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Abstract: -- Demand forecasting is difficult, and most demand forecasting conducted today produces disappointing results and 

significant forecast errors. It cannot easily identify trends in the demand data, and its limited ability to understand the underlying 

causes of demand variability makes that variability seem worse than it would if demand drivers were clearly understood. And 

because it is manually intensive, it suffers from persistent bias and poor planner productivity. Business volatility and the 

complexity of factors influencing demand are making it hard to reliably model the causes of demand variation. Machine learning 

can help companies overcome that challenge. 
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1. INTRODUCTION 
 

Demand forecasting is difficult, and most demand forecasting 

conducted today produces disappointing results and 

significant forecast errors. It cannot easily identify trends in 

the demand data, and its limited ability to understand the 

underlying causes of demand variability makes that 

variability seem worse than it would if demand drivers were 

clearly understood. And because it is manually intensive, it 

suffers from persistent bias and poor planner productivity. 

"Supply Chain Shaman" Lora Cecere puts it bluntly. In her 

excellent book, Bricks Matter, she writes, "Within an 

organization, the words 'Demand Planning' stir emotions. 

Usually, it is not a mild reaction. Instead, it's a series of 

emotions defined by wild extremes including anger, despair, 

disillusionment, or hopelessness." She goes on to say that 

planning teams are dismayed by demand planning's 

challenges, and further claims that leaders are not optimistic 

about making improvements to planning processes and 

technologies. 

 
Fig. 1 

 

What makes forecasting demand so challenging? Rather than 

appearing as a logical series of numbers, in today's business 

environment demand more often seems like a pattern of 

partially constrained chaos. Demand is increasingly 

influenced by multiple internal and external factors that drive 

it up and down in ways that can't be understood by simply 

looking at a historical time-series of aggregated demand 

buckets. Instead, demand should be viewed as being driven 

by a complex series of indicators that can be nearly 

impossible to manage with traditional forecasting algorithms. 

However, a new technology called machine learning can help 

companies address demand-forecasting challenges by reliably 

modeling the numerous causes of demand variation. Machine 

learning is a computer-based discipline in which algorithms 

can actually "learn" from the data. Rather than following 

only explicitly programmed instructions, these algorithms use 

data to build and constantly refine a model to make 

predictions. I'll explain in more detail later, but first I'd like to 

describe several business scenarios where companies have 

employed machine learning in their demand forecasting. See 

if any of these scenarios suggest familiar attributes in your 

own business. Lots of promotions. Every year, the Italian 

dairy producer Granarolo S.p.A. runs thousands of consumer 

promotions, creating forecasting scenarios for 34,000 unique 

stock-keeping unit (SKU) promotions. And it gets worse: 

Demand spikes can amount to an extraordinary 30 times 

baseline sales. (For more about these challenges, see the 

Granarolo sidebar.) This is a common predicament. Expenses 

for advertising and promotions can add up to more than 20 

percent of sales for many consumer products companies. Yet 

according to Michael Kantor, founder and chief executive 

officer of the Promotion Optimization Institute, only about 1 

in 50 brands is able to forecast demand uplift reliably enough 

to guarantee consumer product availability and to evaluate 

the economic returns on those promotions. Without improved 
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technology, few companies can forecast effectively in such a 

promotion-heavy environment. (For an example, see the 

sidebar about Groupe Danone.) 

Lots of new products. The United Kingdom-based electronics 

distributor Electrocomponents plc is a top-ranked global 

distributor with 500,000-plus in-stock items. The company 

introduces 5,000 new products every month and fulfills more 

than 44,000 same-day orders every day from its operations in 

32 countries. A few new products a month is one thing, but 

predicting demand for such a vast array of new products is 

more than a demand planner can reasonably be expected to 

handle. Plus, new products, by definition, are difficult to 

forecast. Nevertheless, planners can tap into external data to 

help them predict initial demand and thus decide how much 

marketing budget to invest in launching a new product. 

Lots of "long-tail" demand. Companies whose e-commerce 

business is growing find themselves having to forecast 

demand for more slow-moving, "long-tail" items that 

customers order infrequently and in small quantities. Outliers 

are naturally hard to predict, making inventory planning 

notoriously difficult. Even if you can predict the average 

demand for certain products, you probably can't predict the 

demand spikes. This makes it nearly impossible to maintain a 

balance—having enough on hand to satisfy sudden spikes 

without adding unnecessary inventory and eventually holding 

"dead stock." 

