advantages of cloud

services, outsourcing sensitive information (such as e-

mails, per-sonal health records, company finance data,

government documents, etc.) to remote servers brings

privacy con-cerns. The cloud service providers (CSPs)

that keep the data for users may access users’ sensitive

information without authorization. A general approach to

protect the data confidentiality is to encrypt the data

before outsourcing . However, this will cause a huge cost

in terms of data usability. For example, the existing tech-

niques on keyword-based information retrieval, which

are widely used on the plaintext data, cannot be directly

applied on the encrypted data. Downloading all the data

from the cloud and decrypt locally is obviously

impractical. In order to address the above problem,

researcher-s have designed some general-purpose

solutions with fully homomorphic encryption or

oblivious RAMs. However, these methods are not

practical due to their high computational overhead for

both the cloud sever and user. On the contrary, more

practical special-purpose solutions, such as searchable

encryption (SE) schemes have made specific

contributions in terms of efficiency, functionality and

security. Searchable encryption schemes enable the

client to store the encrypted data to the cloud and

execute keyword search over ciphertext domain. So far,

abundant works have been proposed under different

threat models to achieve various search functionality,

such as single keyword search, similarity search, multi-

keyword boolean search, ranked search, multi-keyword

ranked search, etc. Among them, multi-keyword ranked

search achieves more and more attention for its practical

applicability. Recently, some dynamic schemes have

been proposed to support inserting and deleting

operations on document collection. These are significant

works as it is highly possible that the data owners need

to update their data on the cloud server. But few of the

dynamic schemes support efficient multi-keyword

ranked search.

II. EXISTING SYSTEM

Searchable encryption schemes enable the clients to

store the encrypted data to the cloud and execute

keyword search over cipher text domain. Due to

different cryptography primitives, searchable encryption

schemes can be constructed using public key based

 419

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 4, Issue 6, June 2017

cryptography or symmetric key based cryptography

.Song et al. proposed the first symmetric searchable

encryption (SSE) scheme, and the search time of their

scheme is linear to the size of the data collection. Goh

proposed formal security definitions for SSE and

designed a scheme based on Bloom filter. The search

time of Goh’s scheme is O (n), where n is the cardinality

of the document collection. Curtmola et al. proposed two

schemes (SSE-1 and SSE-2) which achieve the optimal

search time. Their SSE-1 scheme is secure against

chosen-keyword attacks (CKA1) and SSE-2 is secure

against adaptive chosen-keyword attacks (CKA2). These

early works are single keyword boolean search schemes,

which are very simple in terms of functionality.

Afterward, abundant works have been proposed under

different threat models to achieve various search

functionality, such as single keyword search, similarity

search multi-keyword boolean search ranked search and

multi-keyword ranked search Multi-keyword boolean

search allows the users to input multiple query keywords

to request suitable documents. Among these works,

conjunctive keyword search schemes only return the

documents that contain all of the query keywords.

Disjunctive keyword search schemes return all of the

documents that contain a subset of the query keywords.

Predicate search schemes are proposed to support both

conjunctive and disjunctive search. All these multi

keyword search schemes retrieve search results based on

the existence of keywords, which cannot provide

acceptable result ranking functionality. Ranked search

can enable quick search of the most relevant data.

Sending back only the top-k most relevant documents

can effectively decrease network traffic. Some early

works have realized the ranked search using order-

preserving techniques, but they are designed only for

single keyword search. Cao et al.realized the first

privacy-preserving multi-keyword ranked search

scheme, in which documents and queries are represented

as vectors of dictionary size. With the ―coordinate

matching‖, the documents are ranked according to the

number of matched query keywords. However, Cao et

al.’s scheme does not consider the importance of the

different keywords, and thus is not accurate enough. In

addition, the search efficiency of the scheme is linear

with the cardinality of document collection. Sun et al.

presented a secure multi-keyword search scheme that

supports similarity-based ranking. The authors

constructed a searchable index tree based on vector

space model and adopted cosine measure together with

TF×IDF to provide ranking results. Sun et al.’s search

algorithm achieves better-

DISADVANTAGES OF EXISTING SYSTEM

 Lower search efficiency

 No Keyword privacy

III. PROBLEM FORMULATION

3.1 Notations and Preliminaries

• W – The dictionary, namely, the set of keywords,

denoted as W = {w1; w2; :::; wm}.

