
ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering
 (IJERCSE)
 Vol 4, Issue 3, March 2017

Selective Scheduling Algorithms of RTOS

 A Study of Task Based Scheduling

[1] Minal V. Domke, [2] Nikita R. Hatwar, [3] Mrs. Mrudula M. Gudadhe [4] Priyanka V. Thakare
 [1][2][3][4]
 Asst. Professor, Department of Information Technology
 Piyadarhini College of Engineering, Nagpur

Abstract - In this paper, study of the classic real-time scheduling algorithms is done. Many papers have been published in the field
of real-time scheduling. The problem of scheduling is studied from the viewpoint of the characteristics peculiar to the program
functions that need guaranteed service. The quality of real-time scheduling algorithm has a direct impact on real-time system's
working. After studied popular scheduling algorithms mainly EDF and RM for periodic tasks with hard deadlines tried to describe
performance parameters use to compare the performances of the various algorithms. Observation is that the choice of a scheduling
algorithm is important in designing a real-time system .Conclusion by discussing the results of the survey and suggests future
research directions in the field of RTOS.

Keywords:--- DEADLINE, EDF,LLF, PCP ,RTOS, SCHEDULABILITY

I. INTRODUCTION

 In real-time systems the correctness of systems
depends not only on the computed results but also on the
time at which results are produced. In other words, the
major constraint in real-time system is timing requirements
that must be guaranteed with accurate results. This leads to
the notion of deadline which is a common thread among all
real-time system models and the core of the difference
between real-time systems and time-sharing systems. The
deadline of a task is the point in time before which the task
must complete its execution. There can be three types of
deadlines, which are mentioned below. Soft Deadline: If
the results produced after the deadline has passed and are
still useful then this type of deadline is known as soft
deadline. Reservation systems come under this category.
Firm deadline: This deadline is one in which the results
produced after the deadline is missed is of no utility.
Infrequent deadline misses are tolerable. These types of
deadlines are used in systems which are performing some
important operations. Hard deadline: If catastrophe results
on missing the deadline then this type of deadline is known
as hard deadline. The systems which are performing
critical applications like air traffic control come under this
category.

 There are two kinds of real-time tasks, depending
on their arrival pattern: periodic tasks (the task has a
regular inter-arrival time called the period, a deadline and a
computation time) and aperiodic tasks (the task can arrive
at any time; such a task is characterized by a computation

time and a deadline; the latter is usually considered as
soft). An essential component of a computer system is the
scheduling mechanism that is the strategy by which the
system decides which task should be executed at any given
time. The problem of real-time scheduling is different from
that of multiprogramming time-sharing scheduling because
of the role of timing constraints in the evaluation of the
system performance. Normal multiprogramming time-
sharing systems are expected to process multiple job
streams simultaneously, so the scheduling of these jobs has
the goals of maximizing throughput and maintaining
fairness. In real-time systems the primary performance is
not to maximize throughput or maintain fairness, but
instead to perform critical operations within a set of user-
defined critical time constraints.

 II. METHODS AND MATERIAL
As a summary, we divide real-time applications into the
following four types according to their timing attributes.

1. Purely cyclic: Every task in a purely cyclic application
executes periodically. Even I/O operations are polled.
Moreover, its demands in (computing, communication, and
storage) resources do not vary significantly from period to
period. Most digital controllers and real-time monitors are
of this type.

2. Mostly cyclic: Most tasks in a mostly cyclic system
execute periodically. The system must also respond to
some external events (fault recovery and external
commands) asynchronously.

297

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering
 (IJERCSE)
 Vol 4, Issue 3, March 2017

Examples are modern avionics and process control
systems.

3. Asynchronous and somewhat predictable: In
applications such as multimedia communication, radar
signal processing, and tracking, most tasks are not
periodic. The duration between consecutive executions of a
task may vary considerably, or the variations in the
amounts of resources demanded in different periods may
be large. However, these variations have either bounded
ranges or known statistics.

4. Asynchronous and unpredictable: Applications that
react to asynchronous events and have tasks with high run-
time complexity belong to this type. An example is
intelligent real-time control systems [SKNL].

