
ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 4, Issue 6, June 2017

 318

Verifying search result correctness of frequently

occured item set in Data mining for online

Customers
[1]

 Dr. B R Prasad Babu,
 [2]

 Saurabh Sharma,
[3]

 Haroon Ali,
[4]

Nandini B J,
[5]

Anusha S Prof. & Head
[1][2][3][4][5] Department of Computer Science and Engineering , RRIT, Chikkabanavara , Bangalore-90 ,

Abstract— Cloud computing is popularizing the computing paradigm in which data is outsourced to a third-party service

provider (server) for data mining. Outsourcing, however, raises a serious security issue: how can the client of weak

computational power verify that the server returned correct mining result? In this paper, we focus on the specific task of

frequent item set mining. We consider the server that is potentially untrusted and tries to escape from verification by using its

prior knowledge of the outsourced data. We propose efficient probabilistic and deterministic verification approaches to check

whether the server has returned correct and complete frequent item sets. Our probabilistic approach can catch incorrect results

with high probability, while our deterministic approach measures the result correctness with 100% certainty. We also design

efficient verification methods for both cases that the data and the mining setup are updated. We demonstrate the effectiveness

and efficiency of our methods using an extensive set of empirical results on real datasets.

Keywords: Cloud computing, data mining as a service (DMas), security, result integrity verification.

I. INTRODUCTION

The increasing ability to generate vast quantities of data

presents technical challenges for efficient data mining.

Outsourcing data mining computations to a third-party

service provider (server) offers a cost-effective option,

especially for data owners (clients) of limited resources.

This introduces the data-mining-as-a-service (DMaS)

paradigm. Cloud computing provides a natural solution

for the DMaS paradigm. A few active industry projects,

for example, Google’s Prediction APIs and Microsoft’s

Daytona project, provide cloud-based data mining as a

service to users.

 In this paper, we focus on frequent item set mining as the

outsourced data mining task. Informally, frequent item

sets refer to a set of data values (e.g., product items)

whose number of co-occurrences exceeds a given

threshold. Frequent item set mining has been proven

important in many applications such as market data

analysis, networking data study, and human gene

association study. Previous research has shown that

frequent item set mining can be computationally

intensive, due to the huge search space that is exponential

to data size as well as the possible explosive number of

discovered frequent item sets . Therefore, for those clients

of limited computational resources, outsourcing frequent

item set mining to computationally powerful service

providers (e.g., the cloud) is a natural solution.

 Although it is advantageous to achieve sophisticated

analysis on tremendous volumes of data in a cost effective

way, end users hesitate to place full trust in cloud

computing. This raises serious security concerns. One of

the main security issues is the integrity of the mining

result. There are many possible reasons for the service

provider to return incorrect answers . For instance, the

service provider would like to improve its revenue by

computing with less resources while charging for more.

Since sometimes the mining results are so critical that it is

imperative to rule out errors during the computation, it is

important to provide efficient mechanisms to verify the

result integrity of outsourced data mining computations.

In this paper, we focus on the problem of verifying

whether the server returned correct and complete frequent

itemsets. By correctness, we mean that all Itemsets

returned by the server are frequent. By completeness, we

mean that no frequent itemset is missing in the returned

result.

II. ALGORITHM

1. .APRIORI ALGORITHM:

Apriori uses a "bottom up" approach, where frequent

subsets are extended one item at a time (a step known as

candidate generation), and groups of candidates are tested

against the data. The algorithm terminates when no

further successful extensions are found.

The pseudo code for the algorithm is given below for a

transaction database {\displaystyle T} T, and a support

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 4, Issue 6, June 2017

 319

threshold of {\displaystyle \epsilon } \epsilon . Usual set

theoretic notation is employed, though note that

{\displaystyle T} T is a multiset. {\display style C_{k}}

C_{k} is the candidate set for level {\display style k} k.

At each step, the algorithm is assumed to generate the

candidate sets from the large item sets of the preceding

level, heeding the downward closure lemma. {\display

style count[c]} count[c] accesses a field of the data

structure that represents candidate set {\display style c} c,

which is initially assumed to be zero. Many details are

omitted below, usually the most important part of the

implementation is the data structure used for storing the

candidate sets, and counting their frequencies.

