
ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 4, Issue 12, December 2017

 19

DAAM: Direct Address Accessing Method for

Scalable Forwarding in NDN
[1]

Anjali Kumari,
[2]

Anurudh Kumar,
[3]

Ms Devikala K,
[4]

R.P. Seenivasan,
[5]

Dr K.Suresh Joseph

[1]
M.Tech (NIE) ,

[2,][3]
 Ph.D Research Scholar,

[4][5]
Assistant Professor Pondicherry University

Abstract - Named data Networking (NDN) is emerging internet architecture according to today scenario about devices which

function in internet of everything environment. NDN-architecture forked from content-centric networking. NDN router works on in

path caching although other existing network architecture also having in-path caching mechanism but NDN works with the proper

data structure and specialized interest packet handling mechanism which makes unique NDN architecture among several existing

network architectures. It stores incoming interest packet address which in form of array of string containing alphanumeric values

separated by (‘/’) delimited. While in Flat TCP/IP architecture IP address is used, which is not justifying today internet

requirement where data handling is more important than machine and exactly NDN has hit this weakness of TCP/IP module, NDN

follow only data address instead of machine address, but string is used for naming which leads to exhaustive memory consumption

and extra lookup time for particular interest in table so proposed methodology reduces space complexity and lookup cost (i.e. time

complexity). By using the encoding technique which potentially restrict the memory usage. In encoding technique encode the

element of a name prefixes with an automatically generated unique number. This paper, based on reduction the lookup up cost and

the insertion cost for a request.

Keywords — Component Trie, Frequently recently used (FRU) algorithm, NDN

I. INTRODUCTION

 The recently formed Named data networking (NDN) the

upcoming internet architecture which is based on content-

centric approach, and focuses on the content itself rather

than “where the content is available”. Two crucial efforts

provided by the NDN: focus on “what data” required not

where data is available and secure the data not the

container. NDN packets transmit the names instead of

source and destination address. Basically, NDN contains

two types of the packet of communication, Interest packet

and Data packet. NDN is a new architecture so it has

many challenges like, but most promising challenges are

size reduction of PIT and lookup and insertion cost in the

PIT. In this paper discuss lookup and insertion cost in the

PIT. NDN has many advantages over TCP/IP model. 1)

NDN focus on data instead of IP address. 2) In TCP/IP

model to get data, it needed to make the secure path and

once you authenticate with the server, you trust the

content, but in NDN we need to make the secure data

instead of the path. So here data more secure in

comparison to TCP/IP model. 3) NDN is stateful instead

of stateless, in TCP/IP model request not store in router so

it is stateless but in NDN, if it once forwarded the content

it will Store that content till request will not satisfy. This

paper, present how the lookup cost will reduce. Here no

need to search Each and Every component in the

component trie. Designed a time efficient scheme to

reduce the lookup cost.

II. RELATED WORK

In existing NDN architecture need to search each and

every request in the PIT from starting to end. Which is a

time-consuming process to resolve the request. Many

researchers gave a solution for lookup in NDN.

 Saxena et.al [1], Radiant: they have proposed framework

which consists of Name lookup module and Encoding

module further Encoding module having two component

name decomposition and Compact Radix Trie, each name

prefixes decompose into individual component and assign

token and these token now stored in PIT using Name

Radix Trie by doing this they have claim memory

efficiency but it will increase pre-processing complexity

before storing named prefixes into PIT.

 Yuan et.al [2] Reliably Scalable Name Prefix

Lookup. In this paper proposed longest name prefix

lookup design based on the binary search of hash tables

organized by the numbers of name components in the

prefixes. For forwarding rules that have up to k name

components in each prefix, regardless of their specific

characteristics, this design always guarantees at most log

(k) hash lookups. But the pitfalls are in hash table

collision problem will occur.

 Yuan et.al [3] they have used the binary search of

hash table which is used for IP address lookup in TCP/IP

but they have used for NDN and proposed LNPM design

which gives O(log(k)) in worst cases here k indicates a

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 4, Issue 12, December 2017

 20

number of components. They also extend their work with

level pulling algorithm optimization of LNPM which

works on observation but they issue with their module is

arbitrarily they have chosen prefixes which is having

length up to seven component which may fail in real time

where average URL having length more than seven and

also they are not static in length so their model may face

problem while handling dynamic length of prefixes.

