
ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering
 (IJERCSE)
 Vol 4, Issue 2, February 2017

Detection of Cross Site Scripting Attack and

 Malicious Obfuscated Javascript Code

[1] Vrushali S. Bari
[2]

 Prof. Nitin N. Patil
 [1]PG Student, [2] Professor

[1][2]
 Department of Computer Engineering,
SES’s R. C. Patel Institute of Technology, Shirpur, Maharashtra, India.

Abstract: - JavaScript is a scripting language. On one hand, it allows developers to create client-side interfaces for web applications.
On the other hand, the malicious JavaScript code infects the web user and web browser. In order to detect malicious activities, two
methods viz. static and dynamic detection methods have been discussed in the literature. The dynamic analysis method has better
capability in detecting malicious activities compared to the static detection method.
 In this paper, we present a method based on Support Vector Machine (SVM) that would identify the malicious JavaScript
code at the beginning itself. In addition, our proposed method supports the analysis of obfuscated code and analyzes the system
offline. Further, it analyzes the web pages and identifies the type of attack. However, our focus is on the Cross-Site Scripting (XSS)
attack.

Key Words:--- SVM, Obfuscated JavaScript, Static Analysis, Dynamic Analysis,Cross Site Scripting Attack.

I. INTRODUCTION

 The use of Internet has become an integral
and necessary part in these days. The internet based
activities includes e-banking, e-mail, e-commerce
etc. The people used to carry out these activities in
their day-to-day life. The user needs to take care
while using internet for the e-banking, since there
may a probability of hacking the information by the
people and/or by the malicious software. Thus, with
the growth of the internet technology, the data
security has become a prime area of the research
community.

techniques, such as heap spraying, for compromising
a victim's system. In addition, the direct execution of
the code also enables effectively obfuscating the
attack, such that indicative patterns are only visible at
run-time and not accessible by static detection
methods viz. conventional anti-virus scanners.

 We notice in the literature that the prime
focus of the attacker is more on the client-web
applications. In this, an attacker would simply create
a malicious webpage and propagate the malicious
script to the clients on web. Most web-based attacks
take place on legitimate websites. Various types of
threats have been discussed in the literature. Among
them, a SQL injection attack is the most common
type of attack. Through HTML and URIs, the Web
was vulnerable to attacks like cross-site scripting
(XSS) that came with the introduction of JavaScript.
On the other hand, malicious JavaScript code is
particularly hard to detect in the content of web
pages. For example, JavaScript attacks regularly
analysis for the browser environment, check for
particular vulnerabilities and use dynamic exploiting

 As a result, the detection of malicious
JavaScript code at run-time is a prime area in the
domain of web security. Various methods have been
developed for dynamically detecting the malicious
activities. In the work of cujo, zozzole, iceshield
discussed the method of learning for the detection of
the malicious behavior. These learning-based
detectors provide an accurate identification of
malicious code at run-time. However, none of the
detectors has been optimized for the early detection
of attacks. The longer a malicious code runs, longer it
causes the harm to the system. However, spotting
attacks is a difficult task and it has two main
challenges: First, malicious behavior should be
detected as fast as possible, but never at the prize of
accuracy. Second, the detection needs to be resistant
against evasion that simply delays malicious activity
to a later point in the execution of the code.

 In this paper, we address the problem of
detecting malicious behavior in JavaScript code as
early as possible. We introduce an optimized learning
method for faster identification of malicious
behavior, which extends the learning algorithm of
support vector machines, such that the accuracy and

131

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering
 (IJERCSE)
 Vol 4, Issue 2, February 2017

III. METHODOLOGY time of detection are jointly optimized during
learning. Our proposed approach uses Bayesian
classification of hierarchical features of the
JavaScript abstract syntax tree to identify syntax
elements that are highly predictive of malware. Our
experimental evaluation shows that the system is able
to detect JavaScript malware through mostly dynamic
code analysis effectively. We present fast multi-
feature matching algorithms that scale to hundreds or
even thousands of features.

 The basic aim of the study is to perform the
classification of the malicious pages. In order to
perform this kind of classification, we used a
supervised machine learning approaches that evaluate
the feature of the extracted web pages. The features
extracted from a web page are helpful to decide
whether the web pages are malicious page or not. We
inspect two main sources viz. HTML page and
JavaScript code for the extraction of the features.

 The rest of the paper is organized as follows.
Section 2 presents the related literature work, Section
3 present the methodology of the system. Section 4
presents the experimental results and finally, the
conclusion has been presented in Section 5.

II. RELATED WORK

 In this section, we present the brief overview
of the malicious software, which have been used to
infect the victim system.