 
Fig. 2 

Growing complexity. Planning wasn't so complicated when 

Granarolo started out in the 1960s as a local collective of 

milk producers, but gradually complexity intensified as the 

company grew into a multinational concern comprising eight 

brands and hundreds of different dairy products, and utilizing 

various delivery modes. Its basic software was never 

designed to handle this kind of growth, and what resulted was 

progressively inaccurate forecasting that needed time-

consuming manual activity to fine-tune. Granarolo's situation 

is typical of modern supply chains, which continue to 

increase in complexity. Extreme seasonality. The United 

States-based heating, ventilation, and air conditioning 

(HVAC) manufacturer Lennox International Inc.'s 

forecasting was complicated because of its high number of 

SKUs (each of which had its own unique demand pattern) 

and a significant stock of slow-moving parts, and because it 

is an extremely seasonal business. Further complicating 

matters was the company's plans to greatly expand its 

distribution network, as detailed in the Lennox sidebar. There 

was no way the manufacturer could manage this level of 

complexity and variability without adopting a highly 

automated demand planning system. 

Just too much data. In all of these companies we find a 

pattern that is common to most of today's businesses: a 

proliferation of new data. I'm referring here primarily to 

market and logistical data that can help companies better 

predict demand. Having to manage huge volumes of diverse 

and ever-growing data streams is more than most planners 

(and planning systems) can handle. Trying to incorporate 

them into a forecast using spreadsheets or traditional 

planning tools is frustrating, often futile, and can be 

extremely costly. 

The companies in the scenarios above share an intrinsic level 

of complexity and scale that makes it almost impossible for 

planners to generate reliable forecasts. They are no longer 

simple and predictable businesses, able to forecast based on 

historic sales volumes—if they ever were! Their planners 

were overwhelmed. 

In many cases we see, people don't start contributing to 

forecasts until the very end of the process. So, rather than 

providing input to help generate an accurate forecast in the 

first place, they're collaborating to adjust the forecast 

"output." This approach is inefficient. While some late-stage 

"crowd wisdom" can be useful, it can also introduce bias. A 

typical example is when a sales organization artificially 

adjusts a forecast to match revenue targets. 

What else do these companies have in common? They all 

turned to machine learning in order to increase forecast 

reliability. This decision dramatically slashed inventory costs 

and at the same time provided better, more efficient service 

to customers. It also meant that planners no longer had to 

waste time manually overriding or adjusting forecasts. 

 

II. BACKGROUND 

 

One of the major purposes of supply chain collaboration is to 

improve the accuracy of forecasts (Raghunathan, 1999). 

However, since, as discussed above, it is not always possible 

to have the members of a supply chain work in full 

collaboration as a team, it is important to study the feasibility 

of forecasting the distorted demand signal in the extended 

supply chain in the absence of information from other 

partners. Therefore, although minimizing the entire extended 

supply chain’s costs is not the primary focus of this research, 
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we believe that improved quality of forecasts will ultimately 

lead to overall cost savings. The use of simulation techniques 

has shown that genetic algorithm-based artificial agents can 

achieve lower costs than human players. They even minimize 

costs lower than the ‘‘1–1’’ policy without explicit 

information sharing (Kimbrough et al., 2001). Analysis of 

forecasting techniques is of considerable value for firms, as it 

has been shown that the use of moving average, naı¨ve 

forecasting or demand signal processing will induce the 

bullwhip effect (Dejonckheere et al., 2003). Autoregressive 

linear forecasting, on the other hand, has been shown to 

diminish bullwhip effects, while outperforming naı¨ve and 

exponential smoothing methods (Chandra and Grabis, 2005). 

In this paper, we will analyze the applicability of machine 

learning techniques to demand forecasting in supply chains. 

The primary focus of this work is on facilitating demand 

forecasting by the members at the upstream end of a supply 

chain. The source of the demand distortion in the extended 

supply chain simulation is demand signal processing by all 

members in the supply chain (Forrester, 1961). According to 

Lee et al. (1997b), demand signal processing means that each 

party in the supply chain does some processing on the 

demand signal, transforming it, before passing it along to the 

next member. As the end-customer’s demand signal moves 

up the supply chain, it is increasingly distorted because of 

demand signal processing. This occurs even if the demand 

signal processing function is identical in all parties of the 

extend supply chain. The phenomenon could be explained in 

terms of chaos theory, where a small variation in the input 

could result in large, seemingly random, behavior in the 

output of the chaotic system (Kullback, 1968). 

Basic time series analysis (Box, 1970) will be used in this 

research as one of the ‘‘traditional’’ methods against which 

the performance of other advanced techniques will be 

compared. The latter include Neural Networks, Recurrent 

Neural Networks, and Support Vector Machines. Neural 

Networks (NN) and Recurrent Neural Networks (RNN) are 

frequently used to predict time series (Dorffner, 1996; 

Herbrich et al., 2000; Landt, 1997; Lawrence et al., 1996). In 

particular, RNN are included in the analysis because the 

manufacturer’s demand is considered a chaotic time series. 

RNN perform back-propagation of error through time that 

permits learning patterns through an arbitrary depth in the 

time series. This means that even though we provide a time 

window of data as the input dimension to the RNN, it can 

match pattern through time that extends further than the 

provided current time window because it has recurrent 

connections. Support Vector Machines (SVM), a more recent 

learning algorithm that has been developed from statistical 

learning theory (Vapnik, 1995; Vapnik et al., 1997), has a 

very strong mathematical foundation, and has been 

previously applied to time series analysis (Mukherjee et al., 

1997; Ru¨ping and Morik, 2003).  