Ck: Candidate item set of size k

Lk : frequent item set of size k

L1 = {frequent items};

for (k = 1; Lk != ; k++) do begin

Ck+1 = candidates generated from Lk;

for each transaction t in database do

increment the count of all candidates in Ck+1 that are

contained in t

Lk+1 = candidates in Ck+1 with min_ support

end

return k Lk;

2. CLUSTERING ALGORITHM:

Clustering is a process of partitioning a set of data (or

objects) into a set of meaningful sub-classes, called

clusters.

Help users understand the natural grouping or structure in

a data set. Clustering: unsupervised classification: no

predefined classes.

Algorithmic steps for k-means clustering:

Let X = {x1,x2,x3,……..,xn} be the set of data points and

V = {v1,v2,…….,vc} be the set of centers.

1) Randomly select ‘c’ cluster centers.

2) Calculate the distance between each data point and

cluster centers.

3) Assign the data point to the cluster center whose

distance from the cluster center is minimum of all the

cluster centers..

4) Recalculate the new cluster center using: where, ‘ci’

represents the number of data points in ith cluster.

5) Recalculate the distance between each data point and

new obtained cluster centers.

6) If no data point was reassigned then stop, otherwise

repeat from step 3.

III. MODULE

Product Upload:

The admin wants to upload new product to the cloud, it

needs to verify the validity of the cloud and recover the

real secret key. We show the time for these two processes

Happened in different time periods. They only happen in

the time periods when the client needs to upload new

product to the cloud. Furthermore, the work for verifying

the correctness of the can fully be done by the cloud

.

Product Search:

We can consider the dishonest cloud server as a suspect,

the data user as a search data to the server .If the server

show the search relevant data. Then the user select and

buying the product. After continue the relevant product to

show the user side. If the user want buying the product

and complaint the irrelevant product. The product search

based on index based .The cloud provide the data based

on index terms. The relevant product specified for the

user frequently buying product of services..

Auditing:

Public auditing schemes mainly focus on the delegation of

auditing tasks to a third party auditor (TPA) so that the

overhead on clients can be offloaded as much as possible.

However, such models have not seriously considered the

fairness problem as they usually assume an honest owner

against an untrusted CSP. Since the TPA acts on behalf of

the owner, then to what extent could the CSP trust the

auditing result? What if the owner and TPA collude

together against an honest CSP for a financial. In this

sense, such models reduce the practicality and

applicability of auditing schemes. Tpa check the user

remarks of the product to be verify.Then the product to be

removed from the list based on number of user putting the

negative comments of the products.

A. Figures and Tables

TID Transaction

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 4, Issue 6, June 2017

 320

(a) Transaction dataset D

(b) Item-based Inverted index EI

Fig. 2: An example of the dataset and its inverted index

1) Authenticated Data Structure: Before sending the

dataset D to the server, the client constructs an

authenticated data structure. Before we discuss the details

of the authenticated data structure, we first discuss the

item-based inverted index. The authenticated data

structure will be constructed from the inverted index. In

particular, given a dataset D, its item-based inverted index

EI consists of a set of inverted lists fL1;L2; : : : ;Lmg,

where m is the number of unique items in D. Each

inverted list Li 2 EI corresponds to the item Ii in D, and

maintains the index of transactions that contains the item

Ii. As an example, consider the transaction dataset D

shown in Figure 2 (a), Figure 2 (b) shows its item-based

inverted index of D.

Now we are ready to discuss how to construct the

authenticated data structure. We use the Merkle hash tree

T of the inverted index as our authenticated data structure.

In particular, the client picks a random value s 2 Z which

is kept secret. Then, for each leaf lj of T that corresponds

to the j-th inverted list Lj in EI , the client constructs

acc(lj) = g , Q , x2Lj (s+x), where g is a generator of the

group G1 from an instance of bilinear pairing parameters.