• m – The total number of keywords in W.

• Wq – The subset of W, representing the keywords in

the query.

• F – The plaintext document collection, denoted as a

collection of n documents F = {f1; f2; :::; fn}. Each

document f in the collection can be considered as a

sequence of keywords.

• n – The total number of documents in F.

• C – The encrypted document collection stored in the

cloud server, denoted as C = {c1; c2; :::; cn}.

• T – The unencrypted form of index tree for the whole

document collection F.

• I – The searchable encrypted tree index generated from

T .

• Q – The query vector for keyword set Wq.

• TD – The encrypted form of Q, which is named as

trapdoor for the search request.

• Du – The index vector stored in tree node u whose

dimension equals to the cardinality of the dictionary

• W. Note that the node u can be either a leaf node or an

internal node of the tree.

• Iu – The encrypted form of Du.

Vector Space Model and Relevance Score Function.

Vector space model along with TF×IDF rule is widely

used in plaintext information retrieval, which efficiently

supports ranked multi-keyword search [34]. Here, the

term frequency (TF) is the number of times a given term

(keyword) appears within a document, and the inverse

document frequency (IDF) is obtained through dividing

the cardinality of document collection by the number of

documents containing the keyword. In the vector space

model, each document is denoted by a vector, whose

elements are the normalized TF values of keywords in

this document. Each query is also denoted as a vector Q,

whose elements are the normalized IDF values of query

keywords in the document collection. Naturally, the

lengths of both the TF vector and the IDF vector are

equal to the total number of keywords, and the dot

 420

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 4, Issue 6, June 2017

product of the TF vector Du and the IDF vector Q can be

calculated to quantify the relevance between the query

and corresponding document. Following are the

notations used in our relevance evaluation function:

• Nf;wi – The number of keyword wi in document f.

• N – The total number of documents.

• Nwi – The number of documents that contain key-word

wi.

• TF′f;wi – The TF value of wi in document f.

• IDF′wi – The IDF value of wi in document collection.

•TFu;wi – The normalized TF value of keyword wi

stored in index vector Du.

• IDFwi – The normalized IDF value of keyword wi in

document collection.

 The relevance evaluation function is defined as:

 Σ

RScore(Du; Q) = Du · Q = TFu;wi × IDFwi : (1)
 wi Wq

If u is an internal node of the tree, TFu;wi is calculated

from index vectors in the child nodes of u. If the u is a

leaf node, TFu;wi is calculated as:TF

where TF ′f;wi = 1 + ln Nf;wi . And in the search vector

Q, IDFwi is calculated as:

Keyword Balanced Binary Tree. The balanced binary

tree is widely used to deal with optimization problems

[35], [36]. The keyword balanced binary (KBB) tree in

our scheme is a dynamic data structure whose node

stores a vector D. The elements of vector D are the

normalized TF values. Sometimes, we refer the vector D

in the node u to Du for simplicity. Formally, the node u

in our KBB tree is defined as follows:

u = ID; D; Pl; Pr; FID ; (4)

where ID denotes the identity of node u, Pl and Pr are

respectively the pointers to the left and right child of

node u. If the node u is a leaf node of the tree, FID stores

the identity of a document, and D denotes a vector

consisting of the normalized TF values of the keywords

to the document. If the node u is an internal node, FID is

set to null, and D denotes a vector consisting of the TF

values which is calculated as follows:

D[i] = max{u:Pl → D[i]; u:Pr → D[i]}; i = 1; :::; m: (5)

The detailed construction process of the tree-based index

is illustrated in Section 4, which is denoted as Build

IndexTree(F).

3.2 The System and Threat Models

The system model in this paper involves three different

entities: data owner, data user and cloud server, as

illustrated in Fig. 1.

Data owner has a collection of documents F = {f1; f2;

:::; fn}that he wants to outsource to the cloud server in

encrypted form while still keeping the capa-bility to

search on them for effective utilization. In our scheme,

the data owner firstly builds a secure searchable tree

index I from document collection F, and then generates

an encrypted document collection C for F. Afterwards,

the data owner outsources the encrypted collection C and

the secure index I to the cloud server, and securely

distributes the key information of trapdoor generation

(including keyword IDF values) and document

decryption to the authorized data users. Besides, the data

owner is responsible for the update operation of his

documents stored in the cloud server. While updating,

the data owner generates the update information locally

and sends it to the server.

