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Abstract— Linear Discriminant Analysis (LDA) is most commonly used as dimensionality reduction technique in the pre-

processing step for pattern-classification and machine learning applications. The goal is to project a dataset onto a lower-

dimensional space with good class-separability in order avoid over fitting (―curse of dimensionality‖) and also reduce 

computational costs. Ronald A. Fisher formulated the Linear Discriminant in 1936, and it also has some practical uses as classifier. 

The original Linear discriminant was described for a 2-class problem, and it was then later generalized as ―multi-class Linear 

Discriminant Analysis‖ or ―Multiple Discriminant Analysis‖ by C. R. Rao in 1948 The general LDA approach is very similar to a 

Principal Component Analysis (for more information about the PCA, see the previous article, but in addition to finding the 

component axes that maximize the variance of our data (PCA), we are additionally interested in the axes that maximize the 

separation between multiple classes (LDA). So, in a nutshell, often the goal of an LDA is to project a feature space (a dataset n-

dimensional samples) onto a smaller subspace kk (where k≤n−1k≤n−1) while maintaining the class-discriminatory information. In 

general, dimensionality reduction does not only help reducing computational costs for a given classification task, but it can also be 

helpful to avoid over fitting by minimizing the error in parameter estimation (―curse of dimensionality‖). 
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Linear Discriminant Analysis (LDA) is most commonly 

used as dimensionality reduction technique in the pre-

processing step for pattern-classification and machine 

learning applications. The goal is to project a dataset onto a 

lower-dimensional space with good class-separability in 

order avoid over fitting (“curse of dimensionality”) and 

also reduce computational costs. 

Ronald A. Fisher formulated the Linear Discriminant in 

1936, and it also has some practical uses as classifier. The 

original Linear discriminant was described for a 2-class 

problem, and it was then later generalized as “multi-class 

Linear Discriminant Analysis” or “Multiple Discriminant 

Analysis” by C. R. Rao in 1948 The general LDA 

approach is very similar to a Principal Component 

Analysis (for more information about the PCA, see the 

previous article, but in addition to finding the component 

axes that maximize the variance of our data (PCA), we are 

additionally interested in the axes that maximize the 

separation between multiple classes (LDA). 

So, in a nutshell, often the goal of an LDA is to project a 

feature space (a dataset n-dimensional samples) onto a 

smaller subspace kk (where k≤n−1k≤n−1) while 

maintaining the class-discriminatory information.  In 

general, dimensionality reduction does not only help 

reducing computational costs for a given classification 

task, but it can also be helpful to avoid over fitting by 

minimizing the error in parameter estimation (“curse of 

dimensionality”). 

 

Principal component analysis vs. Linear discriminant 

analysis 

 Both Linear Discriminant Analysis (LDA) and 

Principal Component Analysis (PCA) are linear 

transformation techniques that are commonly used for 

dimensionality reduction. PCA can be described as an 

“unsupervised” algorithm, since it “ignores” class labels 

and its goal is to find the directions (the so-called principal 

components) that maximize the variance in a dataset. In 

contrast to PCA, LDA is “supervised” and computes the 

directions (“linear discriminants”) that will represent the 

axes that that maximize the separation between multiple 

classes. 

 

 Although it might sound intuitive that LDA is 

superior to PCA for a multi-class classification task where 
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the class labels are known, this might not always the case. 

For example, comparisons between classification 

accuracies for image recognition after using PCA or LDA 

show that PCA tends to outperform LDA if the number of 

samples per class is relatively. In practice, it is also not 

uncommon to use both LDA and PCA in combination: 

E.g., PCA for dimensionality reduction followed by an 

LDA. 

 
 

What is a “good” feature subspace? 

Let’s assume that our goal is to reduce the dimensions of a 

dd-dimensional dataset by projecting it onto a(k)(k)-

dimensional subspace (where k<dk<d). So, how do we 

know what size we should choose for kk (kk = the number 

of dimensions of the new feature subspace), and how do 

we know if we have a feature space that represents our data 

“well”? Later, we will compute eigenvectors (the 

components) from our data set and collect them in also-

called scatter-matrices (i.e., the in-between-class scatter 

matrix and within-class scatter matrix). Each of these 

eigenvectors is associated with an eigenvalue, which tells 

us about the “length” or “magnitude” of the eigenvectors. 

If we would observe that all eigenvalues have a similar 

magnitude, then this may be a good indicator that our data 

is already projected on a “good” feature space. 

And in the other scenario, if some of the eigenvalues are 

much larger than others, we might be interested in keeping 

only those eigenvectors with the highest eigenvalues, since 

they contain more information about our data distribution. 

Vice versa, eigenvalues that are close to 0 are less 

informative and we might consider dropping those for 

constructing the new feature subspace. 

