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Abstract— This paper proposes to use data  mining  methods implemented via R in order to analyze the Domain Name System 

(DNS) traffic and to develop innovative techniques  for balancing the DNS traffic according to Fully Qualified Domain Names 

(FQDN) rather than according to the Internet Protocol (IP) addresses. With DNS traffic doubling  every year and the deployment 

of its secure extension DNSSEC, DNS resolving platforms require more and more CPU and memory resources. After 

characterizing the  DNS(SEC) traffic thanks to reduction in dimension and clustering methods implemented with R functions and 

packages, we propose techniques to balance the DNS traffic among the DNS platform servers based on the FQDN. Several methods 

are considered to build the FQDN-based routing table: K- means clustering algorithm, mixed integer linear programming, and a 

heuristic scheme. These load balancing approaches are run, and evaluated with R on real DNS traffic data extracted from an 

operational network of an Internet Service Provider. They result in reducing the platform CPU resources by 30% with a difference 

of less than 2% CPU between the servers of a platform. 

 
Index Terms— Telecommunications; Internet; DNS; DNSSEC; Feature selection; Dimension reduction; Clustering; Load 

balancing; K-means. 

 

 
I. INTRODUCTION 

 Domain Name System (DNS) (Mockapetris, 

1987a,b) is the computer protocol that facilitates  Internet  

communication using hostnames by matching an Internet 

Protocol (IP) address and a Fully Qualified Domain Name 

(FQDN), e.g., ―www.google.com.‖  DNS servers, which 

host the IP addresses of the queried web sites—that is to 

say the DNS responses—are called Authoritative Servers. 

Because Authoritative Servers would not be able to support 

all end users‗ queries, the DNS architecture introduces 

Resolving Servers that cache the responses during Time to 

Live (TTL) seconds. Internet Service Providers (ISPs) 

manage such servers for their end users. Thanks to the 

caching  mechanism,     Resolving     Servers do     not     

need      to ask Authoritative Servers if the response is still  

in  their cache. This provides faster responses to the end 

user and reduces the traffic load on the DNS Authoritative 

Servers. 

 

 For multiple reasons, ISPs consider operating 

DNSSEC, the  security  extension  of  DNS  defined  in  

the   standards (Arends et al., 2005a,b,c; Sawyer, 2005). 

With DNSSEC, a DNS response is signed so that its 

authenticity (generation  by a legitimate Authoritative 

Server) and its integrity (nonmodification of response) can 

be checked. With DNSSEC, resolutions require multiple 

signature checks so that responses are around seven times 

longer than traditional DNS  responses. Migault  (2010), 

Migault  et  al.  (2010),  and Griffiths (2009) show that  

DNSSEC  resolution platforms require up to five times 

more servers than DNS resolution platforms. Migault et al. 

(2010) measures that a DNSSEC resolution involves three 

signature checks and  costs up to 4.25 times more than a 

regular DNS resolution. With the DNS traffic doubling 

every year and  the deployment of its secure extension 

DNSSEC, DNS resolving platforms require more and more 

resources. 

 

 The operational problem faced is to reduce the 

resources needed by a resolving platform. The resolving 

platform consists of several DNS resolving servers behind 

a load balancer device. The load balancer splits the 

incoming traffic to distribute queries on resolving servers. 

The classical way  of load balancing is performed by 

assigning a pool of clients to be served to each server. 

One way to reduce the load on a server is to lower the 

number of resolutions.  To reduce  the  number  of 

resolutions, Migaultand Laurent (2011) and Francfort et al. 

(2011) evaluate the advantage of splitting the DNS traffic 

according to the queried FQDN rather than according to 

the IP addresses. This increases the efficiency provided by 

caching mechanisms, reduces the number of signatures to 

be checked, and can result in a 1.32 times more efficient 

architecture. 

 

 To design this new load balancing mechanism, we 

first need to characterize the DNS traffic and to evaluate 

how the DNSSEC traffic looks like. We perform data 
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extraction from raw network captures taken from a DNS 

resolving platform. The main challenge here is to define 

the variables, which are taken and computed for each 

FQDN. The goal is to define a routing table mapping each 

frequently requested FQDN to a server of the resolving 

platform. 

 

II. DATA EXTRACTION FROM PCAP TO CSV 

FILE 

 

 To conduct this study, we first gather pieces of 

DNS data. They consist of real outbound and inbound DNS 

traffic of the platform stored in PCAP files. Then, for each 

FQDN found in a traffic sample, we compute a series of 

variables. Given the application considered, these variables 

are related to the FQDN‗s resolution cost. 

