
ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 4, Issue 3, March 2017

 89

Analyzing Internet DNS (SEC) Traffic with

―R‖ For Resolving Platform Optimization
[1]

J Uma Mahesh,
[2]

Harekrishna Allu ,
[3]

N Chandrakanth
[1][2]

Assistant Professor
[3]

 Professor

Department of CSE, Geethanjali College of Engineering and Technology

Abstract— This paper proposes to use data mining methods implemented via R in order to analyze the Domain Name System

(DNS) traffic and to develop innovative techniques for balancing the DNS traffic according to Fully Qualified Domain Names

(FQDN) rather than according to the Internet Protocol (IP) addresses. With DNS traffic doubling every year and the deployment

of its secure extension DNSSEC, DNS resolving platforms require more and more CPU and memory resources. After

characterizing the DNS(SEC) traffic thanks to reduction in dimension and clustering methods implemented with R functions and

packages, we propose techniques to balance the DNS traffic among the DNS platform servers based on the FQDN. Several methods

are considered to build the FQDN-based routing table: K- means clustering algorithm, mixed integer linear programming, and a

heuristic scheme. These load balancing approaches are run, and evaluated with R on real DNS traffic data extracted from an

operational network of an Internet Service Provider. They result in reducing the platform CPU resources by 30% with a difference

of less than 2% CPU between the servers of a platform.

Index Terms— Telecommunications; Internet; DNS; DNSSEC; Feature selection; Dimension reduction; Clustering; Load

balancing; K-means.

I. INTRODUCTION

 Domain Name System (DNS) (Mockapetris,

1987a,b) is the computer protocol that facilitates Internet

communication using hostnames by matching an Internet

Protocol (IP) address and a Fully Qualified Domain Name

(FQDN), e.g., ―www.google.com.‖ DNS servers, which

host the IP addresses of the queried web sites—that is to

say the DNS responses—are called Authoritative Servers.

Because Authoritative Servers would not be able to support

all end users‗ queries, the DNS architecture introduces

Resolving Servers that cache the responses during Time to

Live (TTL) seconds. Internet Service Providers (ISPs)

manage such servers for their end users. Thanks to the

caching mechanism, Resolving Servers do not

need to ask Authoritative Servers if the response is still

in their cache. This provides faster responses to the end

user and reduces the traffic load on the DNS Authoritative

Servers.

 For multiple reasons, ISPs consider operating

DNSSEC, the security extension of DNS defined in

the standards (Arends et al., 2005a,b,c; Sawyer, 2005).

With DNSSEC, a DNS response is signed so that its

authenticity (generation by a legitimate Authoritative

Server) and its integrity (nonmodification of response) can

be checked. With DNSSEC, resolutions require multiple

signature checks so that responses are around seven times

longer than traditional DNS responses. Migault (2010),

Migault et al. (2010), and Griffiths (2009) show that

DNSSEC resolution platforms require up to five times

more servers than DNS resolution platforms. Migault et al.

(2010) measures that a DNSSEC resolution involves three

signature checks and costs up to 4.25 times more than a

regular DNS resolution. With the DNS traffic doubling

every year and the deployment of its secure extension

DNSSEC, DNS resolving platforms require more and more

resources.

 The operational problem faced is to reduce the

resources needed by a resolving platform. The resolving

platform consists of several DNS resolving servers behind

a load balancer device. The load balancer splits the

incoming traffic to distribute queries on resolving servers.

The classical way of load balancing is performed by

assigning a pool of clients to be served to each server.

One way to reduce the load on a server is to lower the

number of resolutions. To reduce the number of

resolutions, Migaultand Laurent (2011) and Francfort et al.

(2011) evaluate the advantage of splitting the DNS traffic

according to the queried FQDN rather than according to

the IP addresses. This increases the efficiency provided by

caching mechanisms, reduces the number of signatures to

be checked, and can result in a 1.32 times more efficient

architecture.

 To design this new load balancing mechanism, we

first need to characterize the DNS traffic and to evaluate

how the DNSSEC traffic looks like. We perform data

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 4, Issue 3, March 2017

 90

extraction from raw network captures taken from a DNS

resolving platform. The main challenge here is to define

the variables, which are taken and computed for each

FQDN. The goal is to define a routing table mapping each

frequently requested FQDN to a server of the resolving

platform.

II. DATA EXTRACTION FROM PCAP TO CSV

FILE

 To conduct this study, we first gather pieces of

DNS data. They consist of real outbound and inbound DNS

traffic of the platform stored in PCAP files. Then, for each

FQDN found in a traffic sample, we compute a series of

variables. Given the application considered, these variables

are related to the FQDN‗s resolution cost.