 The release time of a job is the instant of time at
which the job becomes available for execution. The job can
be scheduled and executed at any time at or after its release
time whenever its data and control dependency conditions
are met. It is more natural to state the timing requirement
of a job in terms of its response time, that is, the length of
time from the release time of the job to the instant when it
completes. We call the maximum allowable response time
of a job its relative deadline. The deadline of a job,
sometimes called its absolute deadline, is equal to its
release time plus its relative deadline. In general, we call a
constraint imposed on the timing behaviour of a job a
timing constraint. In its simplest form, a timing constraint
of a job can be specified in terms of its release time and
relative or absolute deadlines, as illustrated by the above
example. Some complex timing constraints cannot be
specified conveniently in terms of release times and
deadlines.

A. PERIODIC TASK MODEL
 The periodic task model is a well-known
deterministic workload model .With its various extensions,
the model characterizes accurately many traditional hard
real-time applications, such as digital control, real-time
monitoring, and constant bit-rate voice/video transmission.
Many scheduling algorithms based on this model have
good performance and well-understood behaviour. There
are now methods and tools to support the design, analysis,
and validation of real-time systems that can be accurately
characterized by the model. For these reasons, we want to
know it well and be able to use it proficiently.

A.1 Periods, Execution Times, and Phases of Periodic
Tasks
 In the periodic task model, each computation or
data transmission that is executed repeatly at regular or
semiregular time intervals in order to provide a function of
the system on a continuing basis is modeled as a period
task. Specifically, each periodic task, denoted by Ti , is a
sequence of jobs. The period pi of the periodic task Ti is
the minimum length of all time intervals between release
times of consecutive jobs in Ti. Its execution time is the
maximum execution time of all the jobs in it. With a slight
abuse of the notation, we use ei to denote the execution
time of the periodic task Ti , as well as that of all the jobs
in it. At all times, the period and execution time of every
periodic task in the system are known. This definition of
periodic tasks differs from the one often found in real-time
systems literature. In many published works, the term
periodic task refers to a task that is truly periodic, that is,
interrelease times of all jobs in a periodic task are equal to
its period. This definition has led to the common
misconception that scheduling and validation algorithms
based on the periodic task model are applicable only when
every periodic task is truly periodic. What are called
periodic tasks here are sometimes called sporadic tasks in
literature.A sporadic task is one whose interrelease times
can be arbitrarily small.

 The accuracy of the periodic task model decreases
with increasing jitter in release times and variations in
execution times. So, a periodic task is an inaccurate model
of the transmission of a variable bit-rate video, because of
the large variation in the execution times of jobs (i.e.,
transmission times of individual frames). A periodic task is
also an inaccurate model of the transmission of cells on a
real-time connection through a switched network that does
not do traffic shaping at every switch, because large
release-time jitters are possible.

 We call the tasks in the system T1, T2, . . . , Tn.2
When it is necessary to refer to the individual jobs in a task
Ti , we call them Ji,1, Ji,2 and so on, Ji,k being the kth job
in Ti. When we want to talk about properties of individual
jobs but are not interested in the tasks to which they
belong, we also call the jobs J1, J2, and so on.
The release time ri,1 of the first job Ji,1 in each task Ti is

φi to denote the phase of Ti , that is, φi = ri,1. In general,
different tasks may have different phases. Some tasks are
in phase, meaning that they have the same phase.
We use H to denote the least common multiple of pi for i =
1, 2, . . . n. A time interval of length H is called a
hyperperiod of the periodic tasks. The (maximum) number

298

called the phase of Ti. For the sake of convenience, we use

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering
 (IJERCSE)
 Vol 4, Issue 3, March 2017

N of jobs in each hyperperiod is equal to _n i=1 H/pi . The
length of a hyperperiod of three periodic tasks with periods
3, 4, and 10 is 60. The total number N of jobs in the
hyperperiod is 41.

 We call the ratio ui = ei /pi the utilization of the
task Ti . ui is equal to the fraction of time a truly periodic
task with period pi and execution time ei keeps a processor
busy. It is an upper bound to the utilization of any task
modeled by Ti. The total utilization U of all the tasks in the
system is the sum of the utilizations of the individual tasks
in it. So, if the execution times of the three periodic tasks
are 1, 1, and 3, and their periods are 3, 4, and 10,
respectively, then their utilizations are 0.33, 0.25 and 0.3.
The total utilization of the tasks is 0.88; these tasks can
keep a processor busy at most 88 percent of the time.