 

Network costs: servers occupation times associated to a 

FQDN (time between a query and its response) and 

different rates: 

 

• mean open context times observed for resolvers: 

Mean Internet Resolution Time (MIRT) and Mean 

Platform Resolution Time (MPRT) 

• end user and platform query rates (euQR and 

reQR) 

• end user and platform bit rates (euBR and reBR) 

Computation costs: signature checks related 

variables: 

• number of signature checks (SigCheck) 

• cache hit rate (CHR) 

• Memory costs: cache length and cache update 

related variables: 

• mean TTL observed (MTTL) 

• query and response length (Qlen and Rlen) 

• response time for cached response 

 

 These variables are exported into a CSV file. CSV  

is a standard format that can be read from many softwares 

and languages, including R. To generate this CSV file,  we 

use a homemade python script. This file is composed of 

lines terminated with the UNIX-compliant end of line 

character (―\n‖), each line containing the variables 

corresponding to a FQDN into fields. The separator that 

separates fields is the classical space and fields are not 

enclosed between quotation marks. The first field is the 

FQDN, i.e., the label  of  the vector corresponding to the 

FQDN. Variables labels are not included in the CSV file to 

ease some  common operations like split or concatenation 

of several CSV input  files. The first arrow in Figure 1 

represents this step. 

 
 

FIGURE 1 Extraction and importation from PCAP files 

to R. 

 

 Our dataset is now stored in a CSV file that 

consists  of vectors corresponding to FQDN and composed 

of cost- related measures. 

 

III. DATA IMPORTATION FROM CSV FILE 

TO R 

  

 Once the dataset is extracted from PCAP files  to 

CSV files, we import these files into R. To do so, we use 

the code in the Listing 1. This step is represented by the  

last arrow in Figure 1. As described in Section 1.2, the 

CSV file does not contain dimension labels. In line 3 of 

Listing 1, we construct a vector containing all labels in the 

correct order. These labels will be used. 

 

Listing 1 

R  C o d e   U s e d   t o   L o a d   D a t a s e t   f r o m   C 

S V F i l e 

filename = ―inputfile.CSV‖ # input filename 

clab<−  c(―euQR‖,  ―reQR‖,  ―tR‖,  ―euBR‖,  ―reBR‖,  

―tBR‖, 

―cQRT‖,   ―reOCC‖,   ―euOCC‖,   ―tOCC‖,   ―CHR‖,   

―eQR‖, 

―eCPU‖,    ―ePRT‖,    ―succRatio‖,    ―failRatio‖,    

―cltQNbr‖, 

―pltQNbr‖, ―Qlen‖, ―Rlen‖, ―Sigcheck‖, ―MIRT‖, 

―SDIRT‖, 

―MPRT‖, ―SDPRT‖, ―MTTL‖, ―SDTTL‖) 

 
 

  

mat_ent<− read.table (filename, row.names=1, 

col.names=clab) 
mat_ent<− subset (mat_ent, cQRT> 0) #  python  script  

return − 1 if no request is present and cQRT is used to plot 

several variables 

mat <− subset (mat_ent, MTTL > 0) # remove non valid TTL 
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 Later to ease dimension selection. The R-function 

used to import data is read.table(), in line 5. This function 

returns a matrix stored in a data.frame object whose 

dimensions are labeled thanks  to  therow.names and 

col.names arguments. We set the name of the input file at 

the beginning of our code (line 1) to ease the readability 

and the further modification of the input file name. Note 

that the way our CSV file is defined allows   us   to    keep    

default    values    for    most    of    the read.table() 

function‗s   parameters.    The    last    lines   of Listing 1 

(lines 7 and 8) are used to remove lines (i.e., FQDN), 

which present non acceptable values for the  variables, 

from our data. This is a step to delete  FQDN  whose 

variables are not coherent or not in the expected intervals. 

We now have a data.frame containing the input dataset for 

further R processing. 

 

IV. DIMENSION REDUCTION VIA PCA 

 

 The dataset consists of several thousands of 27- 

dimensional vectors, each vector corresponding to a 

FQDN. For a better understanding, we aim at reducing this 

dataset volume by shrinking the number of its dimensions, 

i.e., the number of FQDN characteristics. To perform this 

dimension reduction,  we  use   principal   component   

analysis   (PCA; cf. Cox and Cox, 2001), for instance. PCA 

is an efficient way to reduce the number of noninformative 

dimensions and to eliminate correlated variables. The PCA 

algorithm is implemented in R through the function 

prcomp(). The code used to perform PCA is presented in 

Listing 2. 