 Miguel et al [4] IP Address Lookup Using a

Dynamic Hash Function. They introduced IP address

lookup algorithm that relates statistical analysis of the FIB

to reduce memory usage for hash-based lookup. By

introducing three dedicated data structures, index table,

hash table, and small search group, here search space

minimized by reducing the size of the lookup table. Using

only one hash table not only limits the memory

requirements but also reduces the complexity of the

algorithm. To establish the lookup tables they proposed

this algorithm.

 Schneider et.al [5] IP Lookups Using Multiple

ways and Multicolumn Search. To overcome from longest

matching prefix problem they have used basic binary

search technique which works on encoding a name

prefixes at the starting and end of the range and again

processes for best-matching prefix associated with a

range. The less complexity of algorithm tends to be

attractive for use for commercial purpose routers that

have smaller routing tables. For IPv6, introduced a multi-

column search technique that eliminates multiplicative

factor of W/M inherent in basic binary search by selecting

M bits columns wise for binary search, and jumping

among columns using pre-computed information to obtain

better measured.

III. PROPOSED WORK

This section, described our proposed framework for the

PIT and will discuss the look-up time efficiency for PIT

which reduces lookup cost i.e. Time complexity (amount

of time, which is used for access to pending interest

packet from PIT table). In this paper for matching the

prefixes, TRIE data structure is used. Because TRIE data

structure basically used for searching string prefixes

efficiently and time complexity is O(M) where M is

length of name prefixes while after using BST it will have

(M*log N) time complexity here N indicates number of

keys is used for BST, but here proposed work is to

modified the Trie algorithm to make enhance lookup

performance.

• Component trie

• Component Cache based on hash table technique

• Token Stack

• Frequency Array

1.Cache- when interest packet arrives, name prefixes

decomposed into component. Now each and every

component compared with existing prefixes in cache. If

any component present, then it will hit and take the token

with the help of corresponding address and increase the

frequency in frequency map. If any component will miss

then it will go to Component Trie and insert the

component.

2.Compressed Component Trie- a kind of data structure

which is basically used for name prefixes. It is

compressed Trie.

3.Token frequency map is used to keep track of the

frequency corresponding to token.

4.Stack is used for keeping the free token.

5.Encoded Name Trie is used for the encoded named

which have to be retrieve from component Trie.

IV. PROPOSED MODEL

When interest packet arrives at NDN router and satisfies

request on content store then NDN router response with

the data packet. If request not found then go to PIT (with

the framework) decompose the request in components and

match the component in cache .if component matched in

cache then fetch the token to the corresponding

component with the help of address pointer. And go with

frequency array and increase the frequency of token

(which tokens are hit). If component is absent then go to

component Trie and search the component. If component

found then increase the frequency in frequency array by 1.

If component not present, then insert that component and

assign token (if token is available to stack, then pop the

token and assign to new component, if not present then

assign the new token incremented by 1.

V. AVERAGE ACCESS TIME FOR COMPONENT

TRIE

CTavg =H (Tc) + (1-H) (Tc+Tt) + frequency increment cost.

CT avg: Average time to access for component from Cache

 and trie.

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 4, Issue 12, December 2017

 21

H: Probability to hit the component in cache

Tc: Time to access component in cache.

1-H: Probability to miss the component in cache.

Tt: Time to access component in component trie.

Frequency increment cost is time to update the frequency

in the array. Which will be content so it will not add in

lookup

VI. PREFIXES EVALUATION FLOW

Algorithm 1: Decomposed the request into components

input : I: Interest message
 CS: Content Store
 PIT : Pending Interest Table
 FIB: Forwarding Interest Table
 data lifetime: Content lifetime
output : DO: Data Object for each component DO:

1. if(component hit in cache==1)
2. frequency= frequency+1
3. return token
4. else
5. goto
6. component trie
7. if(component present in trie ==1)
8. frequency=frequency+1
9. return token
10. else

11. Insert the component and assign the new
 token to the component

VII. MATHEMATICAL ANALYSIS

For this analysis here, three parameters is taken which are

as follow Page replacement algorithm, complexity,

number of traversals.