Network costs: servers occupation times associated to a

FQDN (time between a query and its response) and

different rates:

• mean open context times observed for resolvers:

Mean Internet Resolution Time (MIRT) and Mean

Platform Resolution Time (MPRT)

• end user and platform query rates (euQR and

reQR)

• end user and platform bit rates (euBR and reBR)

Computation costs: signature checks related

variables:

• number of signature checks (SigCheck)

• cache hit rate (CHR)

• Memory costs: cache length and cache update

related variables:

• mean TTL observed (MTTL)

• query and response length (Qlen and Rlen)

• response time for cached response

 These variables are exported into a CSV file. CSV

is a standard format that can be read from many softwares

and languages, including R. To generate this CSV file, we

use a homemade python script. This file is composed of

lines terminated with the UNIX-compliant end of line

character (―\n‖), each line containing the variables

corresponding to a FQDN into fields. The separator that

separates fields is the classical space and fields are not

enclosed between quotation marks. The first field is the

FQDN, i.e., the label of the vector corresponding to the

FQDN. Variables labels are not included in the CSV file to

ease some common operations like split or concatenation

of several CSV input files. The first arrow in Figure 1

represents this step.

FIGURE 1 Extraction and importation from PCAP files

to R.

 Our dataset is now stored in a CSV file that

consists of vectors corresponding to FQDN and composed

of cost- related measures.

III. DATA IMPORTATION FROM CSV FILE

TO R

 Once the dataset is extracted from PCAP files to

CSV files, we import these files into R. To do so, we use

the code in the Listing 1. This step is represented by the

last arrow in Figure 1. As described in Section 1.2, the

CSV file does not contain dimension labels. In line 3 of

Listing 1, we construct a vector containing all labels in the

correct order. These labels will be used.

Listing 1

R C o d e U s e d t o L o a d D a t a s e t f r o m C

S V F i l e

filename = ―inputfile.CSV‖ # input filename

clab<− c(―euQR‖, ―reQR‖, ―tR‖, ―euBR‖, ―reBR‖,

―tBR‖,

―cQRT‖, ―reOCC‖, ―euOCC‖, ―tOCC‖, ―CHR‖,

―eQR‖,

―eCPU‖, ―ePRT‖, ―succRatio‖, ―failRatio‖,

―cltQNbr‖,

―pltQNbr‖, ―Qlen‖, ―Rlen‖, ―Sigcheck‖, ―MIRT‖,

―SDIRT‖,

―MPRT‖, ―SDPRT‖, ―MTTL‖, ―SDTTL‖)

mat_ent<− read.table (filename, row.names=1,

col.names=clab)
mat_ent<− subset (mat_ent, cQRT> 0) # python script

return − 1 if no request is present and cQRT is used to plot

several variables

mat <− subset (mat_ent, MTTL > 0) # remove non valid TTL

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 4, Issue 3, March 2017

 91

 Later to ease dimension selection. The R-function

used to import data is read.table(), in line 5. This function

returns a matrix stored in a data.frame object whose

dimensions are labeled thanks to therow.names and

col.names arguments. We set the name of the input file at

the beginning of our code (line 1) to ease the readability

and the further modification of the input file name. Note

that the way our CSV file is defined allows us to keep

default values for most of the read.table()

function‗s parameters. The last lines of Listing 1

(lines 7 and 8) are used to remove lines (i.e., FQDN),

which present non acceptable values for the variables,

from our data. This is a step to delete FQDN whose

variables are not coherent or not in the expected intervals.

We now have a data.frame containing the input dataset for

further R processing.

IV. DIMENSION REDUCTION VIA PCA

 The dataset consists of several thousands of 27-

dimensional vectors, each vector corresponding to a

FQDN. For a better understanding, we aim at reducing this

dataset volume by shrinking the number of its dimensions,

i.e., the number of FQDN characteristics. To perform this

dimension reduction, we use principal component

analysis (PCA; cf. Cox and Cox, 2001), for instance. PCA

is an efficient way to reduce the number of noninformative

dimensions and to eliminate correlated variables. The PCA

algorithm is implemented in R through the function

prcomp(). The code used to perform PCA is presented in

Listing 2.