Data users are authorized ones to access the documents

of data owner. With t query keywords, the authorized

user can generate a trapdoor TD according to search

control mechanisms to fetch k encrypted documents

from cloud server. Then, the data user can decrypt the

documents with the shared secret key.

Cloud server stores the encrypted document collection C

and the encrypted searchable tree index I for data owner.

Upon receiving the trapdoor TD from the data user, the

cloud server executes search over the index tree I, and

finally returns the corresponding collection of top-k

ranked encrypted documents. Besides, upon receiving

the update information from the data owner, the server

needs to update the index I and document collection C

according to the

received information.

The cloud server in the proposed scheme is considered

as ―honest-but-curious‖, which is employed by lots of

works on secure cloud data search [25], [26], [27].

Specifically, the cloud server honestly and correctly

executes encrypted search index tree request top-k

ranked encrypted documents Semi-trusted result cloud

server search control (trapdoors) access control (data

decryption keys)

 421

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 4, Issue 6, June 2017

Fig. 1. The architecture of ranked search over

encrypted cloud data

Fig. 2. Distribution of term frequency (TF) for (a)

keyword “subnet”, and (b) keyword “host”.

instructions in the designated protocol. Meanwhile, it is

curious to infer and analyze received data, which helps it

acquire additional information. Depending on what

information the cloud server knows, we adopt the two

threat models proposed by Cao et al. [26].

Known Cipher text Model. In this model, the cloud

server only knows the encrypted document collection C,

the searchable index tree I, and the search trapdoor TD

submitted by the authorized user. That is to say, the

cloud server can conduct cipher text-only attack (COA)

[37] in this model.

Known Background Model. Compared with known

Cipher text model, the cloud server in this stronger

model is equipped with more knowledge, such as the

term frequency (TF) statistics of the document

collection. This statistical information records how many

documents are there for each term frequency of a

specific keyword in the whole document collection, as

shown in Fig. 2, which could be used as the keyword

identity. Equipped with such statistical information, the

cloud server can conduct TF statistical attack to deduce

or

even identify certain keywords through analyzing

histogram and value range of the corresponding

frequency distributions [24], [25], [27].

3.3 Design Goals

Fig. 3. An example of the tree-based index with the

document collection F = ffiji = 1; :::; 6g and cardinality

of the dictionary m = 4. In the construction process of

the tree index, we first generate leaf nodes from the

documents. Then, the internal tree nodes are generated

based on the leaf nodes. This figure also shows an

example of search process, in which the query vector Q

is equal to (0; 0:92; 0; 0:38). In this example, we set the

parameter k = 3 with the meaning that three documents

will be returned to the user. According to the search

algorithm, the search starts with the root node, and

reaches the first leaf node f4 through r11 and r22. The

relevance score of f4 to the query is 0:92. After that, the

leaf nodes f3 and f2 are successively reached with the

relevance scores 0:038 and 0:67. Next, the leaf node f1

is reached with score 0:58 and replace f3 in RList.

Finally, the algorithm will try to search subtree rooted

by r12, and find that there are no reasonable results in

this subtree because the relevance score of r12 is 0:52,

which is smaller than the smallest relevance score in

RList

To enable secure, efficient, accurate and dynamic multi-

keyword ranked search over outsourced encrypted cloud

data under the above models, our system has the

following design goals.

Dynamic: The proposed scheme is designed to pro-vide

not only multi-keyword query and accurate result

ranking, but also dynamic update on document

collections.

Search Efficiency: The scheme aims to achieve sub

linear search efficiency by exploring a special tree-based

index and an efficient search algorithm.

Privacy-preserving: The scheme is designed to pre-vent

the cloud server from learning additional information

about the document collection, the index tree, and the

query. The specific privacy requirements are

summarized as follows,

 422

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 4, Issue 6, June 2017

1) Index Confidentiality and Query Confidentiality:
The underlying plaintext information, including key-

words in the index and query, TF values of key-words

stored in the index, and IDF values of query keywords,

should be protected from cloud server;

2) Trapdoor Unlinkability: The cloud server should not

be able to determine whether two encrypted queries

(trapdoors) are generated from the same search request;

3) Keyword Privacy: The cloud server could not

Identify the specific keyword in query, index or

document collection by analyzing the statistical

information like term frequency. Note that our proposed

scheme is not designed to protect access pattern, i.e., the

sequence of returned documents.

