
ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 4, Issue 12, December 2017

 154

Synthesis of Sliding Window Protocol with

Piggybacking
[1]

Neha Jain,
[2]

 Dr. Manoj Kumar Jain
[1][2]

 Department of Computer Science, Mohanlal Sukhadiya University, Udaipur, India

Abstract:-- Data traffic on communication channel is increasing day by day. To increase the utilization of bandwidth of the

communication channel we implement sliding window protocol with the concept of piggybacking on hardware. Much work has

been done in this field but in this paper we implement the concept of sliding window with piggybacking. To implement the

algorithm on hardware we use a hardware description language like VHDL. We implemented it on Xilinx ISE. Total memory

usage of this implementation is 267108 kilobytes.

Keywords— Piggybacking, Sliding Window Protocol, VHDL, Xilinx ISE

INTRODUCTION

Sliding window protocol is a data transmission protocol.

It works on data link layer of OSI model. In today’s

scenario bandwidth of communication channel is very
high. Sliding window protocol sends more than one

frame at a time. Thus this protocol utilizes the bandwidth

of the communication channel. In this paper to increase
the utilization of the bandwidth we implement the Sliding

Window protocol with the concept of Piggybacking.

Piggybacking means when if the receiver has data to
send, it will send this data with acknowledgement. Thus

by sending more information in a frame we can utilize
bandwidth of the channel more efficiently. We implement

this concept using Xilinx ISE.

In [1] author presented a software solution of
dynamically sliding window protocol for data

synchronization in a flow cytometer. In [2] author

proposed a hardware for computing modular
exponentiat1ion using the sliding window method. In [3]

author proved the protocol against a service description

by using boolean logic. In [4] author presented an
automated tool, Sliding Window Operation

Optimization (SWOOP) that generates the estimate of
speedup for a high performance design. Author

determined the speedup by the area of the FPGA. In [5]
author studied the effect of concurrency in network

processors on packet ordering. In [6] author analyzed the

network traffic using the network traffic monitor and he
investigated the Internet traffic characteristics through a

statistical analysis. In [7] a network processor model was
introduced which was used as a basis for a simulation

tool. In [8] author explained the role of network

processors in active networks.

In this paper we have implemented sliding window

protocol with piggybacking on hardware. Section 1
shows

the hardware implementation of the algorithm. Section 2

shows the results and section 3 shows the conclusion.

Fig. 1 Sliding Window Protocol with

Piggybacking

1. Implementation of Code in Xilinx ISE

A. Piggybacking.v

This is the code that sends/receives the data from

sender/receiver. We have assumed that the protocol uses

a 16 bit data packet at a time for data transfer. Number of

frames used for this data transfer is 8. Hence there are 2

bits of data in each frame getting updated at every active

edge of clock cycle.

We have inputs such as sender_availability and

receiver_availability to check if data is available to be
sent at Sender/Receiver. We have implemented the

process of data transfer in data_framing.v code.

Once data transfer is completed, then this protocol waits

for a few clock cycles (3 clock cycles) to check if data is

available with sender/receiver or not. If the data is
available at receiver, then receiver will send data + ACK

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 4, Issue 12, December 2017

 155

to the sender. Here ACK is called final_ack_data_ready

as data was available. In case if data is not available after
3 clock cycles, then our ACK will be in terms of

final_ack_data_NOT_ready. Same mechanism is also

incorporated for reverse communication.

