
ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 4, Issue 3, March 2017

 277

Self Destructing Data System For Distributed

Object Based Active Storage Framework

[1]
 Mrs. Bharati A. Raut,

[2]
 Mr. Nitin S. Thakre,

[3]
rs. Rupali A. Fulse

 [1][2][3]
Assistant Professor

Department of Information Technology,

Priyadarshini Institute of Engineering and Technology,Nagpur,India

Abstract - With the development of Cloud computing and popularization of mobile Internet, Cloud services are becoming more and

more important for people’s life. People are more or less requested to submit or post some personal private information to the

Cloud by the Internet. When people do this, they subjectively hope service providers will provide security policy to protect their

data from leaking, so other people will not invade their privacy. As people rely more and more on the Internet and Cloud

technology, security of their privacy takes more and more risks. As all the concept and researches have been evolved on the self

destructing data system on the cloud computing, this paper is all about the web site security. That means the same concept of self

destructing data system is used and applied on the web site, as web site users are tremendously in large numbers than the cloud

users.

Keywords:--- Active storage, Cloud computing, Data privacy, self-destructing data.

I. INTRODUCTION

 With development of fast network access, the

popularization of Internet are becoming more and more

important for people’s life. People are more or less

requested to submit or post some personal private

information to the website byInternet. As people rely more

and more on the Internet technology, security of their

privacy takes more and more risks. On the one hand, when

data is being processed, transformed and stored by the

current computer system or network, systems or network

must cache, copy or archive it. These copies are essential

for systems and the network. A goal of creating data that

self-destructs or vanishes automatically after it is no longer

useful. More-over, it should do so without any explicit

action by the users or any party storing or archiving that

data, in such a way that all copies of the data vanish

simultaneously from all storage sites, online or offline.

Vanish [1] supplies a new idea for sharing and protecting

privacy. In the Vanish system, a secret key is divided and

stored in a P2P system with distributed hash tables

(DHTs). With joining and exiting of the P2P node, the

system can maintain secret keys. According to

characteristics of P2P, after about eight hours the DHT will

refresh every node. With Secret key Sharing Algorithm [2],

when one cannot get enough parts of a key, he will not

decrypt data encrypted with this key, which means the key

is destroyed. A self-destructing data system, or SeDas,

which is based on an active storage framework [5]–[10].

The SeDas system defines two new modules, a self-

destruct method object that is associated with each secret

key part and survival time parameter for each secret key

part.

 In the key distribution algorithm, algorithm [2],

which is used as the core algorithm to implement client

(users) distributing keys in the object storage system.

These methods to implement a safety destruct with equal

divided key. Based on active storage framework, we use an

object-based storage interface to store and manage the

equally divided key. Through functionality and security

properties evaluation of the SeDas prototype, the results

demonstrate that SeDas is practical to use and meets all the

privacy-preserving goals. The prototype system imposes

reasonably low runtime overhead. SeDas supports security

erasing files and random encryption keys stored in a hard

disk drive (HDD) or solid state drive (SSD), respectively.

II. DETAILS EXPERIMENTAL

2.1. Related Work A new scheme that supports dynamic

grouping and sharing system, where any member is

allowed to join or his/her participation in the group.

Revocation can be simply performed without making

trouble in updating secret keys of other group members. A

cryptographic storage system which enables secure sharing

of files on untrusted server called Plutus. The large files

are divided into no of small files each then encrypted with

leave the group at any point in time.

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 4, Issue 3, March 2017

 278

 Group signature identifies and authenticates each

member in the group to ensure the quality of the secret.

User revocation performed by using a revocation list

generated by cloud server. Each newly joined member can

decrypt files without contacting data owners before a secret

key. Relevant users receives corresponding key to decrypt

each small file blocks. Even though the system is flexible

enough, heavy key distribution overhead experienced for

large scale file sharing. Moreover, inorder to perform user

revocation entire key pairs has to be updated. Based on

Encryption method ,the data owner usually the group

manager selects a key randomly to encrypt files and the

chosen random key given to corresponding users for

decoding the secret key. Decryption only performed if and

only if it satisfies predefined access structure of the file.

This system also requires updating secret keys of all users

to perform a user revocation operation.