Then the client applies a collision-resistant hash function

hash() recursively over the nodes of T . Each leaf lj of T

is assigned the value hj = hash(v1jj : : : jjvwjjacc(lj)),

where v1; : : : ; vw are the values in the j-th inverted list

Lj that lj corresponds to, while each internal node v with

children a and b is assigned to hv = hash(hajjhb). The root

of the tree is signed to produce signature sig(EI). The

client sends T to the server with D, and keeps sig(EI)

locally. The complexity of constructing a Merkle tree of

level d1= e levels and m leaves is O(m + H), where 2 (0;

1) is a user-specified constant, and H =Pm j=1 jlj j.

At this point, the client can find all frequent 1-itemsets

and infrequent 1-itemsets from the inverted index. It

maintains such information for later verification.

2) Verification Procedure: Before outsourcing the dataset

D to the server, the client constructs the item-based

inverted index EI of D, as well as the Merkle hash tree T

of EI . The client keeps the hash value of the root element

of T , and sends D and T to the server.

B. Architecture:

C. Probabilistic VS. Deterministic Approaches:

We ran experiments to compare the performance of our

probabilistic and deterministic approaches. Table III

shows the comparison result on S3 dataset of various

settings. We pick the error ratios of 1%, and vary the

probabilistic guarantee threshold from 90% to 100%

(probability =100% corresponds to our deterministic

approach). In general, the deterministic approach brings

higher overhead at the server side than the probabilistic

approach. However, this is the sacrifice that we have to

pay for higher result integrity guarantee. The probabilistic

approach fails as it cannot provide required probabilistic

correctness guarantee due to the data distribution. The

deterministic approach does not have such limit.

IV. CONCLUSION

In this paper, we present two integrity verification

approaches for outsourced frequent item set mining. The

probabilistic verification approach constructs evidence in

frequent item sets. In particular, we remove a small set of

items from the original dataset and insert a small set of

artificial transactions into the dataset to construct

evidence (in)frequent item sets. The deterministic

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 4, Issue 6, June 2017

 321

approaches requires the server to construct cryptographic

proofs of the mining result. The correctness and

completeness are measured against the proofs with 100%

certainty. Our experiments show the efficiency and

effectiveness of our approaches. An interesting direction

to explore is to extend the model to allow the client to

specify her verification needs in terms of budget besides

precision and recall threshold..

V. REFERENCES

[1] Rakesh Agrawal and Ramakrishnan Srikant. Fast

algorithms for mining association rules in large databases.

In Proceedings of the 20th International Conference on

Very Large Data Bases (VLDB), pages 487–499, 1994.

[2] Laszlo Babai, Lance Fortnow, Leonid A. Levin, and

Mario Szegedy. Checking computations in

polylogarithmic time. In STOC, pages 21–32, 1991.

[3] Ran Canetti, Ben Riva, and Guy N. Rothblum.

Verifiable computation with two or more clouds. In

Workshop on Cryptography and Security in Clouds, 2011.

[4] Kun-Ta Chuang, Jiun-Long Huang, and Ming-Syan

Chen. Power-law relationship and self-similarity in the

itemset support distribution: analysis and applications.

The VLDB Journal, 17:1121–1141, August 2008.

[5] Rosario Gennaro, Craig Gentry, and Bryan Parno.

Non-interactive verifiable computing: outsourcing

computation to untrusted workers. In CRYPTO, pages

465–482, 2010.

[6] Fosca Giannotti, Laks V. S. Lakshmanan, Anna

Monreale, Dino Pedreschi, and Wendy Hui Wang.

Privacy-preserving data mining from outsourced

databases. In Computers, Privacy and Data Protection,

pages 411–426. 2011.

[7] S. Goldwasser, S. Micali, and C. Rackoff. The

knowledge complexity of interactive proof systems.

SIAM Journal of Computing, 18:186–208, February

1989.

[8] Hakan Hacig¨um¨us¸, Bala Iyer, Chen Li, and Sharad

Mehrotra. Executing sql over encrypted data in the

database-service-provider

model. In SIGMOD, pages 216–227, 2002.