Listing 2

R C o d e U s e d f o r P C A

r = 0.9 # threshold for PCA

output_file = paste (format (Sys.time(), ―%F-%T‖),

―-

Rout.txt‖, sep=―‖) # file where to

print tmp_file = ―/tmp/foo‖ #tmp

file sink(output_file)

clabf<- c(―euBR‖, ―reBR‖, ―QNbr‖, ―pltQNbr‖,

―CHR‖,

―cQRT‖, ―MIRT‖, ―MPRT‖,

―MTTL‖) mat <- subset (mat,

select=clabf)

pca<- prcomp(mat, scale=TRUE, center=TRUE)

mag <- sum(pca$sdev * pca$sdev) # total magnitude

pca<- prcomp(mat, tol = (1 − r)*mag/(pca$sdev

[1] * pca$sdev [1]), scale=TRUE, center=TRUE)

write.table(pca$x, file=tmp_file)

d<-read.table(tmp_file, header=TRUE, row.names=1)

write.table(pca$rotation, file=tmp_file)

rot<-read.table(tmp_file, header=TRUE,

row.names=1) print(pca$rotation) # new vectors

sink()

 To ease the exploitation of the PCA‗s results, we

dump the output stream into a file which can be read

thanks to any text editor. To do so, we first construct the

name of this file. We want to keep and distinguish results

from this script run at different times. The filename (line

2 of Listing 2) contains the date when the script is run

(Sys.date()) in a friendly format (format()). This

timestamp is concatenated with another string (―-

Rout.txt‖) thanks to the function paste. We change the

separator of this function to the empty string (sep=― ‖) to

avoid space in the filename.

 We also use a temporary file to write and read

some data. This is a trick to reformat a matrix

object into a data.frame object which can be

avoided using as.data.frame(). Moreover as.data.frame()

takes less time as it does not require hard disk access. To

open an output flow, we use the function sink() (line 4

ofListing 2) with the filename constructed line 2. This

redirects all the output into the file. Note that the file

should be closed (line 18 of Listing 2). As a preparation

step, we also store a subset of dimension labels in a

vector (line 5) to be used later to select a subset of initial

data thanks to the subsetfunction (line 7). This subset

concerns only nine variables and ignores others which

are linear combinations of the first ones.

 In the PCA, we define a threshold to decide which

components are kept. We aim at keeping a percentage of

the total magnitude. We used prcomp() the first time

(line 9 of Listing 2) to get the whole magnitude, i.e., the

whole variance, and to compute the variance kept. We

recompute a PCA using this variance value (line 11). The

result of this step is the rotation matrix and the vectors in

the new basis. These results are stored in variables (line 13

of Listing 2) and printed into the output file (line 16)

(Figure 2).

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 4, Issue 3, March 2017

 92

FIGURE 2 Reduction dimension via PCA.

 Thanks to the rotation matrix and the screegraph

(plot of variance explained by each principal component

represented in Figure 3), we can see that:

• The two first principal components hold a

significative part of magnitude (35% in our

application case)

• The two first principal components are

mainly due to euQR and reQR

FIGURE 3 Screen graph of PCA on initial variables.

This result could have been obtained by analyzing the

variance for each variable individually. euQRand

reQR are the most discriminative variables from the

viewpoint of second-order statistical information

(variance).

V. INITIAL DATA EXPLORATION VIA

GRAPHS

 To be more familiar with the data considered in

this problem, also to learn how they look, and to define

which process to apply, we perform an exploration phase.

We conduct this initial exploration through graphs. All

graphs performed with R are drawn into a postscript file to

be edited with external tools if needed. There are multiple

types of graphs depending on what we plot with R and

what parameters we provide to the plot() function. To draw

points, we provide the list of coordinates (list of abscissas

and list of ordinates) to the plot()function. For a matrix

or a data.frame, the plot() function

 performs a scatterplot. This consists of a series of

graphs, each being the representation of data in a two-

dimensional space. All possible couples are represented.

Such a graph can be seen in Figure 4.

FIGURE 4: Multidimensional representation of FQDN.

(a) Principal components. (b) Subset of initial

parameters.

 The function density() returns a kernel density

estimate which is drawn with the plot() function. This

graph is useful to know if the distribution is multimodal

(see Figure 5).

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 4, Issue 3, March 2017

 93

FIGURE 5 euQR density plot.

Boxplots highlight median, quartiles, minimum, maximum,

and outliers. When the input of theboxplot() function

is a data.frame, it traces a boxplot for every dimension.

This simple drawing allows us to see immediately if a

dimension seems discriminant and highlights outliers and

imbalances in the distribution. This representation also

helps to visualize the differences between variables.

Thanks to these simple graphs, we can define further

processes to apply to the dataset to get more balanced

features.

VI. VARIABLES SCALING AND SAMPLES

SELECTION

 As seen in Section 5, all the variables are not

equivalently informative to discriminate the FQDN, see,

for instance, Figure 4b. Moreover, the distribution of the

queries and the responses rates highlighted in Section 5

suggests that these variables should be processed using a

log function. Indeed, the range and the distribution of

values for these variables do not give an informative

representation. In this case, a standard linear representation

is not very relevant. Instead, we choose to apply a

logarithmic transformation to grasp more precisely the

value amplitudes for the variables of interest. We also

decide to remove the less requested FQDN (euQR less than

a threshold) because many FQDN are requested only a

couple of times during the timeslot used for the traffic

capture. The code used to perform this processing is

presented in Listing 4. We add to the original data (stored

inmat) three variables (cf. lines 1-3 of Listing 4).