 

Listing 2 

R  C o d e  U s e d  f o r  P C A 

r = 0.9  # threshold for PCA 

output_file   =   paste   (format   (Sys.time(),   ―%F-%T‖),   

―- 

Rout.txt‖, sep=―‖) # file where to 

print tmp_file = ―/tmp/foo‖ #tmp 

file sink(output_file) 

clabf<-  c(―euBR‖,   ―reBR‖,   ―QNbr‖,   ―pltQNbr‖,   

―CHR‖, 

―cQRT‖, ―MIRT‖, ―MPRT‖, 

―MTTL‖) mat <- subset (mat, 

select=clabf) 

pca<- prcomp(mat, scale=TRUE, center=TRUE) 

mag <- sum(pca$sdev * pca$sdev) # total magnitude 

pca<- prcomp(mat, tol = (1 − r)*mag/(pca$sdev 

[1] * pca$sdev [1]), scale=TRUE, center=TRUE) 

write.table(pca$x, file=tmp_file) 

d<-read.table(tmp_file, header=TRUE, row.names=1) 

write.table(pca$rotation, file=tmp_file) 

rot<-read.table(tmp_file, header=TRUE, 

row.names=1) print(pca$rotation) # new vectors 

sink() 

 

 To ease the exploitation of the PCA‗s results, we 

dump the output stream into a file which can be read 

thanks to any text editor. To do so, we first construct the 

name of this file. We want to keep and distinguish results 

from this script run at different times. The filename (line 

2 of Listing 2) contains  the date when the script is run 

(Sys.date() ) in a friendly format (format() ). This 

timestamp is concatenated with another string (―-

Rout.txt‖) thanks to the function paste. We change the 

separator of this function to the empty string (sep=― ‖) to 

avoid space in the filename. 

  

 We also use a temporary file to write and read 

some data.  This   is   a   trick   to   reformat   a matrix 

object   into  a data.frame object       which       can       be       

avoided using as.data.frame(). Moreover as.data.frame() 

takes less time as it does not require hard disk access. To 

open an output flow, we use the function sink() (line 4 

ofListing 2) with the filename constructed line 2. This 

redirects all the output into the file. Note that the file 

should be closed (line 18 of Listing 2). As a preparation 

step, we also  store a  subset of dimension labels in a 

vector (line 5) to be used later to select a subset of initial 

data thanks to the subsetfunction (line 7). This  subset 

concerns only nine variables and ignores others which 

are linear combinations of the first ones. 

 

 In the PCA, we define a threshold to decide which 

components are kept. We aim at keeping a percentage of 

the total magnitude.  We  used prcomp() the  first  time  

(line  9  of Listing 2) to get the whole magnitude, i.e., the 

whole variance, and to compute the variance kept. We 

recompute a PCA using this variance value (line 11). The 

result of this  step is the rotation matrix and the vectors in 

the new basis. These results are stored in variables (line 13 

of Listing 2) and printed into the output file (line 16) 

(Figure 2). 
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FIGURE 2 Reduction dimension via PCA. 

 

 Thanks to the rotation matrix and the screegraph 

(plot of variance explained by each principal component 

represented in Figure 3), we can see that: 

 

• The two first principal components hold a 

significative part of magnitude (35% in our 

application case) 

• The  two  first   principal   components   are   

mainly   due  to euQR and reQR 

 
  

FIGURE 3 Screen graph of PCA on initial variables. 

 

This result could have been obtained by analyzing the 

variance for each variable individually. euQRand 

reQR are the most discriminative variables from the 

viewpoint of second-order statistical information 

(variance). 

 

V. INITIAL DATA EXPLORATION VIA 

GRAPHS 

 

 To be more familiar with the data considered in 

this problem, also to learn how they look, and to define 

which process to apply, we perform an exploration phase. 

We conduct this initial exploration through graphs.  All  

graphs  performed with R are drawn into a postscript file to 

be edited with external tools if needed. There are multiple 

types of graphs depending on what we plot with R and 

what parameters we provide to the plot() function. To draw 

points, we provide the list of coordinates (list of abscissas  

and  list  of  ordinates)  to  the plot()function.  For  a matrix 

or a data.frame, the plot() function

 performs a scatterplot. This consists of a series of 

graphs, each being the representation of data in a two-

dimensional space. All possible couples are represented. 

Such a  graph can be seen   in Figure 4. 

 

 
FIGURE 4: Multidimensional representation of FQDN. 

(a) Principal components. (b) Subset of initial 

parameters. 

 

 The function density() returns a kernel density 

estimate which is drawn with the plot() function. This 

graph is useful to know if the distribution is multimodal 

(see Figure 5). 
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FIGURE 5 euQR density plot. 

 

Boxplots highlight median, quartiles, minimum, maximum,   

and   outliers.   When   the   input   of theboxplot() function 

is a data.frame, it traces a boxplot for every dimension. 

This simple drawing allows us to see immediately if a 

dimension seems discriminant and  highlights outliers and 

imbalances in the distribution. This representation also 

helps to visualize the differences between variables. 

Thanks to these simple graphs, we can define further 

processes to apply to the dataset to get more balanced 

features. 