 A job in Ti that is released at t must complete Di
units of time after t ; Di is the (relative) deadline of the
task Ti . We will omit the word “relative” except where it
is unclear whether by deadline, we mean a relative or
absolute deadline.We will often assume that for every task
a job is released and becomes ready at the beginning of
each period and must complete by the end of the period. In
other words, Di is equal to pi for all n. This requirement is
consistent with the throughput requirement that the system
can keep up with all the work demanded of it at all times.
However, in general, Di can have an arbitrary value. In
particular, it can be shorter than pi . Giving a task a short
relative deadline is a way to specify that variations in the
response times of individual jobs (i.e., jitters in their
completion times) of the task must be sufficiently small.
Sometimes, each job in a task may not be ready when it is
released. (For example, when a computation job is
released, its input data are first transferred to memory.
Until this operation completes, the computation job is not
ready.) The time between the ready time of each job and
the end of the period is shorter than the period. Similarly,
there may be some operation to perform after the job
completes but before the next job is released. Sometimes, a
job may be composed of dependent jobs that must be
executed in sequence. A way to enforce the dependency
relation among them is to delay the release of a job later in
the sequence while advancing the deadline of a job earlier
in the sequence. The relative deadlines of jobs may be
shortened for these reasons as well.

A.2 Aperiodic and Sporadic Tasks
 Earlier, we pointed out that a real-time system is
invariably required to respond to external events, and to
respond, it executes aperiodic or sporadic jobs whose
release times are not known a priori. An operator’s

adjustment of the sensitivity setting of a radar surveillance
system is an example. The radar system must continue to
operate, but in addition, it also must respond to the
operator’s command. Similarly, when a pilot changes the
autopilot from cruise mode to standby mode, the system
must respond by reconfiguring itself, while continuing to
execute the control tasks that fly the airplane. A command
and control system must process sporadic data messages,
in addition to the continuous voice and video traffic.

 In the periodic task model, the workload
generated in response to these unexpected events is
captured by aperiodic and sporadic tasks. Each aperiodic
or sporadic task is a stream of aperiodic or sporadic jobs,
respectively. The interarrival times between consecutive
jobs in such a task may vary widely and, in particular, can
be arbitrarily small. The jobs in each task model the work
done by the system in response to events of the same type.
For example, the jobs that execute to change the detection
threshold of the radar system are in one task; thejobs that
change the operation mode of the autopilot are in one task;
and the jobs that process sporadic data messages are in one
task, and so on.

 Specifically, the jobs in each aperiodic task are
similar in the sense that they have the same statistical
behavior and the same timing requirement. Their
interarrival times are identically distributed random
variables with some probability distribution A(x).
Similarly, the execution times of jobs in each aperiodic (or
sporadic) task are identically distributed random variables,
each distributed according to the probability distribution
B(x). These assumptions mean that the statistical behavior
of the system and its environment do not change with time,
that is, the system is stationary. That the system is
stationary is usually valid in time intervals of length on the
order of H, in particular, within any hyperperiod of the
periodic tasks during which no periodic tasks are added or
deleted.

 We say that a task is aperiodic if the jobs in it
have either soft deadlines or no deadlines. The task to
adjust radar’s sensitivity is an example. We want the
system to be responsive, that is, to complete each
adjustment as soon as possible. On the other hand, a late
response is annoying but tolerable. We therefore want to
optimize the responsiveness of the system for the aperiodic
jobs, but never at the expense of hard real-time tasks
whose deadlines must be met at all times.

 In contrast, an autopilot system is required to
respond to a pilot’s command to disengage the autopilot

299

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering
 (IJERCSE)
 Vol 4, Issue 3, March 2017

and take over the control manually within a specific time.
Similarly, when a transient fault occurs, a fault-tolerant
system may be required to detect the fault and recover
from it in time. The jobs that execute in response to these
events have hard deadlines. Tasks containing jobs that are
released at random time instants and have hard deadlines
are sporadic tasks. We treat them as hard real-time tasks.
Our primary concern is to ensure that their deadlines are
always met; minimizing their response times is of
secondary importance.