Listing 3

G e n e r a t i o n o f S e v e r a l G r a p h s

 i n t o P o s t s c r i p t F i l e s

postscript (―pca_magnitude.ps‖) plot(pca)

dev.off ()

postscript (―boxplot.ps‖) boxplot (mat)

dev.off()

postscript (―scatter.ps‖) plot(mat)

dev.off()

postscript (―euQR_density.ps‖)

plot (density (log(mat$euQR)), xlab=― log (euQR),

main=―

‖) dev.off() Listing 4

A p p l i c a t i o n o f l o g () o n I n i t

i a l D a t a s e t , S a m p l e S e l e c t i o n , a n d F

e a t u r e S e l e c t i o n

mat$logeuQR<− log (mat$euQR) mat$logreQR<− log

(mat$reQR) mat$logSigcheck<− log (mat$Sigcheck) mat

<− subset (mat, euQR> threshold)

m_mat<− subset (mat, select=c (―reQR‖, ―euQR‖))

 Once PCA has been applied, we select the most

informative variables for the problem considered.euQR is

the variable with the greatest variance. The operation

consisting in applying the log() function and removing the

less requested FQDN (lines 5 and 6 of Listing 4) can be

considered as preprocessing. To visualize the effects of this

preprocessing, we use histograms (Figure 6). As the kernel

smoother used by density(), histogram is a density

estimator and allows us to visualize the distribution

(Figure 7). us from finding objects in the original space

that are not in our dataset. It also enables the

precomputation of all the samples interdistances (i.e., the

use of a dissimilarity matrix). The K-means algorithm is

implemented in R through the function kmeans(). This

function is part of thestats package (R Development Core

Team, 2010). This function returns a kmeans object

consisting of clusters and some cluster characteristics.

Also, the K-medoïds algorithm is implemented through

thepam() function. pam stands for Partition Around

Medoïds. This function is provided by the packagecluster

(Maechler et al., 2005) loaded in line 1 in Listing 5. The

pam() function returns a cluster object.

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 4, Issue 3, March 2017

 94

FIGURE6 Preprocessingthe variable euQR. (a) euQR (q

s− 1) without any transformation. (b) log(euQR) without

less requested FQDN.

FIGURE 7 Preprocessing and clustering after feature

selection.

Listing 5

C l u s t e r i n g a n d S i l h o u e t t e V i s u a l i z a t i o

n

library(―cluster)

silhouette width for pam and kmeans swlqr<−

numeric(25) kswlqr<− numeric(25) sink(file=output_file,

split=TRUE) for (k in c(2:3)) {

kmean log qr

km <− kmeans(clqrmat, center=k, iter.max=1000)

kswlqr[k] <− summary(silhouette

 (km$cluster, daisy(clqrmat))) $avg.width

png(paste(―k0‖, k, ―qr_log_kmean.png‖, sep=―‖))

par(cex=2); plot(qrmat, col=km$cluster * 5,

log=―xy‖, pch=km$ cluster)

dev.off()

print(paste(― - log qrkmean - k =‖, k))

mysummarykmean(km)

kmed log qr

km <− pam(clqrmat, k=k)

swlqr[k] <− km $ silinfo $ avg.width png(paste(―k0‖, k,

―qr_log_kmed.png‖, sep=―‖)) par(cex=2); plot(qrmat,

col=km$ clustering * 5, log=―xy‖,

pch=km$ cluster) dev.off()

print(paste(― - log qrkmed - k =‖, k)) print(km$clusinfo)

VII. CLUSTERING FOR SEGMENTING THE

FQDN

 The goal pursued is to separate FQDN into

different groups depending on their costs. The

initial idea we As suggested in Section 6, we cluster the

data using investigate is to define for each FQDN a set of

cost-related variables (Section 6) and to cluster FQDN

using an unsupervised machine learning technique. We aim

at clustering the data in groups of FQDN having the same

cost origins (e.g., frequently requested, long response, low

TTL).

