
ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 4, Issue 6, June 2017

 329

A Data Centric Access Control Solution with Role

Based Expressiveness for Protecting User Data on

Cloud
[1]

 Nisha Ranjan Sah,
 [2]

 Tejashwini P,
[3]

 Veeresh S,
[4]

Yathish,
[5] Mrs. Prema.

[1][2][3][4] Students of Department of Computer science and Engineering , RRIT.
[5]

Asst Prof , Dept of Computer Science and Engineering ,RRIT

Abstract— Most current security solutions are based on perimeter security. However, Cloud computing breaks the organization

perimeters. When data resides in the Cloud, they reside outside the organizational bounds. This leads users to a loss of control

over their data and raises reasonable security concerns that slow down the adoption of Cloud computing. Is the Cloud service

provider accessing the data? Is it legitimately applying the access control policy defined by the user? This paper presents a data-

centric access control solution with enriched role-based expressiveness in which security is focused on protecting user data

regardless the Cloud service provider that holds it. Novel identity-based and proxy re-encryption techniques are used to protect

the authorization model. Data is encrypted and authorization rules are cryptographically protected to preserve user data

against the service provider access or misbehavior. The authorization model provides high expressiveness with role hierarchy

and resource hierarchy support. The solution takes advantage of the logic formalism provided by Semantic Web technologies,

which enables advanced rule management like semantic conflict detection. A proof of concept implementation has been

developed and a working prototypical deployment of the proposal has been integrated within Google services

Keywords: Data-centric security, Cloud computing, Role-based access control, Authorization.

I. INTRODUCTION

SECURITY is one of the main user concerns for the

adoption of Cloud computing. Moving data to the Cloud

usually implies relying on the Cloud Service Provider

(CSP) for data protection. Although this is usually

managed based on legal or Service Level Agreements

(SLA), the CSP could potentially access the data or even

provide it to third parties. Moreover, one should trust the

CSP to legitimately apply the access control rules defined

by the data owner for other users. The problem becomes

even more complex in Inter cloud scenarios where data

may flow from one CSP to another. Users may loss

control on their data. Even the trust on the federated CSPs

is outside the control of the data owner. This situation

leads to rethink about data security approaches and to

move to a data-centric approach where data are self-

protected whenever they reside.

This paper presents SecRBAC, a data-centric access

control solution for self-protected data that can run in un

trusted CSPs and provides extended Role-Based Access

Control expressiveness. The proposed authorization

solution provides a rule-based approach following the

RBAC scheme, where roles are used to ease the

management of access to the resources. This approach can

help to control and manage security and to deal with the

complexity of managing access control in Cloud

computing. Role and resource hierarchies are supported

by the authorization model, providing more

expressiveness to the rules by enabling the definition of

simple but powerful rules that apply to several users and

resources thanks to privilege propagation through roles

and hierarchies. Policy rule specifications are based on

Semantic Web technologies that enable enriched rule

definitions and advanced policy management features like

conflict detection. A data-centric approach is used for data

self-protection, where novel cryptographic techniques

such as Proxy Re-Encryption (PRE) [10], Identity Based

Encryption (IBE) [11] and Identity-Based Proxy Re

Encryption (IBPRE) [12] are used. techniques are used to

protect both the data and the authorization model. Each

piece of data is ciphered with its own encryption key

linked to the authorization model and rules are

cryptographically protected to preserve data against the

service provider access or misbehavior when evaluating

the rules.

II. RELATED WORK

Different approaches can be found in the literature to

retain control over authorization in Cloud computing. In

[13] authors propose to keep the authorization decisions

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 4, Issue 6, June 2017

 330

taken by the data owner. The access model is not

published to the Cloud but kept secure on the data owner

premises. However, in this approach the CSP becomes a

mere storage system and the data owner should be online

to process access requests from users. Another approach

from [14] deals with this issue by enabling a plug-in

mechanism in the CSP that allows data owners to deploy

their own security modules. This permits to control the

authorization mechanisms used within a CSP. However, it

does not establish how the authorization model should be

protected, so the CSP could potentially infer information

and access the data. Moreover, this approach does not

cover Inter-cloud scenarios, since the plug-in module

should be deployed to different CSPs. Additionally, these

approaches do not protect data with encryption methods.

In the proposed SecRBAC solution, data encryption is

used to prevent the CSP to access the data or to release it

bypassing the authorization mechanism.