IV. THE PROPOSED SCHEMES

In this section, we firstly describe the unencrypted

dynamic multi-keyword ranked search (UDMRS)

scheme which is constructed on the basis of vector space

model and KBB tree. Based on the UDMRS scheme,

two secure search schemes (BDMRS and EDMRS

schemes) are con-structed against two threat models,

respectively.

4.1 Index Construction of UDMRS Scheme

 In Section 3, we have briefly introduced the

KBB index tree structure, which assists us in introducing

the index construction. In the process of index

construction, we first generate a tree node for each

document in the collection. These nodes are the leaf

nodes of the index tree. Then, the internal tree nodes are

generated based on these leaf nodes. The formal

construction process of the index is presented in

Algorithm 1. An example of our index tree is shown in

Fig. 3. Note that the index tree T built here is a plaintext.

Following are some notations for Algorithm 1. Be-sides,

the data structure of the tree node is defined as ID; D;

Pl; Pr; FID , where the unique identity ID for each tree

node is generated through the function GenID().

• CurrentN odeSet – The set of current processing nodes

which have no parents. If the number of nodes is even,

the cardinality of the set is denoted as 2h(h ∈ Z +), else

the cardinality is denoted as (2h + 1).

• T empN odeSet – The set of the newly generated nodes.

In the index, if Du[i] = 0 for an internal node u, there is

at least one path from the node u to some leaf, which

indicates a document containing the keyword wi. In

addition, Du[i] always stores the biggest normalized TF

value of wi among its child nodes. Thus, the possible

largest relevance score of its children can be easily

estimated.

4.2 Search Process of UDMRS Scheme

The search process of the UDMRS scheme is a recursive

procedure upon the tree, named as ―Greedy Depth-first

Search (GDFS)‖ algorithm. We construct a result list

denoted as RList, whose element is defined as RScore;

FID . Here, the RScore is the relevance score of the

document fFID to the query, which is calculated

according to Formula (1). The RList stores the k

accessed documents with the largest relevance scores to

the query. The elements of the list are ranked in

descending order according to the RScore, and will be

updated timely during the search process. Following are

some other notations, and the GDFS algorithm is

described in Al-gorithm 2.

• RScore(Du; Q) – The function to calculate the rele-

vance score for query vector Q and index vector Du

stored in node u, which is defined in Formula (1).

• k th score – The smallest relevance score in current

RList, which is initialized as 0.

• hchild – The child node of a tree node with higher

relevance score.

• lchild – The child node of a tree node with lower

relevance score.

Since the possible largest relevance score of documents

rooted by the node u can be predicted, only a part of the

nodes in the tree are accessed during the search process.

Fig. 3

shows an example of search process with the document

collection F = {fi|i = 1; :::; 6}, cardinality of the

dictionary m = 4, and query vector • Q = (0; 0:92; 0;

0:38)

Algorithm 1 BuildIndexTree(F)

Input: the document collection F = {f1; f2; :::; fn} with

the identifiers FID = {FID|FID = 1; 2; :::; n}.

Output: the index tree T

1: for each document fFID in F do

2: Construct a leaf node u for fFID, with u:ID =

GenID(), u:Pl = u:Pr = null, u:FID = FID, and D[i] =

TFfFID;wi for i = 1; :::; m;—

3: Insert u to CurrentN odeSet;

4: end for

5: while the number of nodes in CurrentN odeSet is

larger

than 1 do

6: if the number of nodes in CurrentN odeSet is even, i.e.