 We use simple clustering algorithms: K-means

and K-medoïds, for instance (cf. Hastie et al.,

2008;Kogan, 2007). The K-means is a clustering

algorithm grouping similar pieces of data together. A

group is characterized by its centroïd which is a vector

minimizing the distances to all other elements of the

group. The K-medoïds algorithm uses medoïds instead of

centroïds. The difference between centroïds and medoïds is

that medoïds are necessarily points belonging to the initial

dataset. This characteristic prevents a subset of initial

variables (euQR and reQR) and another subset of

preprocessed variables (log(euQR) and log(reQR)). In

practice, the K-means and K-medoïds algorithms applied

to the dataset exhibits a convergence in less than 15

iterations. As a result, the data are well segmented into

groups corresponding to the FQDN which are either rarely

requested or frequently requested among the traffic (cf. Xu

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 4, Issue 3, March 2017

 95

et al., 2011). We also observe that the K-means and the K-

medoïds schemes converge to similar clustering results. It

can be explained by the samples distribution and shape of

the data, in which the centroïds are located quickly quite

close to the medoïds data points. To determine the relevant

number of clusters, we used the silhouette as defined in

Rousseeuw (1987). The silhouette is defined for each

sample and takes values between − 1 and 1.

• it is close to 1 when the sample is near the center

of the cluster it belongs to.

• it is almost null if the sample is located near the

frontier between its cluster and the nearest cluster.

• it is negative if the sample is in a cluster it should

not belong to.

 For each FQDNi in cluster Ci, we measure ai the

average distance between FQDNi and other FQDN

ofCi. ai measures the average dissimilarity of FQDNi with

Ci. Then, we measure bi the minimum average distance

between FQDNi and other FQDN in clusters

(Cj)j≠ i. bi measures similarity with other clusters. The

silhouette for FQDNi is given by:

 By construction of the K-means and the K-

medoïds algorithms, the silhouette cannot be negative. We

run the clustering algorithms for several numbers of

clusters (for loop from lines 9 to 27 in Listing 5). At each

iteration, we compute the average silhouette and store the

result in a vector (created lines 4 and 5). For human

readability, we draw the average silhouette thanks to the

code presented in Listing 6. To monitor the evolution of

the for loop, we Listing 6

R C o d e U s e d t o P l o t S i l h o u e t t e

plot barplot of sil value for k in c(2:15) for aabb<− mat.

or .vec(2,15)

aabb[1, 1:15] <− kswlqr[1:15] aabb[2, 1:15] <−

swlqr[1:15] par(cex=2)

barplot(aabb[,2:15], beside=TRUE, col=c(―dark

 blue‖,

―pink‖), names.arg=c(2:15),

 xlab=―cluster number‖, ylab=―average

 silhouette width‖, legend=c(―kmean‖,

―kmedoid‖))

decide to split the output flow. The argument of

the sink() function (line 7) makes two identical copies of

the output flow:

• one flow for the standard output to monitor the

evolution of the R script.

• one flow written in the file whose name is stored

in the variable output_file.

 As the objects returned by kmeans() and pam()

are not the same, the silhouette is not computed the same

way. For the cluster object returned by the pam() function,

we immediately access the silhouette information (line 21).

For the kmeans object returned by kmeans(), we compute

the silhouette thanks to the silhouette() function included

in the R package cluster (Maechler et al., 2005). We

provide to thesilhouette function clusters as returned by

kmeans() and dissimilarity between samples computed

bydaisy(). daisy() is also part of the cluster package

(Maechler et al., 2005). We use the summary()

function because the summary. silhouette object

returned is easier to manipulate than the silhouette

object returned by the silhouette() function. This is

illustrated in line 12 of Listing 5.

 We now handle silhouette values for multiple

numbers of clusters (k values) and for the two clustering

algorithms (K-means and K-medoïds). To visually

compare the results, we use barplot(). The code used is

written in Listing 6. First, we cast all data into a two-

dimensional array. This array is declared and filled (lines

3-5 fromListing 6) with data from Listing 5. To enhance

readability, we increase label size thanks to thepar()

function (line 6). This function controls layout parameters

for graphs. The cex parameter controls the size of text and

symbols. The colors used (dark blue and pink) are chosen

to be quite different if the graph is printed in black and

white. The results are presented in Figure 8. They

show that the highest silhouette values for both clustering

algorithms are obtained for 5, 3, and 2 clusters. This gives

reliable estimates of the number of clusters fixed apriori to

run the clustering algorithms. We perform an analysis of

the DNS traffic through feature selection and clustering in

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 4, Issue 3, March 2017

 96

Section 4 and above. Now, we devote the three following

sections to the construction of a routing table for the

identified heavily requested FQDN.

FIGURE 8 Average silhouette versus number of clusters.

VIII BUILDING ROUTING TABLE THANKS TO

CLUSTERING

 As explained in Section 1, our goal is to build a

routing table for the most requested FQDN to balance the

load of the incoming DNS traffic in our resolution

platform. The routing table is a function mapping a FQDN

to a server of the platform, the platform being a set of

resolution servers. This mapping is composed of explicit

entries mapping FQDN to servers. For FQDN, which are

not frequently requested, we compute the mapping on the

fly based on a hashing function. We focus on the most

requested FQDN for building the explicit mapping. Our

first idea is that clustering outputs homogeneous groups

of FQDN, each one having a different main source of cost.