 Zorn et al. proposed zozzle is a mostly static
javascript malware detector that is fast enough to be
used in a browser. While its analysis is entirely static,
zozzle has a runtime component to address the issue
of javascript obfuscation, zozzle is integrated with
the browsers javascript engine to collect and process
javascript code that is created at runtime [1].

 We notice that most of the JavaScript are
obfuscated and therefore, becomes difficult for the
analysis. In order to detect these characteristics, we
implemented the extraction of some statistical
measures viz. string entropy, whitespace percentage,
and average line length. We also consider the
structure of the Java-Script code itself, and a number
of features are based on the analysis of the Abstract
Syntax Tree (AST) extracted using the parser.

 For example, we analyze the AST of the
code to compute the ratio between keywords and
words, to identify common decryption schemes, and
to calculate the occurrences of certain classes of
function calls (such as fromCharCode(), eval(), and
some string functions) that are commonly used for
the decryption and execution of drive-by-download
exploits.

 Heiderich et al. proposed iceshield a novel
approach to perform light weight instrumentation of
javascript, detecting a diverse set of attacks against
the DOM tree, and protecting users against such
attacks. The instrumentation is light-weight in the
sense that iceshield runs directly within the context of
the browser, as it is implemented solely in javascript
[2].
 Rieck et al. has presented cujo for effective
and efficient prevention of drive by downloads
attacks. Embedded in a web proxy cujo transparently
inspects web pages and blocks delivery of malicious
javascript code. Static and dynamic code features are
extracted on the fly and analysed for malicious
patterns using efficient techniques of machine
learning [3].

 We extract a total of 25 features from each
piece of JavaScript code viz. the number of
occurrences of the eval() function; the number of
occurrences of the setTimeout() and setInterval()
functions; the ratio between keywords and words; the
number of built-in functions commonly used for
deobfuscation; the number of pieces of code
resembling a deobfuscation routine; the entropy of
the strings declared in the script; the entropy of the
script as a whole; the number of long strings; the
maximum entropy of all the script’s strings; the
probability of the script to contain shellcode; the
maximum length of the script’s strings; the number
of long variable or function names used in the code;
the number of string direct assignments; the number
of string modification functions; the number of event
attachments; the number of fingerprinting functions;
the number of suspicious objects used in the script;

132

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering
 (IJERCSE)
 Vol 4, Issue 2, February 2017

the number of suspicious strings; the number of
DOM modification functions; the script’s whitespace
percentage; the average length of the strings used in
the script; the average script line length; the number
of strings containing “iframe” ; the number of strings
containing the name of tags that can be used for
malicious purposes, and the length of the script in
characters.

recorded with respective arguments during the
execution. For example, line 3 in Figure 2 shows a
SET event that assigns the string “exe” to an internal
object. The code snippet contains a trivial form of
obfuscation that hides the download of an executable
file. After a series of different events, this hidden
download is revealed in the FUNCTIONCALL event
at lines 11–12 of Figure 2.

 Identifying malicious activity in web pages
requires a detection system to monitor the execution
of JavaScript code at run-time. The flow of the
execution is tracked using events that indicate
changes in the state of the environment. Depending
on the granularity of the monitoring, these events
may range from calls to certain JavaScript functions
to the observation of every state-changing action.

 All statements S in javascript code can be
added in to event list. If S is assignment operation
then that will be added into event as SET variable
Name To value in Events list , if S is function call
add event as FUNCTIONCALL name with its
parameter to Event list, If S is constructor add event
as CONSTRUCTOR name with its parameter to
events list. Otherwise, added into event list.

 Sequences are a natural representation of
behavior, yet they are not directly suitable for the
application of learning methods, as these usually
operate on vectorial data. So that we can generate
events to vector. If each event e in Events list exists
in database DB, get id from DB for e, otherwise add e
to DB and assign new Id. In addition, id added into
vector.
3.1 SVM Training and Classification
3.1.1 Support Vector Machine
 For automatically generating detection
models from the Reports of attacks and benign
JavaScript code, apply the Technique of Support
Vector Machines Given vectors of two classes as
training data, an SVM determines a hyperplane that
separates both classes with maximum margin. In our
setting, one of these classes is associated with
analysis reports of drive-by downloads, where as the
other class corresponds to reports of benign
WebPages. An unknown report φ(x) is now classified
by mapping it to (x) drive-by downloads.

Figure 3.1 Obfuscated JavaScript code

 Figure 3.3 Schematic vector representation of
analysis reports with maximum-margin hyperplane.