From an authorization point of view, this can be seen

as a simple rule where only the user with privilege to

access the data will be able to decrypt it (i.e. the one

owning the key). However, no access control

expressiveness is provided by this approach. Only that

simple rule can be enforced and just one single rule can

apply to each data package. Thus, multiple encrypted

copies should be created in order to deliver the same data

to different receivers. To cope with these issues,

SecRBAC follows a data-centric approach that is able to

cryptographically protect the data while providing access

control capabilities.

There are two main approaches for ABE depending on

where the access structure resides: Key-Policy ABE (KP-

ABE) [5] and Cipher text-Policy ABE (CP-ABE) [3]. In

KP-ABE the access structure or policy is defined within

the private keys of users. This allows to encrypt data

labeled with attributes and then control the access to such

data by delivering the appropriate keys to users. However,

in this case the policy is really defined by the key issuer

instead of the encryption of data, i.e. the data owner. So,

the data owner should trust the key issues for this to

properly generate an adequate access policy. To solve this

issue, CP-ABE proposes to include the access structure

within the cipher text, which is under control of the data

owner. Then, the key issuer just asserts the attributes of

users by including them in private keys. However, either

in KP-ABE or CP-ABE, the expressiveness of the access

control policy is limited to combinations of AND or OR-

ed attributes. The data-centric solution presented in this

paper goes a step forward in terms of expressiveness,

providing a rule-based approach following the RBAC

scheme that is not tied to the limitations of current ABE

approaches.

Different proposals have been also developed to try to

alleviate ABE expressiveness limitations. Authors in [15]

propose a solution based on CP-ABE with support for sets

of attributes called Cipher text Policy Attribute Set Based

Encryption (CP-ASBE). Attributes are organized in a

recursive set structure and access policies can be defined

upon a single set or combining attributes from multiple

sets. This enables the definition of compound attributes

and specification of policies that affect the attributes of a

set. An approach named Hierarchical Attribute-based

Encryption is presented in [16]. It uses a hierarchical

generation of keys to achieve fine-grain access control,

scalability and delegation. However, this approach

implies that attributes should be managed by the same

root domain authority. In [17], authors extend CP-ASBE

with a hierarchical structure to users in order to improve

scalability and flexibility. This approach provides a

hierarchical solution for users within a domain, which is

achieved by a hierarchical key structure. Another

approach is Flexible and Efficient Access Control Scheme

(FEACS) [2]. It is based on KP-ABE and provides an

access control structure represented by a formula

involving AND, OR and NOT, enabling more

expressiveness for KP-ABE.

The aforementioned ABE-based solutions proposed

for solving access control in Cloud computing are based

on the Attribute-based Access Control (ABAC) model. As

commented in Section 1, both ABAC and RBAC models

have their own advantages and disadvantages [7] [9]. On

one hand, RBAC may require the definition of a large

number of roles for fine-grain authorization (role

explosion problem in RBAC). ABAC is also easier to set

up without need to make an effort on role analysis as

needed for RBAC. On another hand, ABAC may result in

a large number of rules since a system with n attributes

would have up to 2
n

possible rule combinations (rule

explosion problem in ABAC). ABAC separates

authorization rules from user attributes, making it difficult

to determine permissions available to a particular user,

while RBAC is deterministic and user privileges can be

easily determined by the data owner.

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 4, Issue 6, June 2017

 331

Moreover, the cryptographic operations used in ABE

approaches usually restrict the level of expressiveness

provided by the access control rules. Concretely, role

hierarchy and object hierarchy capabilities provided by

SecRBAC cannot be achieved by current ABE schemes.

Moreover, private keys in ABE should contain the

attributes of the user, which tights the keys to permissions

in the access control policy. In SecRBAC, user keys only

identify their holders and they are not tied to the

authorization model. That is, user privileges are

completely independent of their private key. Finally, no

user-centric approach for authorization rules is provided

by current ABE solutions. In SecRBAC, a single access

policy defined by the data owner is able to protect more

than one piece of data, resulting in a user-centric approach

for rule management. Additionally, the proposed solution

provides support for the ontological representation of the

authorization model, providing additional reasoning

mechanisms to cope with issues such as detection of

conflicts between different authorization rules.