2.2. Data Self Destruction Self-Destruction data is

implemented by encrypting data with a key and that

information is needed to reconstruct the decryption key

with one or more third parties. A local data destruction

approach will not work in the Cloud storage because the

number of backups or archives of the data that is stored in

the Cloud is unknown, and some nodes preserving the

backup data have been offline. The clear data should

become permanently unreadable because of the loss of

encryption key,(1) even if an attacker obtains a copy of the

encrypted data and the user’s cryptographic keys and

passphrases after the timeout, (2) without the user or user’s

agent taking any explicit action to erase it, (3) without

needing to modify any saved copies of that data, and (4)

without the user relying on secure hardware. The self-

destructing data system in the web site environment should

meet the following requirements:

i) How to destruct all copies of the data.

ii) No explicit delete actions by the user, or any third-party

storing that data.

iii) No compelling reason to adjust any of the saved or

documented copies of that data.

iv) No use of secure hardware but support to completely

erase data in HDD and SSD, respectively.

 Vanish is a system for creating messages that

automatically self-destruct after a period of time. It

integrates cryptographic techniques with global-scale, P2P,

distributed hash tables (DHTs): DHTs discard data older

than a certain age.The key is permanently lost, and the

encrypted data is permanently unreadable after data

expiration. Vanish works by encrypting each message with

a random key and storing shares of the key in a large,

public DHT. Based on active storage framework, this paper

proposes a distributed object-based storage system with

self-destructing data function. Our system combines a

proactive approach in the object storage techniques and

method object, using data processing capabilities of OSD

to achieve data self-destruction. User can specify the key

survival time of distribution key and use the settings of

expanded interface toexport the life cycle of a key,

allowing the user to control the subjective life-cycle of

private data.

2.3. Object - Based Active Storage Abbreviated as OSD,

an Object-Based Storage Device is a device that

implements the standard in which data is organized and

accessed as objects, where object means an ordered set of

bytes (within the OSD) that is associated with a unique

identifier. Objects are allocated and placed on the media by

the OSD logical unit. With an OSD interface, metadata is

associated directly with each data object and can be carried

between layers and across storage device files and records

are no longer abstractions, but actual storage objects that

are understood, managed and secured at the device level.

Object-based storage (OBS) uses an object-based storage

device (OSD) as the underlying storage device. The T10

OSD standard is being developed by the Storage

Networking Industry Association (SNIA) and the INCITS

T10 Technical Committee. Each OSD consists of a CPU,

network interface, ROM, RAM, and storage device (disk

or RAID subsystem) and exports a high-level data object

abstraction on the top of device block read/write interface.

A storage object can be a file consisting of a set of ordered

logical data blocks, or a database containing many files, or

just a single application record such as a database record of

one transaction.

2.4. Completely Erase Bits Of Encryption Key

 In SeDas, erasing files, which include bits (Secret

Key Shares) of the encryption key, is not enough when we

erase/ delete a file from their storage media; it is not really

gone until the areas of the disk it used are overwritten by

new information. With flash-based solid state drives

(SSDs), the erased file situation is even more complex due

to SSDs having a very different internal architecture. For

instance, different from erasing files which simply marks

file space as available for reuse, data wiping overwrites all

data space on a storage device, replacing useful data with

garbage data. Depending upon the method used, the

overwrite data could be zeros (also known as “zero-fill”) or

could be various random patterns [41]. The ATA and SCSI

command sets include “secure erase” commands that

should sanitize an entire disk. Physical destruction and

degaussing are also effective. SSDs work differently than

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 4, Issue 3, March 2017

 279

platter-based HDDs, especially when it comes to read and

write processes on the drive. The most effective way to

securely delete platter-based HDDs (overwriting space

with data) becomes unusable on SSDs because of their

design. Data on platter-based hard disks can be deleted by

overwriting it. This ensures that the data is not recoverable

by data recovery tools. This method is not working on

SSDs as SSDs differ from HDDs in both the technology

they use to store data and the algorithms they use to

manage and access that data.

