
ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol4, Issue 6, June 2017

241

Evaluating Machine Learning Algorithm on Cross-

Site Scripting (XSS) Security Vulnerabilities in

Web Applications

[1]
 Kishan Babu T D,

[2]
 Dr. Jayanna H S

[1, 2]
 Cyber Forensics and Information Security, Dept. of Information Science and Engineering

Siddaganga Institute of Technology, Tumakuru, Karnataka, India.
[1]

 tdkishanbabu@gmail.com,
[2]

 jayannahs@gmail.com

Abstract— In this paper, the prediction and analysis of cross-site scripting (XSS) security vulnerabilities in web application’s

source code is demonstrated. Cross-site scripting (XSS) is a security vulnerability that affects the web applications and it occurs

due to improper or lack of sanitization of user inputs. There is no single solution that can effectively mitigate XSS attacks. More

research is needed in the area of vulnerability removal from the source code of the applications before deployment. Security

inspection and testing require experts in security who think like an attacker and locating vulnerable code locations is a challenging

task. Alternatively, there are also vulnerability prediction approaches based on machine learning techniques which showed that

static code attributes such as code complexity measures are cheap and useful predictors. The main focus is on prediction of XSS

vulnerabilities and extracts the relevant features to classify vulnerable source code file from benign one. Attack prevention and

vulnerability detection are the areas focused in this study.

Index Terms— Cross-site scripting vulnerability, Input validation, Machine learning, Web application security.

I. INTRODUCTION

 In the present day lifestyle, people depend on the

web applications for their daily activities such as social

communication, medical services and banking transactions

etc., an illegal HTTP requests, cookies, session hijacking,

redirecting to phishing links and creating malicious

websites, installing ransomwares other illegal activities can

be performed due to the security vulnerabilities present in

these web based applications. Based on the statistical survey

reports [2] on these vulnerabilities we can say that 55%

include the vulnerable websites. Cross Site Scripting (XSS)

is considered as a major vulnerability in web application and

it has also been reported by Open Web Application Security

Projects (OWASP) and Common Vulnerability Exposure

(CWE) in

2013 [2]. This attack mainly occurs due to the flaws present

in the source code which allows the user’s input data to

exactly appear on the server’s output statement without any

validation. For predicting the XSS vulnerability in the web

application’s source code the method followed till now were

static and dynamic analysis techniques [1]. A set of

predefined static rules are used without executing in the

static analysis technique. Complex analysis techniques with

the execution of program are done in the dynamic technique

to give a much accurate results. Based on the research work

of [4] [5], we can state that the software metrics and static

code attributes are the basic factors for constructing a

machine learning model for analysis and prediction of

vulnerabilities in web applications.XSS Vulnerability can be

divided into three types: Persistent XSS, in this the

malicious script originates from the database of the web

application and this attack normally occurs in forums, blogs

and in social networking sites. Reflected XSS, in this the

malicious input originates due to the request of the victim

this normally happens due in error messages, alerts and

greetings. DOM-based XSS (Document Object Module), in

this the client-side browser stores the vulnerability but not

the server-side and Here invalid user inputs are used and the

DOM structure is obtained dynamically. In this paper, we

follow the procedures to initially extract the basic features

and then to extract the context features present in the source

code of the web application and then to build machine

learning based prediction model to identify the

vulnerabilities present in the given source code. This

approach follows with the several other works carried out

till the time which includes the use of context information

present in the source code to detect the vulnerabilities. The

implementation is carried out with a prototype which helps

in automatic extraction of the required features and to detect

and identify the safe files from the vulnerable ones.

The flow of this paper is as follows, Section II describes the

background and motivation involved which provided the

basic framework. Section III explains the earlier works

related to XSS. In Section IV the procedure to extract

required features is explained. In Section V requirements

like the data set being used, prior experimental setting, and

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol4, Issue 6, June 2017

242

how the performance is measured are discussed in detail. In

Sections VI the results obtained from the experiment are

explained. In the last section, conclusion of the paper is

stated and also the future enhancements which can be made

are discussed.