III. PROXY RE-ENCRYPTION AND IDENTITY-

BASED ENCRYPTION

In an Identity-Based Proxy Re-Encryption (IBPRE)

approach is proposed. It combines both IBE and PRE,

allowing a proxy to translate a cipher text encrypted under

a user’s identity into another cipher text under another

user’s identity. In this approach, a Master Secret Key

(MSK) is used to generate user secret keys from their

identities. These secret keys are equivalent to private keys

in IBE. No public keys are needed, since identities are

directly used in the cryptographic operations. With this

approach, a user uα can encrypt a piece of data m using his

identity idα to obtain a cipher textcidα encrypted under idα.

A re-encryption key rkα→β can be generated to re-encrypt

from idα to idβ. Then, a proxy can use rkα→β to obtain

another cipher textcidβ under the identity of another user

uβ. This can then use his own secret key skβ to obtain the

plain piece of data m. As for IBE approaches, the MSK

should be kept private and users can obtain their secret

key from the PKG.

This IBPRE scheme is the one selected for the

authorization solution proposed in this paper. It has been

selected because it combines both PRE and IBE. It fulfills

the three aforementioned requirements of proxy re-

encryption and supports IBE, what allows to use the

identities of the authorization elements for cryptographic

operations, avoiding the need to generate and manage a

key pair for each element.

As mentioned before, the proposed solution is not tied

to any PRE scheme or implementation. For the purpose of

providing a comprehensive and feasible solution, the rest

of this paper is based on the IBPRE approach and

notation. However, the proposal could be applied to use

other Proxy Re-Encryption schemes that fulfill the three

aforementioned required features. This includes current or

future schemes that could improve performance or

security. It could be even a pure PRE scheme without

combination with IBE, although that could imply the

generation and management of extra key pairs. Moreover,

some functionality provided by this solution might be lost,

like compatibility with PKI, which is supported by IBPRE

and avoids the usage of a PKG.

The following set of functions is provided by IBPRE.

It constitutes the cryptographic primitives for the

proposal:

setup(p,k) → (p,msk) (1)

keygen(p,msk,idα) → skα (2)

encrypt(p,idα,m) → cα (3)

rkgen(p,skα,idα,idβ) → rkα→β (4)

reencrypt(p,rkα→β,cα) → cβ (5)

decrypt(p,skα,cα) → m (6)

IV. AUTHORIZATION MODEL WITH

ENRICHED ROLEBASED EXPRESSIVENESS

The management of access control and security

could become a difficult and error prone task in

distributed systems like Cloud computing. Authorization

models providing high expressiveness can help to control

and manage security and to deal with this complexity.

They can aid administrators with this task by enabling the

specification of high-level access control rules that are

automatically interpreted by system for this to behave as

defined by the administrator. Role-Based Access Control

(RBAC) is an authorization scheme supported by most of

the current authorization solutions. In this approach, the

authorization model makes use of the Role concept to

assign privileges to subjects. A set of subjects can be

assigned to one or more roles which, in turn, can be

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 4, Issue 6, June 2017

 332

associated to a set of privileges. This provides more

expressiveness to the authorization model, making it

easier to manage privilege assignments through roles.

V. SELF-PROTECTED AUTHORIZATION

MODEL FOR DATA-CENTRIC SECURITY

The authorization model presented in Section 4

determines the privileges that are granted to subjects. It

should be evaluated by the Cloud Service Provider upon

an access request in order to decide whether such a

request is permitted or not. However, if data is not

cryptographically protected then the CSP could

potentially access the data for its own benefit. Moreover,

the data owner should trust the CSP to legitimately

evaluate the model and enforce the authorization decision.

If the authorization rules are not cryptographically

protected then they can be overridden by the CSP, making

it able to access the data or to release it to any third party.

A self-protected authorization model is needed to achieve

a data-centric mechanism that technically guarantees the

CSP cannot access or disclose data to unauthorized

parties.

This section describes a protected authorization model

for a data-centric solution. A self-protection mechanism is

provided to assure data can only be accessed by

authorized subjects according to the data owner rules. It is

achieved by the application of the cryptographic

techniques described in Section 3. Then, a representation

and evaluation mechanism based on Semantic Web

technologies is also proposed.