  

VI. VARIABLES SCALING AND SAMPLES 

SELECTION 

 

 As seen in Section 5, all the variables are not 

equivalently informative to discriminate the FQDN, see, 

for instance, Figure 4b. Moreover, the distribution of the 

queries and the responses rates highlighted in Section 5 

suggests that these variables should be processed using a 

log function. Indeed, the range and the distribution of 

values for these variables do not give an informative 

representation. In this case, a standard linear representation 

is not very relevant. Instead, we choose to apply a 

logarithmic transformation to grasp more precisely the 

value amplitudes for the  variables  of interest. We also 

decide to remove the less requested FQDN (euQR less than 

a threshold) because many FQDN are requested only a 

couple of times during the timeslot used for the traffic 

capture. The code used to perform this processing  is 

presented in Listing 4. We add to the original data (stored 

inmat) three variables (cf. lines 1-3 of Listing 4). 

 

Listing 3 

G e n e r a t i o n o f S e v e r a l G r a p h s

 i n t o P o s t s c r i p t  F i l e s 

postscript (―pca_magnitude.ps‖) plot(pca) 

dev.off () 

postscript (―boxplot.ps‖) boxplot (mat) 

dev.off() 

postscript (―scatter.ps‖) plot(mat) 

dev.off() 

postscript (―euQR_density.ps‖) 

plot (density (log(mat$euQR) ), xlab=― log (euQR), 

main=― 

‖) dev.off() Listing 4 

A p p l i c a t i o n o f l o g ( ) o n I n i t 

i a l D a t a s e t , S a m p l e  S e l e c t i o n ,  a n d  F 

e a t u r e  S e l e c t i o n 

mat$logeuQR<− log (mat$euQR) mat$logreQR<− log 

(mat$reQR) mat$logSigcheck<− log (mat$Sigcheck) mat 

<− subset (mat, euQR> threshold) 

m_mat<− subset (mat, select=c (―reQR‖, ―euQR‖) ) 

 

 Once PCA has been applied, we select the most 

informative variables for the problem considered.euQR is 

the variable with the greatest variance. The operation 

consisting in applying the log() function and removing the 

less requested FQDN (lines 5 and 6 of Listing 4) can be 

considered as preprocessing. To visualize the effects of this 

preprocessing, we use histograms (Figure 6). As the  kernel 

smoother used  by density(), histogram is a density 

estimator and  allows  us to visualize the distribution 

(Figure 7). us from finding objects in the original space 

that are  not  in our dataset. It also enables the 

precomputation of all the samples interdistances (i.e., the 

use of a dissimilarity matrix). The K-means algorithm is 

implemented in R through the function kmeans(). This 

function is part of thestats package  (R Development  Core  

Team,  2010).  This  function  returns a kmeans object 

consisting of clusters and some cluster characteristics. 

Also, the K-medoïds algorithm is implemented      through       

thepam() function. pam stands for Partition Around 

Medoïds. This function is provided by the packagecluster 

(Maechler et al., 2005) loaded in line  1    in Listing 5. The 

pam() function returns a cluster object. 
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FIGURE6 Preprocessingthe variable euQR. (a) euQR (q 

s− 1) without any transformation. (b) log(euQR) without 

less requested FQDN. 

 

 
FIGURE 7 Preprocessing and clustering after feature 

selection. 

  

Listing 5 

C l u s t e r i n g  a n d  S i l h o u e t t e  V i s u a l i z a t i o 

n 

library(―cluster) 

# silhouette width for pam and kmeans swlqr<− 

numeric(25) kswlqr<− numeric(25) sink(file=output_file, 

split=TRUE) for (k in c(2:3) ) { 

# kmean log qr 

km <− kmeans(clqrmat, center=k, iter.max=1000) 

kswlqr[k] <− summary(silhouette

 (km$cluster, daisy(clqrmat) ) ) $avg.width 

png(paste(―k0‖, k, ―qr_log_kmean.png‖, sep=―‖) ) 

par(cex=2);   plot(qrmat,   col=km$cluster   *   5,   

log=―xy‖, pch=km$ cluster) 

dev.off() 

print(paste(― - log qrkmean - k =‖,  k) ) 

mysummarykmean(km) 

# kmed log qr 

km <− pam(clqrmat, k=k) 

swlqr[k] <− km $ silinfo $ avg.width png(paste(―k0‖, k, 

―qr_log_kmed.png‖, sep=―‖) ) par(cex=2); plot(qrmat, 

col=km$ clustering * 5, log=―xy‖, 

pch=km$ cluster) dev.off() 

print(paste(― - log qrkmed - k =‖,  k) ) print(km$clusinfo) 

  

VII. CLUSTERING FOR SEGMENTING THE 

FQDN  

 

 The goal pursued is to separate FQDN into 

different groups   depending   on   their   costs.   The   

initial idea  we As suggested in Section 6, we cluster the 

data using investigate is to define for each FQDN a    set of 

cost-related variables (Section 6) and to cluster FQDN 

using an unsupervised machine learning technique. We aim 

at clustering the data in groups of FQDN having the same 

cost origins (e.g., frequently requested, long response, low 

TTL). 