module piggybacking(sender_data,ack,

final_ack_data_ready, final_ack_data_NOT_ready,

receiver_data, receiver_data_temp, clock, reset,

sender_availability, receiver_availability, ack);

input clock, reset;

input [D-1 : 0] sender_data;

input sender_availability, receiver_availability;

output reg [D-1 : 0] receiver_data;

output [D-1 : 0] receiver_data_temp;

output ack;

output reg final_ack_data_ready;

output reg final_ack_data_NOT_ready;

reg [15:0] data_from_sender_to_receiver,

data_from_receiver_to_sender;

parameter N = 2, D = 16;

wire [1:0]

frame1,frame2,frame3,frame4,frame5,frame6,frame7,fra

me8;

reg data_receiver_at_sender, data_received_at_receiver;

wire [15:0] receiver_data_temp_reg;

wire [15: 0] dout;

reg ack_sender, ack_receiver;

wire temp_ack;

reg ack_by_sender, ack_by_receiver;

assign receiver_data_temp_reg = receiver_data_temp;

assign ack = temp_ack;

data_framing d1 (.data_in(sender_data),

.data_out(receiver_data_temp),

.clock(clock),

.reset(reset),

.sender_availability(sender_availability),

.receiver_availability(receiver_availability),

.frame1(frame1), .frame2(frame2),

.frame3(frame3), .frame4(frame4),

.frame5(frame5), .frame6(frame6),

.frame7(frame7), .frame8(frame8),

.temp_ack(temp_ack));

always @ (posedge clock)

begin

if (reset)

data_from_sender_to_receiver <= 0;

else if

(sender_availability == 1 && receiver_availability == 0)

data_from_sender_to_receiver <= dout;

else if (sender_availability == 0 && receiver_availability

== 1)

data_from_receiver_to_sender <= dout;

end

always @ (posedge clock)

begin

if (reset)

begin

ack_by_receiver <= 0;

end

else if (temp_ack == 1)

begin

@ (posedge clock); @ (posedge clock);

@ (posedge clock); @ (posedge clock);

@ (posedge clock); @ (posedge clock);

@ (posedge clock); @ (posedge clock);

@ (posedge clock); @ (posedge clock);

@ (posedge clock); @ (posedge clock);

if (receiver_availability==1)

begin

ack_by_receiver <= 1'b1;

@ (posedge clock);

ack_by_receiver <= 0;

end

else

begin

ack_by_receiver <= 1'b1;

@ (posedge clock);

ack_by_receiver <= 0;

end

end

end

always @ (posedge clock)

begin

if (reset)

begin

ack_by_sender <= 0;

end

else if (temp_ack == 1)

begin

@ (posedge clock); @ (posedge clock);

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 4, Issue 12, December 2017

 156

@ (posedge clock); @ (posedge clock);

@ (posedge clock); @ (posedge clock);

@ (posedge clock); @ (posedge clock);

@ (posedge clock); @ (posedge clock);

@ (posedge clock); @ (posedge clock);

if (sender_availability==1)

begin

ack_by_sender <= 1'b1;

@ (posedge clock);

ack_by_sender <= 0;

end

else

begin

ack_by_sender <= 1'b1;

@ (posedge clock);

ack_by_sender <= 0;

end

end

end

always @ (posedge clock)

begin

if (reset)

begin

final_ack_data_ready <= 0;

final_ack_data_NOT_ready <= 0;

end

else if (temp_ack)

begin

@ (posedge clock); @ (posedge clock);

@ (posedge clock); @ (posedge clock);

@ (posedge clock); if (sender_availability == 1 ||

receiver_availability == 1)

begin

final_ack_data_ready <= 1;

@ (posedge clock);

final_ack_data_ready <= 0;

end

else

begin

final_ack_data_NOT_ready <= 1;

@ (posedge clock);

final_ack_data_NOT_ready <= 0;

end end

else

final_ack_data_ready <= 0;

final_ack_data_NOT_ready <= 0;

end

endmodule

B. dataframing.v

This code decides how the data transfer takes place via

data frames. In our protocol, we have assumed that there

are data packets each of 16 bit and data frames of 2 bits.