VI. DATA-CENTRIC SOLUTION FOR DATA

PROTECTION IN THE CLOUD

In the protected authorization model specified in

Section 5.1, it should be observed that data is not

encrypted with the data owner identity, but with the

object’s own identity (e.g. ido1). This follows a data-

centric approach for data protection, in which data is

encrypted with its own key under the cryptographic

scheme. If a pure PRE scheme is used, the object would

be also encrypted using its own key pair. On another

hand, a user-centric approach is used for the authorization

rules, where a unified access control policy is defined by

the data owner for its data. This allows to share common

definitions and to greatly simplify access control

management, getting the most from role hierarchy and

resource hierarchy capabilities.

An architecture is also proposed for the deployment

within a CSPs. This architecture takes into consideration

the different elements that should be deployed in order to

give an overview of how access to protected data is done

in this approach. Fig. 2 depicts the proposed architecture.

Fig. 2: Architecture for deployment in a CSP

Data objects are encrypted before uploading them to

the Cloud in order to prevent the CSP to access them.

This is done by data owners by using the encrypt()

function (3). According to Def. 8, data should be

encrypted using the identity ido1 of the object being

uploaded o1. A digital envelope approach can be applied

to protect data objects instead of direct encryption. This

would enhance cryptographic operations like re-

encryptions for large data objects. This approach consists

in using a symmetric encryption algorithm (e.g. AES) to

protect the data object itself. The encryption of data is

done with a random symmetric key generated for the

purpose of a single encryption. Then, this key is encrypted

with the encrypt() function. With this procedure,

potentially big objects (e.g. large documents) are

encrypted using symmetric cryptography, whose

algorithms are more efficient. In turn, more costly

operations are only applied to the keys used for the

symmetric encryption, which are usually small pieces of

data of some bytes length. They make use of a database to

store the protected packages uploaded by data owners.

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 4, Issue 6, June 2017

 333

Thus, it contains the information of these packages, i.e.

encrypted data objects, authorization rules and re-

encryption keys. It can also contain the parameters p to

initialize the cryptographic functions. The information can

be kept in data packages as provided by the data owner or

it could be stored on any other format that facilitates data

processing to the CSP.

An authorization service (AuthzService) acts as entry

point to the PDP for Cloud services allowing to query it

for authorization decisions. This module takes decisions

upon a request from a user s1 to access to a piece of data

o1 managed by the service. These decisions usually return

an access granted or denied statement. For granted

accesses, the response also contains the re-encryption

chain that should be applied, together with the needed re-

encryption keys. This information allows to re-encrypt

from co1 as provided by the data owner to cs1, which can

be decrypted by the requesting user. The service passes

this information together with co1 to the Proxy Re-

encryptor for this to perform the re-encryption operations.

It results in cs1, which is sent to the requesting user.

Making use of its own secret key sks1 the user can decrypt

the data with the decrypt() function (6). Note that during

this process, the CSP is not able to access the data since it

only applies a set of reencrypt() functions which do not

disclose any information about the data being processed.

6.1 Key management and PKI compatibility.

 IBPRE does not use public and private key pairs in

cryptographic operations. Instead, a Master Secret Key

(MSK) is used in combination with identities. This MSK

is generated during the setup phase and it should be kept

private. On another hand, users accessing the data need

their own Secret Key (SK) to compute the decrypt()

function. Secret keys are generated based on the user

identity and the MSK. There are several approaches for

the distribution of these keys to users. In a straightforward

approach, SKs can be generated internally by the data

owner to keep the MSK protected. However, this will lead

to the need of distributing SKs securely to each user.

To this end, IBE schemes -including IBPRE- define a

Private Key Generator (PKG) for the generation and

distribution of SKs. This entity should be trusted by the

data owner because it holds the MSK to generate the SKs.

It can be deployed as a service by the data owner in its

own premises. This would allow to keep the MSK under

control, although it would result in a critical service that

should be protected. Another choice would be a third

As an alternative, an hybrid proxy re-encryption

approach can be applied. This concept was introduced in

[23] and it consists in creating a bridge between IBE and

Public Key based Encryption (PKE). The IBPRE scheme

used in this proposal supports this feature. Thus, it can be

used to manage user keys by using well known and

standard technologies like a Public Key Infrastructure

(PKI). This feature implies the inclusion of two new

functions:

 (32)

 (33)

The functions are similar to the original ones (4) and

(6), but including some modifications. Details about the

modifications that need to be done to these functions can

be found in [12]. These functions take public and private

keys pubβ and privα to apply PKE instead of identity idβ

and Secret Key skα used for IBE.