II. BACKGROUND AND MOTIVATION

This section explains about the XSS (Cross-site Scripting)

Security vulnerabilities and to analyse the drawbacks

present in the existing approaches.

.

A. Cross-Site Scripting (XSS) Vulnerabilities

This is a type of injection attacks mainly in the application

level and here the scripts from a malicious attacker are

injected into trusted web sites [1]. XSS attacks arise when

an attacker uses a web application to send malicious code,

mostly in the form of a browser side script. An attacker uses

XSS to send malicious scripts to the legitimate users. It

thinks that the script came from a trusted sender these

malicious scripts can read the cookies, tokens, or any other

credentials of the benign users.

Fig.1 Sequence of steps involved in performing a stored

XSS attack.

Fig. 1 represents the sequence of steps involved in

performing stored XSS attack. Attackers injects a malicious

script which will display an alert dialog box saying that the

database has been hacked, for this they make use of

comment fields, search fields or any other fields where the

can insert text easily. Once a benign user logs in with his

valid account, this alert message pops up and the same thing

will appear on the server side. Once this executes

successfully it will be stored into the database and will

reflect on to the page of all the valid users. In this way the

stored XSS attack can be performed.

B. Limitations of Vulnerability Detection Approaches

There are several methods to identify the Cross Site

Scripting vulnerability in source code of PHP web

applications. The existing static vulnerability detection

method focuses just on the static rules. They use the

standard PHP built-in sanitized functions (HTML special

characters and HTML entities etc.) [6]. The Fig. 2 explains a

sample PHP code which contains the vulnerability, in this

the user-input is referenced in the output-statement with

different context (e.g. HTML attribute, comment,

JavaScript, URL etc.).In the below sample code, in

statement 4 denotes the user input is assigned to a user

defined PHP variable “$user_input”. In statement 12, user

input is used to change the colour of the text. According to

the standards of the sanitized function, this statement is

having the vulnerability. Some of the other vulnerabilities

present in this code sample are, user input is referenced in

the body_anchor_NQ_Attr_Val, JavaScript block and

comment blocks are present in line number 10, 11 and 13

respectively. These require special context-sensitive filters

to mitigate the XSS Vulnerabilities. Several State_of

_the_art_techinques include, In paper [9], to identify the

HTML entities in XSS vulnerability they have used pattern

matching techniques, and the authors have concentrated on

only JAVA based web applications. In paper [10], the main

focus is given for the context-mismatched sanitisation and

inconsistent multiple sanitisation to identify the XSS

vulnerabilities.

Fig. 2 User-input referenced in different HTML contexts

in the PHP source code

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol4, Issue 6, June 2017

243

III. RELATED WORK

The prior vulnerability prediction methods to classify the

vulnerable files from the safe ones are discussed in this

section. The below Table-I shows different existing

approaches based on several standards i.e., application,

source code and machine-learning classifiers.

The author in the paper [5] focused on cohesion,

complexity, and coupling metrics to detect the weakness in

Mozilla Firefox browser. In the same way the author Shin et

al. in paper [4], has used code churn, developer activity

metrics and code complexity to segregate common

vulnerable files from the safe files. Being opposite to this,

Shar et al. [13], defended that simple code packages has

several XSS vulnerabilities. According to authors in [11],

the main source of XSS vulnerability is the use of invalid

inputs. Sanitization code, input and output were derived

from the dynamic and static analysis techniques. Machine

learning models were built using the sensitive statements.

Author Walden et al. [6], explains the text mining features

and software metrics. He noticed that this feature provides

significantly superior results in detecting XSS vulnerability.

In paper [1], the authors Mukesh Kumar Gupta et al.

focused on the text mining and software metrics to predict

XSS vulnerability. The proposed approach follows the

above mentioned techniques [1, 6] to predict the

vulnerabilities present in the PHP source codes.