 

 We use simple clustering algorithms: K-means 

and K-medoïds, for instance (cf. Hastie et al.,  

2008;Kogan,  2007). The K-means is a clustering 

algorithm grouping similar pieces of data together. A 

group is characterized by  its centroïd which is a vector 

minimizing the distances to all other elements of  the  

group.  The  K-medoïds  algorithm uses medoïds instead of 

centroïds. The difference between centroïds and medoïds is 

that medoïds are necessarily points belonging to  the  initial 

dataset. This characteristic  prevents a subset of initial 

variables (euQR and reQR) and another subset of 

preprocessed variables (log(euQR) and log(reQR) ). In 

practice, the K-means and  K-medoïds algorithms applied 

to the dataset exhibits a convergence in less than 15  

iterations. As a result, the data are well segmented into  

groups corresponding to the FQDN which are either rarely 

requested or frequently requested among the traffic (cf. Xu 
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et al., 2011). We also observe that the K-means and the K- 

medoïds schemes converge to similar clustering results.  It  

can be explained by the samples distribution and shape of 

the data, in which the centroïds are located quickly quite 

close to the medoïds data points. To determine the relevant 

number of clusters, we used   the silhouette as   defined   in 

Rousseeuw  (1987). The silhouette is defined for each 

sample and takes values between − 1 and 1. 

 

• it is close to 1 when the sample is near the center 

of the cluster it belongs to. 

• it is almost null if the sample is located near the 

frontier between its cluster and the nearest cluster. 

• it is negative if the sample is in a cluster it should 

not belong to. 

 

 For each FQDNi in cluster Ci, we measure ai the 

average   distance   between FQDNi and    other    FQDN  

ofCi. ai measures the average dissimilarity of FQDNi with 

Ci. Then, we measure bi  the  minimum  average  distance 

between FQDNi and      other      FQDN      in       clusters 

(Cj)j≠ i. bi measures similarity with other clusters. The 

silhouette for FQDNi is given by: 

 
 

 By construction of the K-means and the K-

medoïds algorithms, the silhouette cannot be negative. We 

run the clustering  algorithms  for  several  numbers  of   

clusters  (for loop from lines 9 to 27 in Listing 5). At each 

iteration,  we compute the average silhouette and store the 

result in a vector (created lines 4 and 5). For human 

readability, we draw the average  silhouette  thanks  to  the  

code  presented in Listing 6. To monitor the evolution of 

the for loop, we Listing 6 

R  C o d e  U s e d  t o  P l o t  S i l h o u e t t e 

# plot barplot of sil value for k in c(2:15) for aabb<− mat. 

or .vec(2,15) 

aabb[1, 1:15] <− kswlqr[1:15] aabb[2, 1:15] <− 

swlqr[1:15] par(cex=2) 

barplot(aabb[,2:15], beside=TRUE, col=c(―dark

 blue‖, 

―pink‖), names.arg=c(2:15),

 xlab=―cluster number‖, ylab=―average

 silhouette width‖, legend=c(―kmean‖, 

―kmedoid‖) ) 

 

decide   to   split   the   output   flow.   The   argument   of   

the sink() function (line 7) makes two identical copies of 

the output flow: 

• one flow for the standard output to monitor the 

evolution of the R script. 

• one flow written in the file whose name is stored 

in the variable output_file. 

 

 As the objects returned by kmeans() and pam() 

are not the same, the silhouette is not computed the same 

way. For the cluster object returned by the pam() function, 

we immediately access the silhouette information (line 21). 

For the kmeans object returned by kmeans(), we compute 

the silhouette thanks  to  the silhouette() function  included  

in  the R package cluster (Maechler et al., 2005). We 

provide to thesilhouette function clusters as returned by 

kmeans() and dissimilarity between samples computed 

bydaisy(). daisy() is also part of the cluster package 

(Maechler et al., 2005). We use the  summary()  

function     because  the  summary. silhouette object    

returned    is     easier     to manipulate  than the silhouette 

object  returned  by the silhouette() function.   This   is   

illustrated   in   line   12 of Listing  5. 