The application of these functions makes the re-

encryption scheme to lose the Multi-use feature, which is

required That is, once a Re-encryption Key generated by

rkgen pke() is used to re-encrypt, no further re-

encryptions can be done to that encrypted object.

However, for the purposes of authorization in this paper,

this kind of re-encryption only needs to be done to re-

encrypt the protected object under the requesting user

public key. And this is done in the last reencryption,

which is the one that results in the data being encrypted

under the user public key. Thus, re-encryption keys

generated with the original rkgen() function should still be

applied for re-encryptions along the authorization path,

except the one affecting the user, which is the last re

encryption.

In practical terms, using the hybrid approach only

implies that re-encryption keys affecting subjects si ∈ S

should be generated with the rkgen pke() function. That is,

when the data owner defines a rule to grant a privilege or

assigns a role to a given subject, the corresponding re-

encryption key should be generated with (32). Otherwise,

re-encryption keys should be generated with the original

rkgen() function for the rest of the authorization elements.

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 4, Issue 6, June 2017

 334

It is worth mentioning that the two approaches can be

combined. Some users can use PKE while others can still

use IBE. The only thing that needs to be done by the data

owner is to use the proper function (rkgen pke() or

rkgen()) when generating the corresponding re-encryption

keys.

6.2 Security considerations.

SecRBAC provides a self-protected mechanism to

upload data to the Cloud assuring that no unauthorized

party is able to access the data, including the CSP. In this

case, the CSP is considered a curious adversary that

would be willing to a) try to disclose the information to

use it on its own benefit and b) try to neglect the

authorization rules in order to release the information to

an unauthorized third party. However, it is assumed that

the CSP would still behave honestly according to the

agreed service by releasing the data to the requesting

users if they are authorized. That is, the CSP could

intentionally provide corrupted ciphertexts, making users

unable to access the data.

However, this would result in a bad service

perceived by the users, making them to avoid using that

CSP. It should be noticed that SecRBAC does not hamper

the ability to provide data to the CSP if the data owner

wants to do so. In this context, the CSP is considered as

any other user. It could access to some pieces of data (e.g.

to provide some service) only if the data owner has

defined the corresponding rules in the authorization

model. The solution allows the release of information, but

enabling the data owner to keep control over its data.

VII. IMPLEMENTATION AND PERFORMANCE

A prototypical implementation has been developed

to demonstrate the feasibility of the proposal. It has been

integrated in Google Cloud services to provide security to

documents in Google Drive. Since the core of Google

Services cannot be modified, integration has been done by

developing a Web application running on Google App

Engine. This application is registered as a Google Drive

application that integrates in Google Drive user interface.

The Web application contains the modules depicted

in Fig. 2. The authorization model has been represented as

described in Section 5.2 using Semantic Web

technologies. So, the Evaluator in this implementation

consists on an ontology reasoner. The Apache Jena

framework has been used to manage the ontology and to

perform reasoning. The AuthzService also makes use of

this library to process the output of the reasoner and

retrieve the authorization chain.

An implementation of the IBPRE scheme has been

developed using elliptic curve cryptography. The Java

PairingBased Cryptography Library (JPBC) and the

Bouncy Castle Crypto APIs. The implementation supports

both PKG and PKI for key management, corresponding to

the two approaches described in Section 6.1. It also allows

the data owner to directly generate and store user keys in

case he wants to distribute them by other means. When

generating a re encryption key related to a privilege or

role assignment, the application asks the data owner to

choose between an IBE or PKE key for that user. In case

of IBE, the key will be generated automatically based on

the user identity, otherwise it will ask for the public key

of the user.

An analysis has been carried out based on this

implementation to test the feasibility of the proposal in

terms of performance. Tests have been done with an Intel

i5 CPU at 2.7 GHz and 6 GB of RAM. A first set of tests

consisted on measuring execution times for the

cryptographic functions exposed in Section 3. These have

been done by varying different parameters in order to

observe how these affect the execution times. Concretely,

the following variations have been done: (1) number of

re-encryptions, (2) length of identities and (3) length of

encrypted data. Then, another set of tests have been done

to measure the time needed to evaluate the authorization

model by using the on topology based approach described

In order to obtain statistics significant results,

operations have been performed in sets of 100 executions,

whose average is used as result value. Each execution

performs the following steps. First, the setup() function

(1) is executed to initialize the cryptographic scheme.