To balance the resources used between the servers of the

platform, the idea is to distribute each group of FQDN

homogeneously between servers. Doing this should

dispatch the consumption of each kind of resource

(network resources, memory, CPU, etc.) equally on each

server. Unfortunately, as shown in Section 4, two variables

(euQR and reQR) are more discriminative than the other

because of their variance. To build the routing table,

we proceed cluster by cluster. For each cluster, we

distribute FQDN in a round-robin fashion. The algorithm is

detailed in algorithm 1.

This algorithm outputs a routing table for the frequently

requested FQDN, which maps the FQDN to different

resolving servers. This table is not used directly after its

generation but will be considered inSection 11 to be

compared with routing tables built thanks to other

approaches.

Programming (MILP) method (cf. Schrijver, 1998) for

instance:

I: Set of FQDN requested by the end users

J: Set of servers composing the DNS Resolving Platform

qi, i ∈ I: Queries number associated with FQDN i

ri, i ∈ I: Number of resolutions associated with FQDN i X

= xi,j, (i, j) ∈ I × J: Matrix binding FQDN i to server j Qj, j

∈ J: Number of queries supported by server j

Rj, j ∈ J: Number of resolutions supported by server j

We have immediately:

A l g o r i t h m 1 B u i l d i n g r o u t i n g t a b l e b

a s e d o n c l u s t e r i n g

Require: cluster_number // number of clusters for the

clustering algorithms

Require: server_number // number of servers in our

platform server ← 1 // used to indicate to which server

current FQDN will be mapped

for k = 0 to cluster_number do

for fqdn ∈ k // enumerate FQDN belonging to cluster k do

maps FQDN fqdn to

server server mod server_number // add an explicit entry

for the mapping

server ← server + 1

end for end for

IX BUILDING ROUTING TA BLE THA N KS TO M I

X E D INTEGER LINEAR PROGRAMMING

 Another approach to building an efficient

mapping between the FQDN and the servers of the

resolving platform is to use linear programming. This idea

is driven by the fact that we face an optimization

problem. We used GLPK (Theussl and Hornik, 2010) to

solve this problem. AlthoughGLPK can be used as an R

package, we use it as a standalone program.

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 4, Issue 3, March 2017

 97

 Operational teams evaluate the efficiency of

different load balancing techniques by comparing the CPU

load of each server. However, providing an estimation of

the CPU load for a server relies on experimental

measurements, and as (Migault et al., 2010) mentioned,

measured values for the CPU load depend on the hardware,

the DNS server implementation, the nature of the traffic,

etc. Since we do not want to depend on these factors, we

evaluate the difference by considering the number of

queries and resolutions performed by each server of the

platform. Such evaluation requires defining specific

notations we will use in the later in this chapter.

Furthermore, these notations are also used to build a

routing table with a mixed integer linear

 We use this method to build a routing table for the

most requested FQDN milp-200 as we consider 200

FQDN. This number is the result of an operational

evaluation. It is a compromise between the minimization of

the computation time and the minimization of the number

of FQDN that are not balanced thanks to the routing table.

For each FQDN, the number of resolutions is computed

thanks to the number of queries and the mean TTL value

observed for the FQDN. Because we consider the popular

FQDN, we assume that a resolution occurs every TTL

seconds.

 Although this method makes it possible to build a

routing table thanks to a technically sound scientific

approach, in practice it happens to be heavy to implement

because of the computational burden which limits its

applicability. Also, this method needs to evaluate a priori

the number of FQDN to be processed, which relies only on

an empirical estimation.

 The MILP method is based on solving a system of

equations. We define a given set I of FQDN (line 1

ofListing 7). For a given distribution of these FQDN on the

servers (xi,j)(i,j)∈I× J, we compute the number of queries

and resolutions supported by each server (Qj, Rj)j∈ J. The

distribution we seek minimizes the differences between the

servers of the platform in terms of (Qj, Rj)j∈ J: ΔQ and

ΔR.

M i x e d I n t e g e r L i n e a r P r o

g r a m U s e d t o B u i l d a R o u t i n g T a b l e

set I; /* set of fqdn */ set J; /* set of servers */

paramk; /* k parameter */

paramc{i in I, j in 1..2}; /* costs[r, q] */ varS{j in J}; /*

sum of requests */ varT{j in J}; /* sum of resolutions */

varx{i in I, j in J} binary; /* 1 if Fi affected to Sj */

vardeltar;

vardeltaq; var max;

 Trying all possible combinations for such a

distribution is not feasible, so we formulate our problem as

a MILP and use a solver (GLPK in this case, Theussl and

Hornik, 2010) to find a proper distribution.