 On the basis of nature of the task we can compare
different scheduling algorithms for RTOS under different
parameters. Better scheduling algorithm - Earliest Deadline
First (deadline driven scheduling) is too complex to be
implementedinreal-timeoperatingsystem
[11].Timmerman [10] describes the framework for
evaluation of realtime operating systems. Baskiyar [13]
and et al. have made an extensive survey on memory
management and scheduling in RTOS. A worst case
response time analysis of real time tasks under hierarchical
fixed priority pre-emptive scheduling is done by Bril and
Cuijpers. Yaasuwanth [3] and et. al. have developed an
modified RR algorithm for scheduling in real time systems.
Recently, a number of CPU scheduling algorithms have
been developed for predictable allocation of processor
[12]. From the work done by the various researchers in the
field of real time scheduling; so far, it has been observed
that

a. Scheduling should be done in order to guarantee
the schedule of the processes fairly and
throughput must be maximum.
Real time scheduling algorithms are always pre-
emptive which can perform better if the pre-
emption is limited.
Static priority scheduling algorithms are used for
scheduling real time tasks for maximum CPU
utilization but it can be increased more using
dynamic priorities.
The schedulability of scheduling algorithm must
be checked using schedulability tests. e.
Starvation should not be there which means a
particular process should not be held indefinitely.
Allocation of resources should be such that all the
processes get proper CPU time in order to prevent
starvation. f. In case of priority based algorithms,
there should be fairness in the pre-emption policy.
Low priority tasks should not wait indefinitely
because of higher priority tasks.

III.CLASSIFICATION OF SCHEDULING
 ALGORITHMS

A scheduler provides a policy for ordering the execution of
tasks on the processor, according to some criteria.
Schedulers produce a schedule for a given set of processes.
There are several classifications of schedulers. Here are the
most important:

 Optimal or non-optimal: An optimal scheduler can
schedule a task set if the task set is schedulable by
some scheduler.

Preemptive or non-preemptive: A preemptive
scheduler can decide to suspend a task (before
finishing its execution) and restart it later, generally,
because a higher priority task becomes ready. Non-
preemptive schedulers do not suspend tasks in this
way. Once a task has started, it cannot be suspended
involuntarily.

Static or dynamic: Static schedulers calculate the
execution order of tasks before run-time. It requires
knowledge of task characteristics but produces little
run-time overhead. However, it cannot deal with
aperiodic or non-predicted events. Some references
about this kind of schedulers can be found in [20].
Dynamic schedulers, on the contrary, make
decisions during the run-time of the system. This
allows to design a more flexible system, but it
means some overhead.





b.
 Three commonly used approaches to scheduling
realtime systems: clock-driven, weighted round-robin and
priority-driven. The subsequent five chapters will study in
depth the clock-driven and priority-driven approaches

 Clock – driven Scheduling
 As the name implies, when scheduling is clock-
driven (also called time-driven), decisions on what jobs
execute at what times are made at specific time instants.
These instants are chosen a priori before the system begins
execution. Typically, in a system that uses clock-driven
scheduling, all the parameters of hard real-time jobs are
fixed and known. A schedule of the jobs is computed off-
line and is stored for use at run time. The scheduler
schedules the jobsaccording to this schedule at each
scheduling decision time. In this way, scheduling overhead
during run-time can be minimized.


c.

d.

300

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering
 (IJERCSE)
 Vol 4, Issue 3, March 2017

 A frequently adopted choice is to make
scheduling decisions at regularly spaced time instants. One
way to implement a scheduler that makes scheduling
decisions periodically is to use a hardware timer. The timer
is set to expire periodically without the intervention of the
scheduler. When the system is initialized, the scheduler
selects and schedules the job(s) that will execute until the
next scheduling decision time and then blocks itself
waiting for the expiration of the timer. When the timer
expires, the scheduler awakes and repeats these actions.