Then a piece of data m is encrypted under a randomly

generated identity id1 with the encrypt() function (3) to

obtain a cipher text c1. The corresponding Secret Key sk1

is generated with the keygen () function (2). Then, another

random identity id2 is generated and a re-encryption key

rk1→2 is generated with the rkgen () function (4). This is

used to re-encrypt the c1 with the reencrypt () function (5).

These three last steps are repeated several times, resulting

in a cipher text cn under identity idn after n re-encryptions.

Finally, the decrypt() function (6) is used to decrypt cn and

obtain the plain data m. The length of the plain data m, the

length of identities idi and the number of re-encryptions

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 4, Issue 6, June 2017

 335

may vary depending on the test. Several tests have been

done by changing one of these parameters to test the

functions under different circumstances. When a

parameter do not change in a test, default values are 512

bytes for data length, 32 bytes for identity lengths and 100

for the number of re-encryptions.

In a PRE scheme, some operations could be affected

by the number of re-encryptions, while others may be

independent. A first test has been done by varying the

number of re-encryptions from 1 to 100 by incrementing

in 10 reencryptions for each execution set. Fig. 3 shows

the results for this test. The encrypt() time is not shown

because it is the same as the keygen() time and their lines

are overlapped in the graphic. Times for setup() and

decrypt() are shown in a separate graphic because they

present higher values and showing them with the rest of

functions would distort the Y axis scale. As can be

observed, setup(), keygen(), encrypt(), rkgen() and

reencrypt() remain constant. This is because these

operations do not process the re-encrypted ciphertext. The

first four functions do not have cα as parameter, so they

are agnostic to the number of re-encryptions done to the

ciphertext. In turn, reencrypt() takes this parameter, but

operations within this function only process the last

encrypted data, independently of the number of re-

encryptions previously done to cα. On another hand,

decrypt() increases with the number of re-encryptions.

This is because re-encryptions are applied one over

another in the ciphertext and decrypt() has to undo these

re-encryptions.

It is worth mentioning that the number of re-

encryptions depends on the expressiveness used by the

data owner when defining the authorization rules. Re-

encryptions for an access request can be observed in (21).

At least one re-encryption should be done. This is the case

when an access grant in the binary relation Ga is directly

granting the requesting user access to the requested

object. If roles are used, then at least two re-encryptions

should be done. The one for the access grant and another

one for the subject role assignment in D. Then, if

hierarchical expressiveness is used, several re-encryptions

could be needed for the parent role and parent-object

assignments in E and F, respectively. Thus, the number of

re-encryptions would depend on the hierarchical levels

that are defined between the role of the requesting user

and the granted role plus the levels between the requested

and the granted object. It should be noticed that this does

not mean the number of roles or objects managed by the

model, but only the levels in their hierarchies. As can be

observed in (21), the number of re-encryptions depends

on the number of role and object levels between the

subject s1 and the object o1. The test has been done up to

100 re-encryptions in order to stress the system,

considering 100 levels in role and object hierarchies from

s1 to o1. However, in practical terms a number of 10 levels

(20 at most) would be enough for a realistic scenario. For

this number of re-encryptions, decrypt() remains under

acceptable execution times as shown in Fig. 3.

VIII. CONCLUSION

A data-centric authorization solution has been

proposed for the secure protection of data in the Cloud.

SecRBAC allows managing authorization following a

rule-based approach and provides enriched role-based

expressiveness including role and object hierarchies.

Access control computations are delegated to the CSP,

being this not only unable to access the data, but also

unable to release it to unauthorized parties. Advanced

cryptographic techniques have been applied to protect the

authorization model. A re-encryption key complement

each authorization rule as cryptographic token to protect

data against CSP misbehavior.

Future lines of research include the analysis of novel

cryptographic techniques that could enable the secure

modification and deletion of data in the Cloud. This

would allow to extend the privileges of the authorization

model with more actions like modify and delete. Another

interesting point is the obfuscation of the authorization

model for privacy reasons. Although the usage of

pseudonyms is proposed, but more advanced obfuscation

techniques can be researched to achieve a higher level of

privacy.

REFERENCES

[1] Cloud Security Alliance, “Security guidance for
critical areas of focus in cloud computing v3.0,”
CSA, Tech. Rep., 2003.