Although an R application programming interface for

GLPK exists (Theussl and Hornik, 2010), we decide not to

use it. Writing the problem using the GNU Mathematical

Programming Language, the native language for GLPK, is

easier once the problem is modeled.

 The challenge for the solver is to find a

distribution that is close to the optimal distribution, even

though we do not know the optimal solution. Considering

200 FQDN is a compromise between the total number of

FQDN to process and the resources needed for the

computation as shown in (Francfort et al., 2011). The

integer linear optimization problem with two objectives

consists in minimizing ΔQand ΔR defined as follows:

 To ease the resolution by the solver, we reduce

the number of objectives by defining a FQDN cost:

λ is a weighting parameter which determines the

parts of q and r in the definition of the cost. In that sense,

the important parameter is not λ itself but the ratio.

minimize cost : max; /* objectives */
s.t.slack{(j1, j2) in (J cross J)} : k * S[j1] + (1 - k) * 10000 *

T[j2] <= max;

s.t.aff{i in I} : sum{j in J} (x[i, j]) >= 1; /* one fqdn affected
to at least 1 server */
s.t.q {j in J} : sum{i in I} (x[i, j] * c[i, 1]) = S[j] ;
s.t.r {j in J} : sum{i in I} (x[i, j] * c[i, 2]) = T[j] ;
solve;
end;

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 4, Issue 3, March 2017

 98

Note that λ is introduced here only for resolving purpose,

and has a priori no physical meaning. The problem is then

rewritten as:

 Cj represents the cost supported by the server j.

This objective function ensures the minimization of the

cost supported by each server, which leads to the

minimization of the difference of costs between the servers

of the platform. The cost that is not supported by the most

loaded server is reported on other servers, increasing the

cost supported by the less loaded server, which thus

reduces the difference of costs supported by the servers.

FIGURE 9 Bi-criteria MILP results.

Building Routing Table via a Heuristic

 The method described in Section 9 gives us

promising results, but can only consider a limited number

of FQDN. We thus evaluate another approach based on a

heuristic.

The goal of this algorithm is similar to milp-200:

minimizing jointly ΔQ and ΔR. However, the way we

build the routing table provides less accurate results as

milp-200. As a result, we need to consider a much larger

set—namely, 18 times larger—of FQDN to build a routing

table which balances properly the load among the servers.

Even though the routing table is roughly 18 times larger, it

takes less than 0.5 s to build it. Compared to 1000 s with

milp-200, this method may present an operational

advantage over milp-200. The algorithm starts with I, the

set of the most requested FQDN. From the current set of

FQDN, it takes the costliest FQDN, assigns it to the

less charged server (i.e., a server jmin verifying)

and removes it from the FQDN set. This step is

performed until the set of FQDN is empty.

 To compare this method with milp-200, we

compute ΔQ and ΔR for different values of λ. We first

choose a set of 200 FQDN to be compared with the results

from Section 9. Then, by construction, an upper bound of

the difference between the cost on different servers is

mini∈ I ci, ci being the cost of the less costly FQDN. Thus,

we choose I, the set of FQDN, such that the last element is

associated with a cost that is roughly the difference of costs

generated by milp-200. This leads to consider 1580 FQDN.

We denote these algorithms as stacking-200 and

stacking-1580. Note that 200 FQDN represent 16% of the

number of queries and that 1580 FQDN represent 46% of

the number of queries. Figure 10shows that stacking-200

presents a lower front compared to stacking-1580.

However, ΔQ and ΔR are computed according to the set

of FQDN I. This set is definitely not the same in stacking-

200 and instacking-1580, which makes the comparison

between stacking-200 and stacking- 1580 difficult

according to Figure 10.

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 4, Issue 3, March 2017

 99

FIGURE 10 Pareto front with easy stacking.

 One must keep in mind that this comparison takes

into account the FQDN used for building the routing table.

This is motivated by the fact that we evaluate the routing

table and not the imbalance owing to the less requested

FQDN. At this point, we can deal with the most requested

FQDN and see what happens when adding the less

requested FQDN.

Final Evaluation

 Once routing tables are built (cf. methods

detailed in previous Sections 8–10), we evaluate them. A

routing table takes into account only the most requested

FQDN. To validate the previously built routing tables and

to decide which one is the best, we perform simulations. A

simulation consists in replaying the traffic on a simulator.

The traffic replayed is a 10-min slot received on one of our

resolving platforms at a rush hour. This allows us to

perform evaluation including FQDN which are not

balanced thanks to the previously built routing table. The

simulator is a program implementing the load balancing

task and some basic functions of the DNS servers to

reproduce the behavior of a DNS resolving platform. The

functions implemented are the only ones needed to

evaluate performance. The indicators computed by the

simulator are for each DNS server.