2.5. System Architecture

 Fig. 1 shows the architecture of SeDas. There are

three parties based on the active storage

framework.Metadata server (MDS): MDS is responsible

for user management, server management, session

management and file metadata management.

i) Application node: The application node is a client to use

storage service of the SeDas.

ii) Storage node: Each storage node is an OSD. It contains

two core subsystems: key value store subsystem and active

storage object (ASO) runtime subsystem.The key value

store subsystem that is based on the object storage

component is used for managing objects stored in storage

node: lookup object, read/write object and so on. The

object ID is used as a key. The associated data and attribute

are stored as values. The ASO runtime subsystem based on

the active storage agent module in the object-based storage

system is used to process active storage request from users

and manage method objects and policy objects.

2.6. Active Storage Object

 An active storage object derives from a user

object and has a time-to-live (ttl) value property. The

ttlvalue is used to trigger the self-destruct operation. The

tllvalue of a user object is infinite so that a user object will

not be deleted until a user deletes it manually. The ttlvalue

of an active storage object is limited so an active object

will be deleted when the value of the associated policy

object is true.Interfaces extended by

ActiveStorageObjectclass are used to manage ttlvalue. The

create member function needs another argument for ttl. If

the argument is 1, UserObject:: create will be called to

create a user object, else, ActiveStorageObject::create will

call UserObject::create first and associate it with the self-

destruct method object and a self-destruct policy object

with the ttlvalue. The getTTLmember function is based on

the read_attrfunction and returns the ttlvalue of the active

storage object. The setTTL, addTimeand decTimemember

function is based on the write_attrfunction and can be used

to modify the ttlvalue. 2.7. Self-Destruct Method Object

Generally, kernel code can be executed efficiently; a

service method should be implemented in user space with

these following considerations. Many libraries such as

libccan be used by code in user space but not in kernel

space. Mature tools can be used to develop software in user

space. It is much safer to debug code in user space than in

kernel space. A service method needs a long time to

process a complicated task, so implementing code of a

service method in user space can take advantage of

performance of the system. The system might crash with

an error in kernel code, but this will not happen if the error

occurs in code of user space.A self-destruct method object

is a service method. It needs three arguments. The

lunargument specifies the device, the pid argument

specifies the partition and the obj_idargument specifies the

object to be destructed. 2.8. Data Process To use the SeDas

system, user’s applications should implement logic of data

process and act as a client node. There are two different

logics: uploading and downloading. i) Uploading file

process (Fig. 2):When a user uploads a file to a storage

system and stores his key in this SeDas system, he should

specify the file, the key and ttlas arguments for the

uploading procedure. The ENCRYPT procedure uses a

common encrypt algorithm or user-defined encrypt

algorithm. After uploading data to storage server, key

shares generated by Shamir Secret Sharing algorithm will

be used to create active storage object (ASO) in storage

node in the SeDas system. ii) Downloading file process:

Any user who has relevant permission can download data

stored in the data storage system. The data must be

decrypted before use. The whole logic is implemented in

code of user’s application.

III. EVALUATION

 The evaluation platform supports simple file

management, which includes some data process functions

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 4, Issue 3, March 2017

 280

such as file uploading, downloading and sharing. 1)

Functional Testing:We input the full path of file, key file,

and the life time for key parts. The system encrypts data

and uploads encrypted data. The life time of key parts is 15

minutes for a sample text file with 101 bytes. System

prompts creating active object are successful afterwards

and that means the uploading file gets completed. The time

output finally is the time to create active object. SeDas was

checked and corresponded with changes on work directory

of the storage node. The sample text file also was

downloaded or shared successfully before key destruct. 2)

Performance Evaluation:As mentioned, the difference of

I/O process between SeDas and Native system is the

additional encryption/decryption process which needs

support from the computation resource of SeDas’ client.

We compare two systems: i) A self-destructing data system

based on active storage framework (SeDas for short) ii) A

conventional system without self-destructing data function.

Compared with the Native system without self-destructing

data mechanism, throughput for uploading and

downloading with the proposed SeDas acceptably

decreases by less than 72%, while latency for

upload/download operations with self-destructing data

mechanism increases by less than 60%.

IV. RESULTS AND DISCUSSION

 There are multiple storage services for a user to

store data. Meanwhile, to avoid the problem produced by

the centralized “trusted” third party, the responsibility of

SeDas is to protect the user key and provide the function of

self-destructing data. In this structure, the user application

node contains two system clients: any third-party data

storage system (TPDSS) and SeDas. The user application

program interacts with the SeDas server through SeDas’

client, getting data storage service.The process to store data

has no change, but encryption is needed before uploading

data and the decryption is needed after downloading data.