Hence for a data transfer to take place, 8 clock cycles are

required. Once data transfer is complete, we assert a

temp_ack signal to establish that data transfer has been

completed. Then protocol waits for a while to decide

whether to assert

final_ack_data_NOT_ready(receiver_availability = 0) or

final_ack_data_ready (receiver_availability = 1). These

signals are then used in Piggybacking.v to give final

outputs.

module data_framing (data_in, temp_ack, data_out,

receiver_availability, clock,

reset,sender_availability,frame1,frame2,frame3,frame4,fr

ame5,frame6,frame7,frame8);

parameter D= 16, N=2;

input[D-1 : 0] data_in;

input clock, reset;

output [15 : 0] data_out;

reg [15 : 0] data_out_temp;

integer i = 16 ;

input sender_availability,receiver_availability;

output reg [1:0]

frame1,frame2,frame3,frame4,frame5,frame6,frame7,fra

me8;

output reg temp_ack;

wire [15:0] data_out_1;

always @ (posedge clock)

begin

if (reset)

begin

frame1 = 0; frame2 = 0;

frame3 = 0; frame4 = 0;

frame5 = 0; frame6 = 0;

frame7 = 0; frame8 = 0;

end

else if (sender_availability== 1'b1 ||

receiver_availability== 1'b1)

begin

frame1 = data_in[15:14];

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 4, Issue 12, December 2017

 157

@ (posedge clock);

frame2 = data_in[13:12];

@ (posedge clock);

frame3 = data_in[11:10];

@ (posedge clock);

frame4 = data_in[9:8];

@ (posedge clock);

frame5 = data_in[7:6];

@ (posedge clock);

frame6 = data_in[5:4];

@ (posedge clock);

frame7 = data_in[3:2];

@ (posedge clock);

frame8 = data_in[1:0];

end

else

begin

frame1 = 0; @ (posedge clock);

frame2 = 0; @ (posedge clock);

frame3 = 0; @ (posedge clock);

frame4 = 0; @ (posedge clock);

frame5 = 0; @ (posedge clock);

frame6 = 0; @ (posedge clock);

frame7 = 0; @ (posedge clock);

frame8 = 0;

end

end

always @ (posedge clock)

if (sender_availability == 1 || receiver_availability ==1)

begin

temp_ack <= 1'b0;

@ (posedge clock); @ (posedge clock);

@ (posedge clock); @ (posedge clock);

@ (posedge clock); @ (posedge clock);

@ (posedge clock);

data_out_temp = {frame1, frame2, frame3, frame4,

frame5, frame6, frame7, frame8};

@ (posedge clock); @ (posedge clock);

@ (posedge clock);

temp_ack <= 1'b1;

@ (posedge clock);

data_out_temp <= 0;

temp_ack <= 1'b0;

end

assign data_out_1 = data_out_temp;

assign data_out = data_out_1;

endmodule

C. piggybacking_test.v

This is a simple test bench file in which we generate a

clock, reset, data_in,

sender_availability/receiver_availability etc inputs and

monitor the required outputs on waveforms window as

well as console. We have designed the test bench to

examine the possible test cases which include:

1) Sender_availability = 1 then Receiver_availability = 1;

it gives ACK in terms of final_ack_data_ready

2) Receiver_availability = 1 then Sender_availability = 1;

it gives ACK in terms of final_ack_data_ready.

3) Sender_availability = 1 and receiver_availability = 0;

it gives final_ack_data_NOT_ready.

This way all the test scenarios can be examined to prove

the concept of piggybacking.

module piggyback_test();

reg clock,reset;

reg [15:0] data_in;

reg sender_availability, receiver_availability;

wire [15:0] receiver_data_temp;

wire ack;

wire final_ack_data_ready;

wire final_ack_data_NOT_ready;

//wire [2:0] frame;

piggybacking p1 (.sender_data(data_in),

.clock(clock),

.reset(reset),

// .frame(frame),

.sender_availability(sender_availability),

.receiver_availability(receiver_availability),

.ack(ack),

.final_ack_data_ready(final_ack_data_ready),

.final_ack_data_NOT_ready(final_ack_data_NOT_ready,

.receiver_data_temp(receiver_data_temp));

initial

begin

clock = 1'b0;

reset = 1'b1;

end

always

#2 clock = ~clock;

initial

begin

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 4, Issue 12, December 2017

 158

#15 reset <= 1'b0;

data_in = 16'b1111000010100101;

sender_availability= 1'b1;

receiver_availability= 1'b0;