2h then

7: for each pair of nodes u and u in CurrentN odeSet do

8: Generate a parent node u for u and u , with u:ID

= GenID(), u:Pl = u, u:Pr = u, u:FID = 0 and D[i] =

max{u :D[i]; u :D[i]} for each i = 1; :::; m;

9: Insert u to T empN odeSet;

 423

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 4, Issue 6, June 2017

10: end for

11: else

12: for each pair of nodes u and u of the former

(2h − 2) nodes in CurrentN odeSet do

13: Generate a parent node u for u and u ;

14: Insert u to T empN odeSet;

15: end for

16: Create a parent node u1 for the (2h − 1)-th and 2h-th

node, and then create a parent node u for u1 and the (2h

+ 1)-th node;

17: Insert u to T empN odeSet;

18: end if

19: Replace CurrentN odeSet with T empN odeSet and

then clear T empN odeSet;

20: end while

21: return the only node left in CurrentN odeSet,

namely,

the root of index tree T ;

Algorithm 2 GDFS(IndexTreeNode u)

1: if the node u is not a leaf node then

2: if RScore(Du; Q) > k th score then

3: GDFS(u:hchild);

4: GDFS(u:lchild);

5: else

6: return

7: end if

8: else

9: if RScore(Du; Q) > k th score then

10: Delete the element with the smallest relevance score

from RList;

11: Insert a new element RScore(Du; Q); u:FID and

sort all the elements of RList;

12: end if

13: return

14: end if

V. PERFORMANCE ANALYSIS

We implement the proposed scheme using C++ language

in Windows 7 operation system and test its efficiency on

a real-world document collection: the Request for

Comments (RFC) [39]. The test includes 1) the search

precision on different privacy level, and 2) the efficiency

of index construction, trapdoor generation, search, and

update. Most of the experimental results are obtained

with an Intel Core(TM) Duo Processor (2.93 GHz),

except that the efficiency of search is tested on a server

with two Intel(R) Xeon(R) CPU E5-2620 Processors (2.0

GHz), which has 12 processor cores and supports 24

parallel threads.

5.1 Precision and Privacy

The search precision of scheme is affected by the

dummy keywords in EDMRS scheme. Here, the

’precision’ is defined as that in [26]: Pk = k

=k, where k is the number of real top-k documents in the

retrieved k documents. If a smaller standard deviation is

set for the random

Fig. 5. Time cost for index tree construction: (a) for the

different sizes of document collection with the fixed

dictionary, m = 4000, and (b) for the different sizes of

dictionary with the fixed document collection, n = 1000.

TABLE 3

Storage consumption of index tree.

 Σ

variable "v, the EDMRS scheme is supposed to obtain

higher precision, and vice versa. The results are shown

in Fig. 4(a).

In the EDMRS scheme, phantom terms are added to the

index vector to obscure the relevance score calculation,

so that the cloud server cannot identify keywords by

analyzing the TF distributions of special keywords.

Here, we quantify the obscureness of the relevance score

by ―rank privacy‖, which is defined as:

where ri is the rank number of document in the retrieved

top-k documents, and ri is its real rank number in the

whole ranked results. The larger rank privacy denotes

the higher security of the scheme, which is illustrated in

Fig. 4(b).

In the proposed scheme, data users can accomplish

different requirements on search precision and privacy

by adjusting the standard deviation , which can be

treated as a balance parameter.

We compare our schemes with a recent work proposed

by Sun et al. [27], which achieves high search efficiency.

Note that our BDMRS scheme retrieves the search

results through exact calculation of document vector and

query vector. Thus, top-k search precision of the

BDMRS scheme is 100%. But as a similarity-based

 424

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 4, Issue 6, June 2017

multi-keyword ranked search scheme, the basic scheme

in [27] suffers from precision loss due to the clustering

of sub-vectors during index construction. The precision

test of [27]’s basic scheme is presented in Table 2. In

each test, 5 keywords are randomly chosen as input, and

the precision of returned top 100 results is observed. The

test is repeated 16 times, and the average precision is

91%.

5.2 Efficiency

5.2.1 Index Tree Construction

The process of index tree construction for document

collection F includes two main steps: 1) building an

unencrypted KBB tree based on the document collection

F, and 2) encrypting the index tree with splitting

operation and two multiplications of a (m × m) matrix.