[2] Y. Zhang, J. Chen, R. Du, L. Deng, Y. Xiang, and Q.
Zhou, “Feacs: A flexible and efficient access control
scheme for cloud computing,” in Trust, Security and
Privacy in Computing and Communications, 2014

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 4, Issue 6, June 2017

 336

IEEE 13th International Conference on, Sept 2014,
pp. 310–319.

[3] B. Waters, “Ciphertext-policy attribute-based

encryption: An expressive, efficient, and provably
secure realization,” in Public Key Cryptography -
PKC 2011, 2011, vol. 6571, pp. 53–70.

[4] B. B and V. P, “Extensive survey on usage of
attribute based encryption in cloud,” Journal of
Emerging Technologies in Web Intelligence, vol. 6,
no. 3, 2014.

[5] V. Goyal, O. Pandey, A. Sahai, and B. Waters,
“Attribute-based encryption for fine-grained access
control of encrypted data,” in Proceedings of the 13th
ACM Conference on Computer and Communications
Security, ser. CCS ’06, New York, NY, USA, 2006,
pp. 89–98.

[6] InterNational Committee for Information Technology
Standards, “INCITS 494-2012 - information
technology - role based access control - policy
enhanced,” INCITS, Standard, Jul. 2012.

[7] E. Coyne and T. R. Weil, “Abac and rbac: Scalable,
flexible, and auditable access management,” IT
Professional, vol. 15, no. 3, pp. 14–16, 2013.

[8] Empower ID, “Best practices in enterprise
authorization: The RBAC/ABAC hybrid approach,”
Empower ID, White paper, 2013.

[9] D. R. Kuhn, E. J. Coyne, and T. R. Weil, “Adding

attributes to rolebased access control,” Computer,
vol. 43, no. 6, pp. 79–81, 2010.

[10] G. Ateniese, K. Fu, M. Green, and S. Hohenberger,

“Improved Proxy Re-encryption schemes with
applications to secure distributed storage,” ACM
Transactions on Information and System Security,
vol. 9, no. 1, pp. 1–30, 2006.

[11] F. Wang, Z. Liu, and C. Wang, “Full secure identity-
based encryption scheme with short public key size
over lattices in the standard model,” Intl. Journal of
Computer Mathematics, pp. 1–10, 2015.

[12] M. Green and G. Ateniese, “Identity-based proxy re-

encryption,” in Proceedings of the 5th International

Conference on Applied Cryptography and Network
Security, ser. ACNS ’07. Berlin, Heidelberg:
Springer-Verlag, 2007, pp. 288–306.

[13] A. Lawall, D. Reichelt, and T. Schaller, “Resource
management and authorization for cloud services,” in
Proceedings of the 7th International Conference on
Subject-Oriented Business Process Management, ser.
S-BPM ONE ’15, New York, NY, USA, 2015, pp.
18:1–18:8.

[14] D. Y. Chang, M. Benantar, J. Y.-c. Chang, and V.

Venkataramappa, “Authentication and authorization
methods for cloud computing platform security,” Jan.
1 2015, uS Patent 20,150,007,274.

[15] R. Bobba, H. Khurana, and M. Prabhakaran,
“Attribute-sets: A practically motivated enhancement
to attribute-based encryption,” in Computer Security -
ESORICS 2009. Springer Berlin Heidelberg, 2009,
vol. 5789, pp. 587–604.

[16] G. Wang, Q. Liu, and J. Wu, “Hierarchical attribute-

based encryption for fine-grained access control in
cloud storage services,” in Proceedings of the 17th
ACM Conference on Computer and Communications
Security, ser. CCS ’10, New York, NY, USA, 2010,
pp. 735–737.

[17] J. Liu, Z. Wan, and M. Gu, “Hierarchical attribute-set
based encryption for scalable, flexible and fine-
grained access control in cloud computing,” in
Information Security Practice and Experience.
Springer Berlin Heidelberg, 2011, vol. 6672, pp. 98–
107.

[18] W3C OWL Working Group, “OWL 2 Web Ontology
Language: Document overview (second edition),”
World Wide Web Consortium (W3C), W3C
Recommendation, Dec. 2012.

[19] J. M. A. Calero, J. M. M. Perez, J. B. Bernabe, F. J.
G. Clemente, G. M. Perez, and A. F. G. Skarmeta,
“Detection of semantic conflicts in ontology and rule-
based information systems,” Data & Knowledge
Engineering, vol. 69, no. 11, pp. 1117 – 1137, 2010.