Table-I Comparisons between the existing approaches

IV. PROPOSED METHOD

Initially, the user input context features in the

output-statement are extracted. Then, the basic features

which illustrate the characteristics of sanitization input and

output routines are extracted. Once extracting these two

features, tokenizing process is done using the PHP built-in

Zend engine’s lexical scanner. Thereafter, feature set is

constructed by combining basic and context features. At the

end, a number of machine learning algorithms are used to

construct several prediction models. The below Fig.3

illustrate the phases involved to categorize vulnerable PHP

source code from the safe ones.

A. Main Feature Extraction Algorithm

Algorithm 1 presents an organized procedure by which the

relevant features can be extracted from the PHP source

codes. This involves two major steps, namely; 1. Extraction

of basic code features. 2. Determine the user input context

present in the output statement. At first, PHP codes that are

present in the HTML block is extracted by using HTML

DOM Parser.

Fig.3 Proposed vulnerability prediction approach

The HTML blocks such as comment, script, style etc. are

the block contexts for the PHP codes. Then the extracted

HTML-Block contexts are tokenized using the PHP Zend

Engine Lexical Scanner. The feature set includes the tagged

tokens as the basic code features. Next, the PHP codes in

HTML tag are processed. The Context finder algorithm is

used to extract the user input context.

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol4, Issue 6, June 2017

244

Later, the Block-context tag is concatenated with the user

input context and we consider the tagged contents in the

feature set. The HTML comment statements are removed by

pre-processing the source code during the feature extraction

process. As these statements do not deliver any meaningful

information they are not used in building the prediction

model.

Algorithm 1: Feature vector preparation

B. Extracting the features from PHP source code

The features extracted are explained in this section below,

From the given source code in Fig. 4 the feature extraction

methodology involves extracting Script block-context,

HTML_ELEMENT and Comment. Later the tokenisation of

each and every extracted block is done, which helps to build

the feature set. The extracted features are represented in

Table-II.

Fig. 4 Sample PHP source code

Table II. Extracted Features

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol4, Issue 6, June 2017

245

.

V. EXPERIMENTAL SETTINGS AND DATASET

The publicly available GIT repository [15] as the dataset for

the experimentation, this comprises of the unnatural test

case generator. This has 4352 PHP sample unsafe codes

which includes all types of vulnerabilities.

 A. Experimental Setting:

For performance evaluation 10-fold cross validation

technique in WEKA machine learning tool is used. Training

and testing datasets are divided randomly into 90% and 10

% respectively so that to form a disjoint set. Finally the root

relative squared error rates are considered to measure the

performance of the system being proposed.

B. Performance measures

Here different machine learning models are built using the

WEKA tool [16]. Several performance measures like

accuracy, precision, recall and F-measures are used to

estimate the performance taking the vulnerable source files

as input

VI. RESULTS

This method uses the tagged tokens and also considers the

user input in the output statements. Here the XSS vulnerable

files can be detected very easily. Given the source code of

the PHP application, we can easily detect whether the source

code is safe or vulnerable. Different classifiers help us to

analyse the error rate which helps us to evaluate the

performance of this model. Classifiers like Bagging and

Logistic are used to analyse the error rates. The tainted

methods and sanitisation of the url helps to detect the

vulnerability.

The result from the Table III says that the Bagging

classifier’s performance is better when compared to the

other classifiers.

Classifiers Root relative squared error Relative absolute error

Logistic 94.3242% 39.2857%

Bagging 96.7842% 63.7302%

Table III. Error rates with different classifiers

VII. CONCLUSION

Vulnerability in web applications may cause theft of private

and important user information. Vulnerability detection is a

main task in securing the web applications before releasing.

Here in this paper, the method of predicting the Cross site

scripting (XSS) vulnerability in the PHP web application’s

source code is stated. Depending on the several factors like

the Tagged _Tokens, Tainted methods, Sanitisation

functions the vulnerability of XSS can be predicted. This

helps for an organisation to penetrate with the developed

web application and detect the vulnerabilities and then to

release it to the outside market. Hence this acts as a

penetration tool to detect and classify the vulnerable files

from the benign ones.