In the process of encryption and decryption, the user

application program interacts with SeDas. The client

mainly runs in kernel mode, and it can mount a remote file

system to local.

V. ACKNOWLEDGMENTS

 Data privacy has become increasingly important

in the Web Site environment. This paper introduced a new

approach for protecting data privacy from attackers who

retroactively obtain, through legal or other means, a user’s

stored data and private decryption keys. A novel aspect of

our approach is the leveraging of the essential properties of

active storage framework based on T10OSD standard.

SeDas causes sensitive information, such as account

numbers, passwords and notes to irreversibly self-destruct,

without any action on the user’s part. The fixed data

timeout and large replication factor present challenges for a

self-destruction data system.

REFERENCES

1. Lingfang Zeng, Shibin Chen , Qingsong Wei and

DanFeng” SeDas: A Self-Destructing Data SystemBased

on Active Storage Framework” IEEE TRANSACTIONS

ON MAGNETICS, VOL. 49, NO. 6, JUNE 2013.

2. Karthik D U, Madhu C, Sushant M ” A Systematic

Approach to Cloud Security Using SeDas Platform,”

International Journal Of Engineering And Computer

Science ISSN:2319-7242 Volume 3 Issue 5 may, 2014

Page No. 5940-5947.

3. R. C. Dharmik, Hemlata Dakhore, Vaishali Jadhao

“Sedas: A Self destructive Active Storage Framework for

Data Privacy” ISSN (Online): 2347-3878 Volume 2 Issue 3

March 2014.

4. P.Mani Priyadharsini, Mr.M.Gughan Raja, “Time

Constrained Data Destruction in Cloud,” International

Journal of Innovative Research in Science, Engineering

and Technology (An ISO 3297: 2007 Certified

Organization) Vol. 3 , Issue 4 , April 2014.

5. N. RamaKalpana1, R. Santhosh2 “ SeDas: SELF -

DESTRUCTION DATA SYSTEM FOR DISTRIBUTED

OBJECT BASED ACTIVE STORAGE FRAMEWORK,”

IJSWS 14-160; © 2014.

6. Backya S, Palraj K “ Declaring Time Parameter to Data

in Active Storage Framework,” International Journal of

Advanced Research in Computer engineering &

Technology (IJARCET) Volume 2, Issue 12, December

2013.

7. IR.Ramachandran, IIM.P. Revathi, “SADDs – Self

Annihilation and downloadable Data system in Cloud

Storage Service,” IJARCST Vol. 2 Issue Special 1 Jan-

March 2014.

8. Lalitha K1, Sasi Devi J2, “SEDAS: A Self Destruction

for Protecting Data Privacy in Cloud Storage As A Service

Model,” International Journal of Innovative Research in

Science, Engineering and Technology , Volume 3, Special

Issue 1, February 2014.

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 4, Issue 3, March 2017

 281

9. Backya S, Palraj K, “Declaring Time Parameter to Data

in Active Storage Framework,” International Journal of

Advanced Research in Computer Engineering &

Technology (IJARCET) Volume 2, Issue 12, December

2013.

10. Mohan Sadasivam1, Rajeeve Dharmaraj2, “SADS –

Self Annihilating Data Storage system in Cloud Storage

Service,” International Journal of Information &

Computation Technology. ISSN 0974-2239 Volume 4,

Number 11 (2014), pp. 1035-1042.

11. Ranjith.K, P.G.Kathiravan, “ A SELF-

DESTRUCTION SYSTEM FOR DYNAMIC GROUP

DATA SHARING IN CLOUD,” IJRET: International

Journal of Research in Engineering and Technology,

Volume: 03 Special Issue: 07 | May-2014.

12. N.S.Jeyakarthikka, S.Bhaggiaraj, A.Abuthaheer, “ Self

Destructing Data System Based On Session Keys,”

INTERNATIONAL JOURNAL OF SCIENTIFIC &

TECHNOLOGY RESEARCH VOLUME 3, ISSUE 2,

FEBRUARY 2014.