The index structure is constructed following a post order

traversal of the tree based on the document collection F,

and O(n) nodes are generated during the traversal. For

each node, generation of an index vector takes O(m)

time, vector splitting process takes O(m) time, and two

multiplications of a (m×m) matrix takes O(m 2) time. As

a whole, the time complexity for index tree construction

is O(nm 2). Apparently, the time cost for building index

tree mainly depends on the cardinality of document

collection F and the number of keywords in dictionary

W. Fig. 5 shows that the time cost of index tree

construction is almost linear with the size of document

collection, and is proportional to the number of

keywords in the dictionary. Due to the dimension

extension, the index tree construction of EDMRS

scheme is slightly more time-consuming than that of

BDMRS scheme. Although the index tree construction

consumes relatively much time at the data owner side, it

is noteworthy that this is a one-time operation. On the

other hand, since the underlying balanced binary tree has

space complexity O(n) and every node stores two m-

dimensional vectors, the space complexity of the index

tree is O(nm). As listed in Table 3, when the document

collection is fixed (n = 1000), the storage consumption

of the index tree is determined by the size of the

dictionary.

5.2.2 Trapdoor Generation

The generation of a trapdoor incurs a vector splitting

operation and two multiplications of a (m × m) matrix,

thus the time complexity is O(m 2
), as shown in Fig.

6(a). Typical search requests usually consist of just a few

keywords. Fig. 6(b) shows that the number of query

keywords has little influence on the overhead of trapdoor

generation when the dictionary size is fixed. Due to the

dimension extension, the time cost of EDMRS scheme is

a little higher than that of BDMRS scheme.

5.2.3 Search Efficiency

During the search process, if the relevance score at node

u is larger than the minimum relevance score in result

list RList, the cloud server examines the children of the

node; else it returns. Thus, lots of nodes are not accessed

during a real search. We denote the number of leaf nodes

that contain one or more keywords in the query as .

Generally, is larger than the number of required

documents k, but far less than the cardinality of the

document collection n. As a balanced binary tree, the

height of the index is maintained to be log n, and the

complexity of relevance score calculation is O(m). Thus,

Fig. 6. Time cost for trapdoor generation: (a) for

different sizes of dictionary with the fixed number of

query keywords, t = 10, and (b) for different numbers of

query keywords with the fixed dictionary, m = 4000.

the time complexity of search is O(m log n). Note that

the real search time is less than m log n. It is because 1)

many leaf nodes that contain the queried keywords are

not visited according to our search algorithm, and 2) the

accessing paths of some different leaf nodes share the

mutual traversed parts. In addition, the parallel execution

of search process can increase the efficiency a lot. We

test the search efficiency of the proposed scheme on a

server which supports 24 parallel threads. The search

performance is tested respectively by starting 1, 4, 8 and

16 threads. We compare the search efficiency of our

scheme with that of Sun et al. [27]. In the

implementation of Sun’s code, we divide 4000 keywords

into 50 levels. Thus, each level contains 80 keywords.

According to [27], the higher level the query keywords

reside, the higher the search efficiency is. In our

experiment, we choose ten keywords from the 1st level

(the highest level, the optimal case) for search efficiency

comparison. Fig. 7 shows that if the query keywords are

chosen from the 1st level, our scheme obtains almost the

same efficiency as [27] when we start 4 threads. Fig. 7

also shows that the search efficiency of our scheme

increases a lot when we increase the number of threads

from 1 to 4. However, when we continue to increase the

threads, the search efficiency is not increased

remarkably. Our search algorithm can be executed in

parallel to improve the search efficiency. But all the

start-ed threads will share one result list RList in

mutually exclusive manner. When we start too many

threads, the threads will spend a lot of time for waiting to

read and write the RList.

 425

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 4, Issue 6, June 2017

An intuitive method to handle this problem is to

construct multiple result lists. However, in our scheme, it

will not help to improve the search efficiency a lot. It is

because that we need to find k results for each result list

and time complexity for retrieving each result list is O(

m log n=l). In this case, the multiple threads will not

save much time, and selecting k results from the multiple

result list will further increase the time consumption. In

the Fig. 8, we show the time consumption when we start

multiple threads with multiple result lists. The

experimental results prove that our scheme will obtain

better search efficiency when we start multiple threads

with only one result list.

5.2.4 Update Efficiency

In order to update a leaf node, the data owner needs to

update log n nodes. Since it involves an encryption

operation for index vector at each node, which takes

O(m 2) time, the time complexity of update operation is

thus O(m 2 log n). We illustrate the time cost for the

deletion of a document. Fig. 9(a) shows that when the

size of dictionary is fixed, the deletion of a document

takes nearly logarithmic time with the size of document

collection. And Fig. 9(b) shows that the update time is

proportional to the size of dictionary when the document

collection is fixed. In addition, the space complexity of

each node is O(m). Thus, space complexity of the

communication package of updating a document is O(m

log n).