#16 sender_availability= 1'b0;

#48 receiver_availability = 1'b1;

data_in = 16'b1010111101010000;

#16 receiver_availability = 1'b0;

#48 sender_availability = 1'b1;

data_in = 16'b0001110001110001;

#16 sender_availability = 1'b0;

#48 receiver_availability = 1'b1;

data_in = 16'b1111111100001111;

#16 receiver_availability = 1'b0;

#48 sender_availability = 1'b1;

data_in = 16'b0000000011111111;

#16 sender_availability = 1'b0;

#200 $stop;

end

initial

$monitor ($time, "clock=%b, data_in= %b,

receiver_data_temp= %b", clock, data_in,

receiver_data_temp);

endmodule

2. RESULTS

Schematic diagram of the implementation is as follows:

Fig 2 Schematic Diagram

Total memory usage of this implementation is 267108

kilobytes.

In fig. 3 of waveform if sender availability is high, it
means that sender has data to send. In fig. 3 of wave form

we can see that there are 8 frames 2 bits per frame. So on

every clock cycle one frame will be sent. After all frames
are sent ack will be high. In fig. 4 of waveform we can

see that ack is set to high. Now we wait for few clock
cycle to check if data is there or not. If data is there than

final_ack_data_ready will high. If receiver has no data to

send than final_ack_data_NOT_ready will high. In fig. 4

of waveform we can see that receiver_availability and
final_ack_data signal both are high at the same time. It

means that receiver has data to send and it is sending data

with acknowledgement.

Fig. 3 Waveform 1

Fig 4 Waveform 2

3. CONCLUSION

By implementing sliding window protocol with the
concept of piggybacking we are sending data and

acknowledgement in a single frame. Thus we are sending

more information in single frame. Thus the utilization of
the bandwidth of the channel is increased. The memory

consumption of this implementation is also very low that

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 4, Issue 12, December 2017

 159

is 267108 kilobytes.

We can use this implementation on network processor to

Increase the bandwidth utilization. Hardware
implementation is also faster than software

implementation.

FUNDING SOURCES

There is no involvement of any funding sources in this

work.

REFERENCES

1. J. Ding, Y Shao, D. Zhang “Development of A Sliding
Window Protocol for Data Synchronization in a Flow

Cytometer,” The 26th International Conference on
Software Engineering and Knowledge Engineering, Hyatt

Regency, Vancouver, BC, Canada, pp. 626-631, January

2014.

2. N. Nedjah, M. Mourelle, “High-Performance

Hardware of the Sliding-Window Method for Parallel
Computation of Modular Exponentiations,” International

Journal of Parallel Programming, vol. 37, pp. 537-555,
December 2009.

3. O.Drogehorn, H. Hummer, W. Geisselhardt,”Formal

Specification and Verification of Transfer-protocols for
system-

4. A. Kind, R. Pletka, M. Waldvogel “The Role of
Network Processors in Active Networks, IFIP
International Working Conference on Active Networks,

pp. 20-31, 2003.

5. S. Govind, R. Govindarajan, J. Kuri,”Packet
Reordering in Network Processors,” Parallel and

Distributed Processing Symposium, 2007. IPDPS 2007.
IEEE International, June 2007.

6. S. Ata., M. Murata, H. Miyahara, “Analysis of network
traffic and its application to design of high-speed

routers”, IEICE Transactions on Information and

systems, pp. 988-995, 2000.

7. J. Fu, O. Hagsand, “Designing and Evaluating

Network

Processor Applications", In Proc. of 2005 IEEE

Workshop on High Performance Switching and Routing

(HPSR) Hong Kong, pp. 142-146, 2005.

8. A. Kind, R. Pletka, M. Waldvogel.,” The Role of
Network Processors in Active Networks”, International

Federation for Information Processing, pp. 20–31, 2004.