Network related indicators

• Query rate

• Response rate DNS-Related Indicators

• Number of signatures to be checked if DNSSEC

is used

• Cache management

• CHR

• Cache length

• Number of resolutions to perform on the Internet

 The result of the simulation consists of an array

containing these indicators for each server of the platform.

The next step is to analyze the various indicators computed

from simulations. To do so, we seek for a comprehensive

representation of these indicators.

 To visualize the repartition of the resources over

the platform and to compare the different routing tables,

we use the graphical function boxplot. Handling a boxplot

allows us to see immediately the median, the quartiles, and

the minimum and maximum in term of resources needed

by servers. Note that the median is a more interesting

indicator than the mean as every FQDN-based load

balancing generates exactly the same number of requests

and resolutions for the whole platform. Boxplots are

directly drawn thanks to the boxplot() function.

FIGURE 11 Repartition of costs.

XII CONCLUSION

 R is an attractive tool to explore data and to

design scripts on the basis of statistical methods. It is also

efficient to visualize data. Same as python, it is useful for

fast prototyping. The interactive mode allows us to find

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 4, Issue 3, March 2017

 100

and test different options for the different built-in functions

to be included in scripts. Script mode is useful for process

automation. As in python, one can take advantage of the

object oriented possibilities offered by this language to

ease scripts design.

 R is complete with its extensions provided thanks

to a variety of officially supported packages which ease its

use. For common statistical-oriented usages, functions

already exist. Moreover, the documentation is complete

and gives us references to the algorithms the functions

implement. One of the advantages of R is the possibility of

making graphs with almost every R object. This is useful

to visualize the effects of the processing performed on the

data.

 To our knowledge, FQDN-based load balancing

techniques and the methods used to build the related

routing tables are novel approaches to address the problem

of Internet resolving platforms optimization. In the

application case of data mining methods implemented in R

, it was demonstrated that FQDN-based load balancing is

efficient for improving the CHR and for reducing the

resources needed to process DNS(SEC) traffic on a

resolving platform. We can take advantage of the most

popular FQDN distribution to improve this load balancing.

Further works on the platform optimization problem

described in this chapter include a more efficient

processing of the rarely requested FQDN and the study of

robustness for the proposed load balancing techniques.

REFERENCES

[1]. Arends, R., Austein, R., Larson, M., Massey, D., Rose,

S., 2005a. DNS Security Introduction and

Requirements. RFC 4033 (Proposed

Standard). Updated by RFC 6014.

[2]. Arends, R., Austein, R., Larson, M., Massey, D., Rose,

S., 2005b. Protocol Modifications for the DNS Security

Extensions. RFC 4035 (Proposed Standard). Updated by

RFCs 4470, 6014.

[3]. Arends, R., Austein, R., Larson, M., Massey, D., Rose,

S., 2005c. Resource Records for the DNS Security

Extensions. RFC 4034 (Proposed Standard). Updated by

RFCs 4470, 6014.

[4]. Cox TF, Cox MAA. Multidimensional Scaling. Boca

Raton, FL: Chapman and Hall; 2001.

[5]. Development Core Team R. R: A Language and

Environment for Statistical Computing. Vienna, Austria:

R Foundation for Statistical Computing; 2010.

[6]. Francfort S, Migault D, Senecal S. A bi-objective

Mixed Integer Linear Program for load balancing

DNS(SEC) requests. In: Proceedings of DNS EASY 2011,

extended version in International Journal of Critical

Infrastructure Protection, Elsevier, 2012.

[7]. Griffiths, C., 2009. Comcast DNSSEC Trail Test Bed.

North American Network Operator Group (NANOG45).

[8]. Hastie T, Tibshirani R, Friedman J. The Elements of

Statistical Learning: Data Mining, Inference and

Prediction. In: second ed. Springer 2008.

[9]. Kogan J. Introduction to Clustering Large and High-

Dimensional Data. New York: Cambridge University

Press; 2007.

[10]. Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M.,

2005. Cluster analysis basics and extensions.

Rousseeuw et al provided the S original which has been

ported to R by Kurt Hornik and has since been enhanced

by Martin Maechler: speed improvements, silhouette()

functionality, bug fixes, etc. See the n‗Changelog‗

file (in the package source).

[11]. Migault, D., 2010. Performance measurements on

bind9/nsd/unbound. In IETF79. IEPG.

[12]. Migault D, Laurent M. How DNSSEC resolution

platforms benefit from load balancing traffic according to

fully qualified domain name. In: Proceedings of CSNA.

2011.

[13]. Migault D, Girard C, Laurent M. A performance view

on DNSSEC migration. In: Proceedings of CNSM 2010.