 Weighted round-robin Scheduling
 The round-robin approach is commonly used for
scheduling time-shared applications. When jobs are
scheduled on a round-robin basis, every job joins a First-
in-first-out (FIFO) queue when it becomes ready for
execution. The job at the head of the queue executes for at
most one time slice. (A time slice is the basic granule of
time that is allocated to jobs. In a timeshared environment,
a time slice is typically in the order of tens of
milliseconds.) If the job does not complete by the end of
the time slice, it is preempted and placed at the end of the
queue to wait for its next turn. When there are n ready jobs
in the queue, each job gets one time slice every n time
slices, that is, every round. Because the length of the time
slice is relatively short, the execution of every job begins
almost immediately after it becomes ready.
 In essence, each job gets 1/nth share of the processor when
there are n jobs ready for execution. This iswhy the round-
robin algorithm is also called the processor-sharing
algorithm. The weighted round-robin algorithm has been
used for scheduling real-time traffic in high-speed
switched networks. It builds on the basic round-robin
scheme. Rather than giving all the ready jobs equal shares
of the processor, different jobs may be given different
weights. Here, the weight of a job refers to the fraction of
processor time allocated to the job. Specifically, a job with
weight wt gets wt time slices every round, and the length of
a round is equal to the sum of the weights of all the ready
jobs. By adjusting the weights of jobs, we can speed up or
retard the progress of each job toward its completion.
By giving each job a fraction of the processor, a round-
robin scheduler delays the completion of every job. If it is
used to schedule precedence constrained jobs, the response
timeof a chain of jobs can be unduly large. For this reason,
the weighted round-robin approach is not suitable for
scheduling such jobs. On the other hand, a successor job
may be able to incrementally consume what is produced by
a predecessor (e.g., as in the case of a UNIX pipe). In this
case, weighted round-robin scheduling is a reasonable
approach, since a job and its successors can execute

concurrently in a pipelined fashion. As an example, we
consider the two sets of jobs, J1 = {J1,1, J1,2} and J2 =
{J2,1, J2,2}, shown in Figure 1-a ,Figure 1-b. The release
times of all jobs are 0, and their execution times are 1. J1,1
and J2,1 execute on processor P1, and J1,2 and J2,2
execute on processor P2. Suppose that J1,1 is the
predecessor of J1,2, and J2,1 is the predecessor of J2,2.

Figure 1. Example illustrating Round-robin Scheduling

 Priority – driven Scheduling
 The term priority-driven algorithms refers to a
large class of scheduling algorithms that never leave any
resource idle intentionally. Stated in another way, a
resource idles only when no job requiring the resource is
ready for execution. Scheduling decisions are made when
events such as releases and completions of jobs occur.
Hence, priority-driven algorithms are event-driven.
Other commonly used names for this approach are greedy
scheduling, list scheduling and work-conserving
scheduling. A priority-driven algorithm is greedy because
it tries to make locally optimal decisions. Leaving a
resource idle while some job is ready to use the resource is
not locally optimal. So when a processor or resource is
available and some job can use it to make progress, such an
algorithm never makes the job wait. We will return shortly



301

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering
 (IJERCSE)
 Vol 4, Issue 3, March 2017

to illustrate that greed does not always pay; sometimes it is
better to have some jobs wait even when they are ready to
execute and the resources they require are available.
The term list scheduling is also descriptive because any
priority-driven algorithm can be implemented by
assigning priorities to jobs. Jobs ready for execution are
placed in one or more queues ordered by the priorities of
the jobs. At any scheduling decision time, the jobs with the
highest priorities are scheduled and executed on the
available processors. Hence, a priority-driven scheduling
algorithm is defined to a great extent by the list of
priorities it assigns to jobs; the priority list and other rules,
such as whether preemption is allowed, define the
scheduling algorithm completely.

3.1Priority Driven Scheduling

3.1.1 Fixed-priority scheduling
 The most important scheduling algorithms in this
category are Rate Monotonic (RM) [2] and Deadline
Monotonic (DM) [4]. The former assigns the higher
priority to the task with the shortest period, assuming that
periods are equal to deadlines. The latter assigns the
highest priority to the task with the shortest deadline. Both
algorithms are optimal. Fixed-priority scheduling has been
widely studied and the most important real-time operating
systems have a fixed-priority scheduler.

3.1.1.1 Schedulability analysis
 The first test was provided by Lui and Layland
[2]. It is based on the processor utilization of the task set.
The total utilization of the set is the sum of the utilizations
of all tasks in the set, which is obtained as the quotient of
execution time by the period. This utilization is compared
with the utilization bound (that depends on the number of
tasks). Thus, if the utilization of the set is less or equal to
the utilization bound, the task set is schedulable. This
schedulability constraint is a sufficient, but not a necessary
condition. That is, there are task sets that can be scheduled
using a rate monotonic priority algorithm, but which break
the utilization bound. A sufficient and necessary condition
was developed by Lehoczky [10] and Audsley. This test is
based on the worst case response time of every task. If, in
the worst case, a task finishes its execution before its
deadline, the task will be schedulable. The worst case
response time of a task occurs in the first activation.
Moreover, this test is valid for any priority assignation, and
it informs not only whether the set is feasible or not, but
the task or tasks that miss its deadline.