 

 We now handle silhouette values for multiple 

numbers of clusters (k values) and for the two clustering 

algorithms (K-means and K-medoïds). To visually 

compare the  results,  we  use barplot().  The  code  used  is   

written   in Listing 6. First, we cast all data into a two-

dimensional array. This array is declared and filled (lines 

3-5 fromListing 6)  with data from Listing 5. To enhance 

readability, we increase label size thanks to thepar() 

function (line 6). This function controls layout parameters 

for graphs. The cex parameter controls the size of text and 

symbols. The colors used (dark blue and pink) are chosen 

to be quite different if the graph is printed  in  black   and   

white.   The   results   are   presented in Figure 8. They 

show that the highest silhouette values for both clustering 

algorithms are obtained for 5, 3, and 2  clusters. This gives 

reliable estimates of the number of clusters fixed apriori to 

run the clustering algorithms. We perform an analysis of 

the DNS traffic through feature selection and clustering in 
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Section 4 and above. Now, we devote the three following 

sections to the construction of a routing table for the 

identified heavily requested FQDN. 

  
FIGURE 8 Average silhouette versus number of clusters. 

 

VIII BUILDING ROUTING TABLE THANKS TO 

CLUSTERING 

 

 As explained in Section 1, our goal is to build a 

routing table for the most requested FQDN to balance the 

load of the incoming DNS traffic in our resolution 

platform. The routing table is a function mapping a FQDN 

to a server of the platform, the platform being a set of 

resolution servers. This mapping is composed of explicit 

entries mapping FQDN to servers. For FQDN, which are 

not frequently requested, we compute the mapping on the 

fly based on a hashing function. We focus on the most 

requested FQDN for building the explicit  mapping.  Our  

first  idea  is  that  clustering outputs homogeneous groups 

of FQDN, each one having a different main source of cost. 

To balance the resources used between the servers of the 

platform, the idea is to  distribute  each group of FQDN 

homogeneously between servers. Doing this should 

dispatch the consumption of each kind of resource 

(network resources, memory, CPU, etc.) equally on each 

server. Unfortunately, as shown in Section 4, two variables 

(euQR and reQR) are more discriminative than  the  other 

because of  their  variance.  To  build  the  routing  table, 

we proceed cluster by cluster. For each cluster, we 

distribute FQDN in a round-robin fashion. The algorithm is 

detailed in algorithm 1. 

This algorithm outputs a routing table for the frequently 

requested FQDN, which maps the FQDN to different 

resolving servers. This table is not  used  directly after its 

generation but will be considered inSection 11 to be 

compared with routing tables built thanks to other  

approaches. 

  

Programming (MILP) method (cf. Schrijver, 1998) for 

instance: 

I: Set of FQDN requested by the end users 

J: Set of servers composing the DNS Resolving Platform 

qi, i ∈ I: Queries number associated with FQDN i 

ri, i ∈ I: Number of resolutions associated with FQDN i X 

= xi,j, (i, j) ∈ I × J: Matrix binding FQDN i to server j Qj, j 

∈ J: Number of queries supported by server j 

Rj, j ∈ J: Number of resolutions supported by server j 

We have immediately: 

  

A l g o r i t h m  1  B u i l d i n g   r o u t i n g   t a b l e   b 

a s e d o n  c l u s t e r i n g 

Require: cluster_number // number of clusters for the 

clustering algorithms 

Require: server_number // number of servers in our 

platform server ← 1 // used to indicate to which server 

current FQDN will be mapped 

for k = 0 to cluster_number do 

for fqdn ∈ k // enumerate FQDN belonging to cluster k do 

maps FQDN fqdn to 

server server mod server_number // add an explicit entry 

for the mapping 

server ← server + 1 

end for end for 

 

IX BUILDING ROUTING TA BLE THA N KS TO M I 

X E D INTEGER LINEAR PROGRAMMING 

 

 Another approach to building an efficient 

mapping between the FQDN and the servers of the 

resolving platform is to use linear programming. This idea 

is driven by the fact that     we    face     an     optimization     

problem.     We  used GLPK (Theussl and Hornik, 2010) to 

solve  this problem. AlthoughGLPK can be used as an R 

package, we  use it as a standalone program. 
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 Operational teams evaluate the efficiency of 

different load balancing techniques by comparing the CPU 

load of each server. However, providing an estimation of 

the CPU load  for a server relies on experimental 

measurements, and as (Migault et al., 2010) mentioned, 

measured values for the CPU load depend on the hardware, 

the DNS server implementation, the nature of the traffic, 

etc. Since we do not want to depend on these factors, we  

evaluate the  difference by considering the number of 

queries and resolutions performed by each server of the 

platform. Such evaluation requires defining specific 

notations we will use in the later in this chapter. 

Furthermore, these notations are also used to build    a    

routing    table    with    a    mixed    integer linear 

  

 We use this method to build a routing table for the 

most requested FQDN milp-200 as we consider 200 

FQDN. This number is the result of an operational 

evaluation. It is a compromise between the minimization of 

the computation time and the minimization of the number 

of FQDN that are not balanced thanks to the routing table. 