A. Page hit ratio

When any request will arrive at pending interest table it

will check on the component cache (part of the pit). In

this condition, if the cache is full then apply the page

replacement algorithm and calculate the hit ratio. Here

three algorithms has taken into consideration which are

described as First come first serve (FCFS), least recently

used (LRU), frequency-based replacement (FBR). FBR is

the proposed algorithm in our scheme. For simplicity, we

assumed that cache size (CS) and no of components

(NoC) respectively 5 and 20. Assume frequency of yahoo,

gmail, in, com, www are 3, 4, 8, 1, 6 respectively.

Assume 20 components are respectively yahoo, email, in,

com, www, google, yahoo, email, in, com, www, google,

com, www, in, google, yahoo, in, com, google.

Efficiency calculated for given data

Efficiency η =

 × 100

Hc = Number of hit component into Component

 Cache.

Tc = Total number of component.

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 4, Issue 12, December 2017

 22

B. Complexity

In our scheme, based on mainly to reduce lookup cost. To

achieve this we proposed component cache based on Hash

Table technique.

Time complexity for compressed Component Trie.

∑
 i*k)

 = O (N*k)

C. Time complexity for component cache based on hash

table technique

This section describe component cache based on hash

table technique in our work. So if any component will

search on component cache, it will give the result in

constant time i.e. O(1).

CONCLUSION

 Our work identified two kinds of problem in existing

system 1) storing variable length consuming more

memory. Which is not efficient for NDN router because

NDN router has less memory to store a large amount of

data so it will deplete soon so reduce this problem we will

add new data structure in existing Scheme. 2) whenever

required content requested or reply received by NDN

router, an Exact matching technique is used for lookup to

decide whether entry existing or not a particular instance

of time. While the Existing system is checking Character

by character which is time-consuming. To overcome this

problem this paper proposed time efficient scheme for

PIT lookup cost that is component replacement algorithm

FRB.

REFERENCES

[1] Divya Saxena, Vaskar Raychoudhury, “Radient:

Scalable memory efficient name lookup algorithm

for named data networking”, Journal of Network and

Computer Applications 63 (2016) 1–13.

[2] Haowei Yuan & Patrick Crowley, “Reliably Scalable

Name Prefix Lookup”, Architectures for Networking and

Communications Systems (2015)

[3] Huawei Yuan and Patrick Crowley, “Scalable Pending

Interest Table Design: From Principles to Practice”,

IEEE INFOCOM 2014 - IEEE Conference on Computer

Communications. (2014)

[4] Miguel A .Martínez-Prieto, Nieves Brisaboa, Rodrigo

Cánovas, Francisco Claude, Gonzalo Navarro, Practical

“practical compressed string dictionaries”, Information

Systems56(2016)73–108.

[5] klaus Schneider , Lixia Zhang, “A Practical

Congestion Control Scheme for Named Data

Networking”, ACM-ICN ’16, September 26–28, 2016,

Kyoto, Japan 2016 ACM. DOI:

http://dx.doi.org/10.1145/2984356.2984369

[6]Wei You, Bertrand Mathieu, Patrick Truong, Jean-

Franc¸ois Peltier, Gwendal Simon, “Realistic Storage of

Pending Requests in Content-Centric Network Routers”

(2012).

[7] Xiaojun Nie David J. Wilson Jerome Cornet Gerard

Damm Yiqiang Zhao, “IP Address Lookup Using A

Dynamic Hash Function”, 0-7803-8886-0/05/2005 IEEE

CCECE/CCGEI, Saskatoon, May 2005.

[8] Butler Lampson, Venkatachary Srinivasan, and

George Varghese, “IP Lookups Using Multiway and

Multicolumn Search”, IEEE/ACMTR ANSACTIONOSN

N ETWORKINVGO, L.I , NO. 3, JUNE 1999.

[9] Stefanos Kaxiras Georgios Keramidas, “IPStash: a

Power-Efficient Memory Architecture for IP-lookup”

Proceedings of the 36th International Symposium on

Microarchitecture (MICRO-36 2003).

[10] Matteo Virgilio, Guido Marchetto, Riccardo Sisto,

“PIT Overload Analysis in Content Centric Networks”,

ICN '13 Proceedings of the 3rd ACM SIGCOMM

workshop on Information-centric networking August 12 -

12, 2013