REFERENCES

[1] M. K. Gupta, M. C. Govil and G. Singh,

"Predicting Cross-Site Scripting (XSS) security

vulnerabilities in web applications," 2015 12th

International Joint Conference on Computer Science and

Software Engineering (JCSSE), Songkhla,

2015, pp. 162-167.

[2] WhiteHatSecurity. Web statistics report.

https://whitehatsec.com/categories/statistics-report, 2013.

Accessed: 2013-06-26.

[3] Isatou Hydara, Abu Bakar Md. Sultan, Hazura Zulzalil,

and Novia Admodisastro. Current state of research on cross-

site scripting a systematic literature review. Information and

Software Technology, 58(0):170 – 186, 2015.

[4] Yonghee Shin, A. Meneely, L. Williams, and J.A.

Osborne. Evaluating complexity, code churn, and developer

activity metrics as indicators of software vulnerabilities.

IEEE Transactions on Software Engineering, 37(6):772–

787, Nov 2011.

[5] Istehad Chowdhury and Mohammad Zulkernine. Using

complexity, coupling, and cohesion metrics as early

indicators of vulnerabilities. Journal of Systems

Architecture, 57(3):294 – 313,

2011. Special Issue on Security and Dependability

Assurance of

Software Architectures.

[6] J. Walden, J. Stuckman, and R. Scandariato. Predicting

vulnerable components: Software metrics vs text mining.

IEEE 25th International Symposium on Software Reliability

Engineering (ISSRE), pages 23–33, Nov 2014.

[7] Lwin Khin Shar and Hee Beng Kuan Tan. Predicting sql

injection and cross site scripting vulnerabilities through

mining input sanitization patterns. Information and Software

Technology,

55(10):1767 – 1780, 2013.

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol4, Issue 6, June 2017

246

[8] R. Scandariato, J. Walden, A. Hovsepyan, and W.

Joosen. Predicting vulnerable software components via text

mining. IEEE Transactions on Software Engineering,

40(10):993–1006, Oct 2014.

[9] Lwin Khin Shar and Hee Beng Kuan Tan. Automated

removal of cross site scripting vulnerabilities in web

applications. Information and Software Technology,

54:467–478, 2012.

[10] Prateek Saxena, David Molnar, and Benjamin Livshits.

Scriptgard: Automatic context-sensitive sanitization for

large-scale legacy web applications. Proceedings of the 18th

ACM Conference on Computer and Communications

Security, pages 601–614, 2011.

[11] Lwin Khin Shar, Hee Beng Kuan Tan, and Lionel C.

Briand. Mining sql injection and cross site scripting

vulnerabilities using hybrid program analysis. Proceedings

of the 2013 International Conference on Software

Engineering, pages 642–651, 2013.

[12] Aram Hovsepyan, Riccardo Scandariato, Wouter

Joosen, and James Walden. Software vulnerability

prediction using text analysis techniques. Proceedings of the

4th International Workshop on Security Measurements and

Metrics, pages 7–10, 2012.

[13] Lwin Khin Shar and Hee Beng Kuan Tan. Predicting

common web application vulnerabilities from input

validation and sanitization code patterns. Proceedings of the

27th IEEE/ACM International Conference on Automated

Software Engineering, pages 310–313, 2012.

[14] Ibéria Medeiros, Nuno F. Neves, and Miguel Correia.

Automatic detection and correction of web

application

vulnerabilities using data mining to predict false positives.

Proceedings of the 23rd International Conference on World

Wide Web, pages 63–74, 2014.

[15] Bertrand STIVALET Aurelien DELAITRE. Php

vulnerabilities test suite.

https://github.com/stivalet/PHP-Vulnerability-test-suite ,

2014. Accessed: 2014-07-13.

[16] Peter Reutemann Eibe Frank, Mark Hall and Len Trigg.

Weka: Data mining tool.

http://www.cs.waikato.ac.nz/ml/weka,

2013. Accessed: 2013-06-26.