For each FQDN, the number of resolutions is computed 

thanks to the number of queries and the mean TTL value 

observed for the FQDN. Because we consider the popular 

FQDN, we assume that a resolution occurs every TTL 

seconds. 

 

 Although this method makes it possible to build a 

routing table thanks to a technically sound scientific  

approach, in practice it happens to be heavy to implement 

because of the computational burden which limits its 

applicability. Also, this method needs to evaluate a priori 

the number of FQDN to be processed, which relies only on 

an empirical estimation. 

 

 The MILP method is based on solving a system of 

equations. We define a given set I of FQDN (line 1 

ofListing 7). For a given distribution of these FQDN on the 

servers (xi,j)(i,j)∈I× J, we compute the number of queries 

and resolutions supported by each server (Qj, Rj)j∈ J. The 

distribution we seek minimizes the differences between the 

servers of the platform in terms of (Qj, Rj)j∈ J: ΔQ and 

ΔR. 

M i x e d I n t e g e r L i n e a r P r o 

g r a m U s e d t o B u i l d  a  R o u t i n g  T a b l e 

set I; /* set of fqdn */ set J; /* set of servers */ 

paramk;  /* k parameter */ 

 

paramc{i in I, j in 1..2}; /* costs[r, q] */ varS{j in J};  /* 

sum of requests */ varT{j in J};  /* sum of resolutions */ 

varx{i in I, j in J} binary; /* 1 if Fi affected to Sj */ 

vardeltar; 

vardeltaq; var max; 

 

  

 

 

 

 

 

 

 

 

 Trying all possible combinations for such a 

distribution is not feasible, so we formulate our problem as 

a MILP and use a solver (GLPK in this case, Theussl and 

Hornik,  2010)  to  find   a   proper   distribution.   

Although an R application programming interface for 

GLPK exists (Theussl and Hornik, 2010), we decide not to 

use it. Writing the problem using the GNU Mathematical 

Programming Language, the native language for GLPK, is 

easier once the problem is modeled. 

 

 The challenge for the solver is to find a 

distribution that is close to the optimal distribution, even 

though we do  not know the optimal solution. Considering 

200 FQDN is a compromise between the total number of 

FQDN to process and the resources needed for the 

computation as shown in (Francfort et al., 2011). The 

integer linear optimization problem with two objectives 

consists in minimizing ΔQand ΔR defined as follows: 

 
        

 To ease the resolution by the solver, we reduce 

the number of objectives by defining a FQDN cost: 

 

λ is  a  weighting  parameter   which   determines  the   

parts of q and r in the definition of the cost. In that sense, 

the important parameter is not λ itself but the ratio. 

minimize cost : max; /* objectives */ 
s.t.slack{(j1, j2) in (J cross J)} : k * S[j1] + (1 - k) * 10000 * 

T[j2] <= max; 

s.t.aff{i in I} : sum{j in J} (x[i, j]) >= 1; /* one fqdn affected 
to at least 1 server */ 
s.t.q {j in J} : sum{i in I} (x[i, j] * c[i, 1]) = S[j] ; 
s.t.r {j in J} : sum{i in I} (x[i, j] * c[i, 2]) = T[j] ; 
solve; 
end; 
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Note that λ is introduced here only for resolving purpose, 

and has a priori no physical meaning. The problem is then 

rewritten as: 

 
              

 Cj represents the cost supported by the server j.  

This  objective function ensures the minimization of the 

cost supported by each server, which leads to the 

minimization of the difference of costs between the servers 

of the platform. The cost that is not supported by the most 

loaded server is reported on other servers, increasing the 

cost supported by  the less loaded server, which thus 

reduces the difference of costs supported by the servers. 

 

 
FIGURE 9 Bi-criteria MILP results. 

 

Building Routing Table via a Heuristic 

 The method described in Section  9 gives  us  

promising results, but can only consider a limited  number  

of FQDN. We thus evaluate another approach based on a 

heuristic. 

The goal of this algorithm is similar to milp-200: 

minimizing jointly ΔQ and ΔR. However, the way we 

build the routing table provides less accurate results as 

milp-200. As a result, we need to consider a much larger 

set—namely, 18 times larger—of FQDN to build a routing 

table which balances properly the load among the servers. 

Even though the routing table is roughly 18 times larger, it 

takes less than 0.5 s to  build it. Compared to 1000 s with 

milp-200, this method may present an operational 

advantage over milp-200.  The algorithm starts with I, the 

set of the most requested FQDN. From the current set of 

FQDN, it takes the costliest FQDN, assigns   it    to    the    

less    charged    server    (i.e.,    a server jmin verifying ) 

and removes it from the  FQDN  set. This step is 

performed until the set of FQDN is empty. 