3.1.2 JavaScript Extraction
 As first analysis step, they aim at efficiently
getting a comprehensive view on JavaScript code. To
this end, inspect all HTML and XML documents
passing the system for occurrences of JavaScript. For
each requested document, extract all code blocks
embedded using the HTML tag script and contained
in HTML event handlers, such as on load and on

Figure 3.2 Monitored events

 In figure 3.1, we shows obfuscated
javascript code and in figure 3.2, we shows
monitored events of that code. The detector supports
five basic types of events, where each type is

133

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering
 (IJERCSE)
 Vol 4, Issue 2, February 2017

mouse over. Moreover, recursively preload all
external code referenced in the document, including
scripts, frames and iframes, to obtain the complete
code base of the web page. All code blocks of a
requested document are merged for further static and
dynamic analysis.

3.1.3 Obfuscated JavaScript
 Obfuscation is different from minification,
which “removes the comments and unnecessary
whites-pace from a program” to reduce the code size.
Both benign and malicious JavaScript code has been
observed adopting obfuscation techniques; hence,
obfuscation does not imply maliciousness. However,
their purposes of Obfuscation are different. Benign
JavaScript code mainly Leverages obfuscation to
protect code. This purpose requires obfuscated code
to be Human unreadable and without down grading
the execution performance. Normally, execution
performance is not a concern for attackers. In fact,
attackers often apply multiple obfuscation to hide the
malicious intent.
3.1.4 Analysis
 Static analysis of JavaScript detection is
used to detect the standard JS abnormality detection.
It will detect the DOM changes to the web page
layout. It is usually performed using IFrames in the
page. The IFrames manipulated through JS. Before
the source code of a program can be interpreted or
compiled, it needs to be decomposed into lexical
tokens. The static analysis component in Cujo takes
efficiently extracts lexical tokens from the JavaScript
code of a web page using a Yacc grammar. The
lexical analysis closely follows the language
specification of JavaScript. As the actual names of
identifier do not contribute to the structure of code,
replace them by the generic token ID. Similarly, they
encode numerical literals by NUM and string literals
by STR.
 The dynamic JavaScript analysis is the core
of system to detect malicious websites. The main
advantage of dynamic analysis is that they are able to
analyse obfuscated JavaScript, too. This is very
important, since most JavaScript based exploits
currently observed in the wild try to hide their
presence using several obfuscation techniques.
Usually obfuscation in JavaScript is reached through
escaping or encoding the actual script. This code is

then unescaped or decoded and executed by the
JavaScript eval function. This procedure is oftend
one several times recursively and thus it is quite some
work to understand what the JavaScript actually does.
Nevertheless, it is usually even impossible to
automatically analyze a JavaScript. Additionally, it
must to be easier to detect malicious JavaScript based
on its behavior than on its source code.
 We used the concept of clustering in our
proposed system that makes groups of ID resulting
from the vectors.

3.1.5 Attack Type Detection
 The given web pages are malicious or not
that can be identified in several ways. However, none
of the approaches discusses about the attack types.

 3.1.5.1 Cross Site Scripting (XSS) Attack
 XSS is a type of injection, in which
malicious scripts are injected into otherwise benign
and trusted web sites. XSS attacks occur when an
attacker uses a web application to send malicious
code, generally in the form of a browser side script,
to a different end user.

 To address XSS attack, we only allow a
maximum of k links to the same external domain,
where k is a customizable threshold. We have
considered it as 1. If there are more than k links to an
external domain on a page, none of them will be
allowed by system.
 Algorithm 1: Attack type detection

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:

k=0;
for each javascript j in webpage
for each link in j
if link.Address is external then
k++
if k>threshold then
mark as cross site scripting attack
end if
end if
end for
end for

 the output of the proposed approach would
be stored in one folder. After getting results that are
stored in one folder so that when we search same web

134

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering
 (IJERCSE)
 Vol 4, Issue 2, February 2017

page that results shows instantly and time will
become short.

consists of 84 additionally generated obfuscated
attacks from the other sets [1].

4.2 Experimental Discussions
 Thissectiondescribesexperiments
performed to evaluate our system’s performance and
detection effectiveness. Furthermore, we describe the
insights on prevalent web-attacks that we gained
during our analysis of web pages and we present an
in-depth analysis of one of the malicious web pages.

 To emphasize the need for an early detection
of malicious activity, Figure 4 presents graph of the
number of monitored events for some number of
links. We observe that there are short and long
sequences for both malicious and benign web sites
with up to 106 events. Clearly, there is potential to
reduce the ratio of executed malicious code and limit
possible damage with our approach to early
detection.