Figure 2. Scheduler’s classification

3.1.2 Dynamic-priority scheduling Within this category,
Earliest Deadline First (EDF) [2] and Least Laxity First
(LLF) [13] are the most important. Both are optimal, if any
algorithm can find a schedule where all tasks meet their
deadline then EDF can meet the deadlines. In EDF, the
highest priority task is the task with the nearest absolute
deadline. The absolute deadline is the point in time in
which it arrives the deadline of the current activation of the
task. LLF assigns priorities depending on the laxity, being
the task with the lower laxity, the highest priority task. The
term laxity refers to the interval between the current time
and the deadline, minus the execution time that remains to
execute. Dynamic-priority algorithms have interesting
properties when compared to fixed-priority. They achieve
high processor utilization, and they can adapt to dynamic
environments, where task parameters are unknown. On the
contrary, real-time systems community is reluctant to use
dynamic-priority algorithms mainly because of the
instability in case of overloads. It is also not possible to
known what task miss its deadline if the system is not
feasible.

3.1.2.1Schedulability analysis
 In [2] it is proved that EDF can guarantee
schedulability of tasks when the processor utilization is

than periods, but Dertouzos also proved that EDF is
optimal when deadlines are less than periods.

302

less than 100%. In this case, deadlines have to be equal

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering
 (IJERCSE)
 Vol 4, Issue 3, March 2017

IV. BASIC PARAMETERS THAT AFFECT THE
 PERFORMANCE IN RTOS [13]

4.1 Multi-tasking and preemptable: To support multiple
tasks in real-time applications, an RTOS must be multi-
tasking and preemptable. The scheduler should be able to
preempt any task in the system and give the resource to the
task that needs it most. An RTOS should also handle
multiple levels of interrupts to handle multiple priority
levels.
 4.2 Dynamic deadline identification: In order to achieve
preemption, an RTOS should be able to dynamically
identify the task with the earliest deadline [11]. To handle
deadlines, deadline information may be converted to
priority levels that are used for resource allocation.
Although such an approach is error prone, nonetheless it is
employed for lack of a better solution.
 4.3 Predictable synchronization: For multiple threads to
communicate among themselves in a timely fashion,
predictable inter-task communication and synchronization
mechanisms are required. Semantic integrity as well as
timelinessconstitutespredictability.Predictable
synchronization requires compromises.
 4.4 Sufficient Priority Levels: When using prioritized task
scheduling, the RTOS must have a sufficient number of
priority levels, for effective implementation. Priority
inversion occurs when a higher priority task must wait on a
lower priority task to release a resource and in turn the
lower priority task is waiting upon a medium priority task.
Two workarounds in dealing with priority inversion,
namely priority inheritance and priority ceiling protocols
(PCP), need sufficient priority levels.
4.5 Predefined latencies: The timing of system calls must
be defined using the following specifications: • Task
switching latency or the time to save the context of a
currently executing task and switch to another. • Interrupt
latency or the time elapsed between the execution of the
last instruction of the interrupted task and the first
instruction of the interrupt handler.

V. RESULTS AND DISSCUSIONS

 5.1 Scheduling with fixed priority algorithm (RM)
We schedule the following task set with FP (RM priority
assignment).
τ1 = (1, 4), τ2 = (2, 6), τ3 = (3, 8).
U =1/4 +2/6+3/8 =23/24 The utilization is greater than the
bound: there is a deadline miss.

 Figure 3. Timeline for RM
 Observe that at time 6, even if the deadline of task
τ 3 is very close, the scheduler decides to schedule task τ2.
This is the main reason why τ3 misses its deadline!

5.2 Scheduling with dynamic priority algorithm (EDF)
 Now we schedule the same above task set with
EDF. τ 1 = (1, 4), τ 2 = (2, 6), τ3 = (3, 8). U = 1/4 + 2/6 +
3/8 = 23/24 Again, the utilization is same.