 
 

 To compare this method with milp-200, we 

compute ΔQ and ΔR for different values of λ. We first 

choose a set of 200 FQDN to be compared with the results 

from Section 9. Then, by construction, an upper bound  of  

the  difference between the cost on different servers is 

mini∈ I ci, ci being the cost of the less costly FQDN. Thus, 

we choose I, the set of FQDN, such that the last element is 

associated with a cost that is roughly the difference of costs 

generated by milp-200. This leads to consider 1580 FQDN. 

We  denote  these  algorithms as stacking-200 and 

stacking-1580. Note that 200 FQDN represent 16% of the 

number of queries and that 1580 FQDN represent 46% of 

the number of  queries. Figure  10shows  that stacking-200 

presents a lower  front compared to stacking-1580.  

However,  ΔQ and ΔR are computed according to the set 

of FQDN I. This set is definitely not the same in stacking-

200 and instacking-1580, which makes  the  comparison 

between stacking-200 and stacking- 1580 difficult 

according to Figure 10. 
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FIGURE 10 Pareto front with easy stacking. 

 

 One must keep in mind that this comparison takes 

into account the FQDN used for building the routing table. 

This is motivated by the fact that we evaluate the routing 

table and not the imbalance owing to the less requested 

FQDN. At this point, we can deal with the most requested 

FQDN and see what happens when adding the less 

requested FQDN. 

 

Final Evaluation 

 Once routing tables are built (cf.  methods 

detailed  in previous Sections 8–10), we evaluate them. A 

routing  table takes into account only the most requested 

FQDN. To validate the previously built routing tables and 

to decide which one is the best, we perform simulations. A 

simulation consists in replaying the traffic on a simulator. 

The traffic replayed is a 10-min slot received on one of our 

resolving platforms at a rush hour. This allows us to  

perform  evaluation including FQDN which are not 

balanced thanks to the previously built routing table. The 

simulator is a program implementing the load balancing 

task and some basic functions of the DNS servers to 

reproduce the behavior of a DNS resolving platform. The 

functions implemented are the only ones needed to 

evaluate performance. The indicators computed by the 

simulator are for each DNS server. 

 

Network related indicators 

• Query rate 

• Response rate DNS-Related Indicators 

• Number of signatures to be checked if DNSSEC 

is used 

• Cache management 

• CHR 

• Cache length 

• Number of resolutions to perform on the Internet 

 

 The result of the simulation consists of an array 

containing these indicators for each server of the platform. 

The next step is to analyze the various indicators computed 

from simulations. To do so, we seek for a comprehensive 

representation of these indicators. 

  

 To visualize the repartition of the resources over 

the platform and to compare the different routing tables, 

we use the graphical function boxplot. Handling a boxplot 

allows us to see immediately the median, the quartiles, and  

the minimum and maximum in term of resources needed 

by servers. Note that the median is a more interesting 

indicator than the mean as every FQDN-based load 

balancing  generates exactly the same number of  requests  

and resolutions for the whole platform. Boxplots are 

directly drawn thanks to the boxplot() function. 

 

 
FIGURE 11 Repartition of costs. 

 

XII CONCLUSION 

 

 R is an attractive tool to explore data and to 

design scripts on the basis of statistical methods. It is also 

efficient  to visualize data. Same as python, it is useful for 

fast prototyping. The interactive mode allows us to find 



 

 

   

ISSN (Online) 2394-2320 
 

International Journal of Engineering Research in Computer Science and Engineering  

(IJERCSE)  

Vol 4, Issue 3, March 2017 
 

 

                 100 

 

 

and test different options for the different built-in functions 

to be included in scripts. Script mode is useful for process 

automation. As in python, one can take advantage of the 

object oriented possibilities offered by this language to 

ease scripts design. 

 

 R is complete with its extensions provided thanks 

to a variety of officially supported packages which ease its 

use. For common statistical-oriented usages, functions 

already exist. Moreover, the documentation is complete 

and gives us references to the algorithms the functions 

implement. One of the advantages of R is the possibility of 

making graphs with almost every R object. This is useful 

to visualize  the  effects of the processing performed on the 

data. 

 

 To our knowledge, FQDN-based load balancing 

techniques and the methods used to build the related 

routing tables are novel approaches to address the problem  

of  Internet resolving platforms optimization. In the 

application case of data mining methods implemented in R 

, it was demonstrated that FQDN-based load  balancing  is  

efficient for improving the CHR and for reducing  the  

resources needed to process DNS(SEC) traffic on a 

resolving platform. We can take advantage of the most 

popular FQDN  distribution to improve this load balancing. 

Further works on the platform optimization problem 

described in this chapter include a more efficient 

processing of the rarely requested FQDN and the study of 

robustness for the proposed load balancing techniques. 
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