 

Summarizing the LDA approach in 5 steps 

 Listed below are the 5 general steps for 

performing a linear discriminant analysis; we will explore 

them in more detail in the following sections. 

1. Compute the dd-dimensional mean vectors for the 

different classes from the dataset. 

2. Compute the scatter matrices (in-between-class 

and within-class scatter matrix). 

3. Compute the eigenvectors 

(ee1,ee2,...,eedee1,ee2,...,eed) and corresponding 

eigenvalues (λλ1,λλ2,...,λλdλλ1,λλ2,...,λλd) for the scatter 

matrices. 

4. Sort the eigenvectors by decreasing eigenvalues 

and choose kk eigenvectors with the largest eigenvalues to 

form a k×dk×d dimensional matrix WWWW (where every 

column represents an eigenvector). 

5. Use this k×dk×d eigenvector matrix to transform 

the samples onto the new subspace. This can be 

summarized by the mathematical equation: 

YY=XX×WWYY=XX×WW (where XXXX is a n×dn×d-

dimensional matrix representing the nn samples, and yyyy 

are the transformed n×kn×k-dimensional samples in the 

new subspace). 

 

LDA Description of each steps 

 After we went through several preparation steps, 

our data is finally ready for the actual LDA. In practice, 

LDA for dimensionality reduction would be just another 

preprocessing step for a typical machine learning or pattern 

classification task. 

 

Step 1: Computing the d-dimensional mean vectors 

In this first step, we will start off with a simple 

computation of the mean vectors mmimmi, 

(i=1,2,3)(i=1,2,3) of the 3 different flower classes: 

mmi=μωi(sepal length)μωi(sepal width)μωi(petal 

length)μωi(petal width),                                             with 

i=1,2,3mmi=[μωi(sepal length)μωi(sepal width)μωi(petal 

length)μωi(petal width)],with i=1,2,3  
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Step 3: Solving the generalized eigenvalue problem for 

the matrix S−1WSBSW−1SB 

 Next, we will solve the generalized eigenvalue 

problem for the matrix S−1WSBSW−1SB to obtain the 

linear discriminants. 

 

 
 After this decomposition of our square matrix into 

eigenvectors and eigenvalues, let us briefly recapitulate 

how we can interpret those results. As we remember from 

our first linear algebra class in high school or college, both 

eigenvectors and eigenvalues are providing us with 

information about the distortion of a linear transformation: 

The eigenvectors are basically the direction of this 

distortion, and the eigenvalues are the scaling factor for the 

eigenvectors that describing the magnitude of the 

distortion. 

 

 If we are performing the LDA for dimensionality 

reduction, the eigenvectors are important since they will 

form the new axes of our new feature subspace; the 

associated eigenvalues are of particular interest since they 

will tell us how “informative” the new “axes” are. 

Step 4: Selecting linear discriminants for the new feature 

subspace 
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4.1. Sorting the eigenvectors by decreasing eigenvalues 

 Remember from the introduction that we are not 

only interested in merely projecting the data into a 

subspace that improves the class separability, but also 

reduces the dimensionality of our feature space, (where the 

eigenvectors will form the axes of this new feature 

subspace). However, the eigenvectors only define the 

directions of the new axis, since they have all the same unit 

length 1. So, in order to decide which eigenvector(s) we 

want to drop for our lower-dimensional subspace, we have 

to take a look at the corresponding eigenvalues of the 

eigenvectors. Roughly speaking, the eigenvectors with the 

lowest eigenvalues bear the least information about the 

distribution of the data, and those are the ones we want to 

drop. The common approach is to rank the eigenvectors 

from highest to lowest corresponding eigenvalue and 

choose the top kk eigenvectors. 

 
If we take a look at the eigenvalues, we can already see 

that 2 eigenvalues are close to 0 and conclude that the 

eigen pairs are less informative than the other two. Let’s 

express the “explained variance” as percentage: 

 
 The first Eigen pair is by far the most informative 

one, and we won’t lose much information if we would 

form a 1D-feature spaced based on this eigenpair. 

 

4.2. Choosing k eigenvectors with the largest eigenvalues 

 After sorting the eigenpairs by decreasing 

eigenvalues, it is now time to construct our k×dk×d-

dimensional eigenvector matrix WWWW (here 4×24×2: 

based on the 2 most informative eigenpairs) and thereby 

reducing the initial 4-dimensional feature space into a 2-

dimensional feature subspace. 

 
Step 5: Transforming the samples onto the new subspace 

In the last step, we use the 4×24×2-dimensional matrix 

WWWW that we just computed to transform our samples 

onto the new subspace via the equation 

 

YY=XX×WWYY=XX×WW. 

 

(where XXXX is a n×dn×d-dimensional matrix 

representing the nn samples, and YYYY are the 

transformed n×kn×k-dimensional samples in the new 

subspace). 
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