Figure 4. Timeline for EDF

However, no deadline miss in the hyperperiod.
Observe that at time 6, the problem does not appear, as the
earliest deadline job (the one of τ 3) is executed. EDF is an
optimal algorithm, in the sense that if a task set if
schedulable, then it is schedulable by EDF. EDF can
schedule all task sets that can be scheduled by fixed
priority, but not vice versa. There is no need to define

303

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering
 (IJERCSE)
 Vol 4, Issue 3, March 2017

priorities. In fixed priority, in case of offsets, there is not
an optimal priority assignment that is valid for all task sets.
In general, EDF has less context switches. In the previous
example, the number of context switches in the first
interval of time: in particular, at time 4 there is no context
switch in EDF, while there is one in fixed priority. As no
of context switches are less processor utilization is greater,
less idle times. EDF is less predictable: Looking back at
the example, the response time of task τ1: in fixed priority
is always constant and minimum; in EDF is variable. If we
want to reduce the response time of a task, in fixed priority
is only sufficient to give him an higher priority; in EDF we
cannot do anything; we have less control over the
execution. Fixed priority can be implemented with a very
low overhead even on very small hardware platforms (for
example, by using only interrupts); EDF instead requires
more overhead to be implemented. Computing the
response time in EDF is very difficult. EDF is still optimal
when relative deadlines are not equal to the periods.

VI. CONCLUSION AND FUTURE SCOPE

 From the comparative study it can be concluded
that since the concept of “time” is of such importance in
real-time application systems, and since these systems
typically involve various contending processes, the concept
of scheduling is integral to real-time system design and
analysis. Scheduling and schedulability analysis enables
these guarantees to be provided. From the comparison of
real time scheduling algorithms, it is clear that earliest
deadline first is the efficient scheduling algorithm if the
CPU utilization is not more than 100% but does scale well
when the system is overloaded. In the experimental
environment, although EDF scheduling algorithm can meet
the needs of real-time applications, in practical
applications, it is still needed to be improved to meet the
evolving needs of real-time systems. In future a new
algorithm should be developed which is a mix of fixed and
dynamic priority or a scheduling algorithm switch
automatically between EDF algorithm and fixed based
scheduling algorithm to deal overloaded and under loaded
conditions. The new algorithm will be very useful when
future workload of the system is changeable.

REFERENCES

[1] Arnoldo Diaz, Ruben Batista and Oskardie Castro,
2013. Realtss: A real-time scheduling simulator.
International Conference on Electrical and Electronics
Engineering.
[2] C. Liu and James Leyland, January 1973. Scheduling
algorithm for multiprogramming in a hard real-time

 environment. Journal of the
Computing Machinery, 20(1): 46-61.

Association for

[3] C. Yaashuwanth and R. Ramesh, 2010. Design of real
time scheduler simulator and development ofmodified
round robin architecture. International Journal of
Computer Applications.

[4]J.Leung and J. Whitehead, 1982. Performance
Evaluation, On the complexity of fixed-priority
schedulings
 of periodic, real-time tasks.

[5] Fengxiang Zhang and Alan Burns, September, 2009.
Schedulability analysis for real-time systems with EDF
 scheduling. IEEE Transactions on computers, vol. 58,
no. 9.

[6] Hamid Arabnejad and Jorge G. Barbosa, 2013. List
scheduling algorithm for heterogeneous systems by an
 optimistic cost table. IEEE.

[7] M. Kaladevi and Dr. S. Sathiyabama , 2010. A
comparative study of scheduling algorithms for real time
task. International Journal of Advances in Science and
Technology, Vol. 1, No. 4.

[8] Moonju Park and Heemin Park, 2012. An efficient test
method for rate monotonic schedulability. IEEE.

[9] J. Lehoczky, L. Sha, and Y. Ding, 1989 The rate
monotonic scheduling algorithm: Exact characterization
and average case behaviour. IEEE Real-Time Systems
Symposium, 166-171.

[10] Peng Li and Binoy Ravindran September, 2004. Fast,
Best-Effort Real-Time Scheduling Algorithms. IEEE
 Transactions on computers, vol. 53, no. 9.

[11] A.Mok and M.Dertouzos, 1978. Multiprocessor
scheduling in a hard real-time environment. 7th Texas
Conference on Computing Systems.

[12] R. Le Moigne, O. Pasquier, J-P. Calvez 2004. A
Generic RTOS Model for Real-time Systems Simulation
with SystemC. IEEE.

 [13] S. Baskiyar and N. Meghanathan, 2005. A Survey On
Real Time Systems. Informatica (29), 233-240.
[14] Jane W.S. Liu , Real Time Systems, Prentice Hall
Publication,

304