6 CONCLUSION AND FUTURE WORK

In this paper, a secure, efficient and dynamic search

scheme is proposed, which supports not only the

accurate multi-keyword ranked search but also the

dynamic deletion and insertion of documents. We

construct a special keyword balanced binary tree as the

index, and propose a ―Greedy Depth-first Search‖

algorithm to obtain better efficiency than linear search.

In addition, the parallel search process can be carried out

to further reduce the time cost. The security of the

scheme is protected against two threat models by using

the secure kNN algorithm. Experimental results

demonstrate the efficiency of our proposed scheme.

There are still many challenge problems in symmetric

SE schemes. In the proposed scheme, the data owner is

responsible for generating updating information and

sending them to the cloud server. Thus, the data owner

needs to store the unencrypted index tree and the

information that are necessary to recalculate the IDF

values. Such an active data owner may not be very

suitable for the cloud computing model. It could be a

meaningful but difficult future work to design a dynamic

searchable encryption scheme whose updating operation

can be completed by cloud server only, meanwhile

reserving the ability to support multi-keyword ranked

search. In addition, as the most of works about

searchable encryption, our scheme mainly considers the

challenge from the cloud server. Actually, there are

many secure challenges in a multi-user scheme. Firstly,

all the users usually keep the same secure key for

trapdoor generation in a symmetric SE scheme. In this

case, the revocation of the user is big challenge. If it is

needed to revoke a user in this scheme, we need to

rebuild the index and distribute the new secure keys to

all the authorized users. Secondly, symmetric SE

schemes usually assume that all the data users are

trustworthy. It is not practical and a dishonest data user

will lead to many secure problems. For exam-ple, a

dishonest data user may search the documents and

distribute the decrypted documents to the unauthorized

ones. Even more, a dishonest data user may distribute

his/her secure keys to the unauthorized ones. In the

future works, we will try to improve the SE scheme to

handle these challenge problems.

REFERENCES

[1] K. Ren, C. Wang, Q. Wang et al., ―Security

challenges for the public cloud,‖ IEEE Internet

Computing, vol. 16, no. 1, pp. 69–73, 2012.

[2] S. Kamara and K. Lauter, ―Cryptographic cloud

storage,‖ in Financial Cryptography and Data Security.

Springer, 2010, pp. 136– 149.

[3] C. Gentry, ―A fully homomorphic encryption

scheme,‖ Ph.D. dissertation, Stanford University, 2009.

[4] O. Goldreich and R. Ostrovsky, ―Software protection

and simula-tion on oblivious rams,‖ Journal of the ACM

(JACM), vol. 43, no. 3, pp. 431–473, 1996.

[5] D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G.

Persiano, ―Public key encryption with keyword search,‖

in Advances in Cryptology-Eurocrypt 2004. Springer,

2004, pp. 506–522.

[6] D. Boneh, E. Kushilevitz, R. Ostrovsky, and W. E.

Skeith III, ―Public key encryption that allows pir

queries,‖ in Advances in Cryptology-CRYPTO 2007.

Springer, 2007, pp. 50–67.

[7] D. X. Song, D. Wagner, and A. Perrig, ―Practical

techniques for searches on encrypted data,‖ in Security

and Privacy, 2000. S&P 2000. Proceedings. 2000 IEEE

Symposium on. IEEE, 2000, pp. 44– 55.

[8] E.-J. Goh et al., ―Secure indexes.‖ IACR Cryptology

ePrint Archive, vol. 2003, p. 216, 2003.

[9] Y.-C. Chang and M. Mitzenmacher, ―Privacy

preserving keyword searches on remote encrypted data,‖

in Proceedings of the Third

 426

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 4, Issue 6, June 2017

in-ternational conference on Applied Cryptography and

Network Security. Springer-Verlag, 2005, pp. 442–455.

[10] R. Curtmola, J. Garay, S. Kamara, and R.

Ostrovsky, ―Searchable symmetric encryption: improved

definitions and efficient con-structions,‖ in Proceedings

of the 13th ACM conference on Computer and

communications security. ACM, 2006, pp. 79–8

 427