Fig 3.4 Architecture of System

IV. EMPIRICAL EVALUATION

 After discussing the rather technical details
of our method, we proceed to present an empirical
evaluation using real JavaScript code of malicious
and benign web site. Besides studying the overall
detection performance of our system, we focus on
experiments concerning the performance over time.
Furthermore, we examine the robustness against
simple evasion attacks and provide exemplary
explanation for the earlier detection compared to the
regular SVM.

 During the examination, 100 web pages
have been checked. The candidate list was created by
querying Google's search engine with promising
search terms and URLs that were reported by users.
Our System found 56 malicious web pages equaling
at a rate of about 5.6% and 19.317 inline frames
invisible to the user pointing to malware distribution
pages. During the study, we found that the system
saved approximately 3 GB of HTML, JavaScript
(obfuscated and deobfuscated) and binaries including
2.114 unique (disffering MD5 values) malicious
executable samples.

4.1 Evaluation Data
 As a data set of (mostly) benign JavaScript
code, we consider the 100 most visited web sites
according to the Alexa ranking1. Each of these web
sites is visited automatically and its JavaScript code
is executed using the dynamic analysis implemented
in the Cujo detector. While we can not rule out the
presence of some malicious behavior in this set, our
experiments do not indicate any influence from such
behavior on the final results. Table 1 lists the data
sets of malicious JavaScript code used in our
experiments together with their origin and size. These
attacks have already been used to evaluate Cujo.
Malware Forum, SQL Injection and Alexa are taken
from Cova et al. [6], whereas the Obfuscated set

 All files generated by Our System were
scanned utilizing the G Data Linux antivirus engine.
The scanner marked 43.175 files as malicious. The
bulk of the antivirus detections were triggered by
files that were de-obfuscated by the Our System.
Therefore, a HTTP scanner as utilized by many
common antivirus solutions would not have detected
these attacks, since the attacks are dynamically
decrypted in the browser. A noticeable amount of
detections were triggered by signatures not targeting
web-based exploit code but inline frames pointing to
known (blacklisted) malware distribution domains.
Several large-scale attacks were identified using the
result database of Our System. Thereby several

135

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering
 (IJERCSE)
 Vol 4, Issue 2, February 2017

thousand infected pages were linked to the malware
distribution servers used.

 In Table 1, Shows the given web link is
malicious as well as it will give attack type i.e. XSS
attack. We search 100 web pages according to that
out of 32 pages are of XSS Attack.

TABLE 1: Improved results of Proposed System
 compared with Existing System

[1] C. Curtsinger, B. Livshits, B. Zorn, and C. Seifert.
Zozzle: Fast and precise in-browser javascript
malware detection. In Proc. of USENIX Security
Symposium, 2011.

[2]M. Heiderich, T. Frosch, and T. Holz. IceShield:
Detection and mitigiation of malicious web sites with
a frozen dom. In Recent Adances in Intrusion
Detection (RAID), Sept. 2011.

[3]K. Rieck, T. Krueger, and A. Dewald. Cujo:
Efficient detection and prevention of drive-by-
download attacks. In 26th Annual Computer Security
Applications Conference (ACSAC), pages 31-39,
Dec. 2010.

[4] L. Lu, V. Yegneswaran, P. A. Porras, and W. Lee.
BLADE: An attack-agnostic approach for preventing
drive-by malware infections. In Proc. of Conference
on Computer and Communications Security (CCS),
pages 440-450,Oct. 2010.

[5] D. Canali, M. Cova, G. Vigna,and C. Kruegel.
Prophiler: a fast Filter for the large-scale detection of
malicious web pages. In Proc. of the International
World Wide Web Conference (WWW), pages 197-
206, Apr.2011.

[6] M. Cova, C. Kruegel, and G. Vigna. Detection
and analysis of drive-by-download attacks and
malicious JavaScript code. In Proc. of the
International World Wide Web Conference (WWW),
2010.

Figure 3.4: An Experimental Analysis

Figure 3.4: An Experimental Analysis

V. CONCLUSIONS

In this paper, we have discussed different malicious
detection strategies. We have carried out comparison
and analysis between different detection techniques.
Detection techniques have been improved
dramatically over time, especially in the past few
years. Developing new malicious detection schemes
is necessary because attackers develop their strategies
continuously too. Therefore, there is a flexible
detection method for early identification of malicious
JavaScript behavior. No one can gives the type of
attack we work on XSS attack. For this, method uses
machine-learning techniques for optimizing the
accuracy as well as the time of detection.

REFERENCES

136