III. MACHINE LEARNING 

Machine learning systems were designed to handle 

forecasting models that can incorporate many kinds of data. 

Rather than following traditional programmed instructions, 

machine learning systems reduce demand variability by 

capturing and modeling all the relevant attributes that shape 

demand while filtering out the "noise," or random and 

unpredictable demand fluctuations. 

 

 
Fig. 3 

As a result, they learn from the data that they process and 

modify their operations accordingly. For example, a machine 

learning system that uses Web data to quickly detect 

successful new products will find and learn which demand 

indicators—such as Web page hits, specification downloads, 

and time on site—are most reliable, and then will update its 

model over time as consumer behavior changes. Machine 

learning can interpret the effect of stimuli (such as trade 

promotions and advertising) and demand indicators (such as 

social media activity) originating from each distribution 

channel. As information proliferates, the data concerning 

these causes and demand indicators become both more 

accessible and more manageable over time. Machine learning 

systems therefore can integrate and usefully model these 

important new data sources, including detailed market data, 

machine telemetry, and social media feeds, in ways that are 

simply not possible with legacy planning systems. What does 

this mean in practical terms? For one thing, it means 

companies can take advantage of valuable data signals that 

are generated closer to the consumer, including data from 

points of sale and social media channels. This enables 

companies to understand the impact of demand drivers such 

as media, promotions, and new product introductions, and to 

then use that knowledge to significantly improve forecast 

quality and detail   
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IV. WHY MACHINE LEARNING? 

 

Would machine learning technology be beneficial for your 

supply chain? One way to know is by finding out whether 

your old planning system may be causing escalating costs. 

Here are three potential signs of this problem, and how 

machine learning can help to address them: 

Inflated safety-stock levels. You can't trust your safety-stock 

levels to deliver the required service levels, so you keep them 

artificially high. By taking more demand variables into 

account, machine learning can help companies with a diverse 

range of SKU profiles, including long-tail items, to set 

optimal, lower levels they can trust. 

 
Fig. 4 

Planning team "burnout." Your team is spending too much 

time manually adjusting and evaluating forecasts, and often is 

still not able to deliver them accurately enough or on time. 

This leads to poor productivity and morale. Machine learning 

takes more demand variables into account and weights each 

according to its significance, resulting in much more accurate 

forecasts. This helps planners succeed in their roles and frees 

up time for them to refine forecasts using their personal 

insights and business knowledge. 

An inefficient sales and operations planning (S&OP) process. 

Your consensus forecast from the S&OP is unreliable, or the 

collaboration process behind it is too slow to adapt to the 

dynamic nature of the market and SKU behavior. Machine 

learning's high level of automation can improve the quality of 

the short- and mid-term forecast by picking up key trends 

from transactional and promotional data and providing 

actionable insights about those trends, thereby making the 

S&OP process more efficient and effective in achieving your 

business objectives. If any of these situations resonate, it's 

likely time to take a closer look at machine learning 

technology. This doesn't have to mean "ripping and 

replacing" your existing software. Granarolo, for example, 

implemented machine learning technology alongside its 

existing systems to boost performance. Companies that 

implement machine learning often find that it is easy to use, 

and that its ability to learn from existing data means that it 

takes relatively less time to implement, deliver benefits, and 

pay for itself. 

In the not-too-distant future, most supply chains will rely on 

software that uses machine learning technology to analyze 

much larger, more diverse data sets. For companies that are 

serious about tackling today's complex forecasting problems, 

this new technology will prove an invaluable tool.  

 

V. EXPERIMENTAL SETUP 

 

Data set preparation 

We used a representative set of traditional forecasting 

techniques as a control group, and a set of machine learning 

techniques as a treatment group. To compare the two groups, 

every technique from each group was used to forecast 

demand one month into the future for all of the 100 series for 

the three datasets previously identified. 

This resulted in a series of 4,700 forecast points for the 

chocolate manufacturer, 6,500 for the toner cartridge 

manufacturer and 14,800 for the Statistics Canada dataset for 

every technique tested. However, since all forecasting 

techniques require past data to make a forecast into the 

future, there was a predetermined startup period that slightly 

reduced the number of forecast observations. Additionally, 

the demand time series was formally separated into a training 

set and testing set. This is particularly important for the ML 

techniques, where the training set was used for ML models to 

learn the demand patterns and the testing set used to estimate 

how well the forecasting capability could generalize in the 

future. The main performance measure used was the absolute 

error (AE) measure for every forecast data point. This 

resulted in a series of absolute error values for a specified 

forecasting technique. To make the absolute error 

comparable across products, we normalized this measure by 

dividing it by the standard deviation of the training set. Thus, 

the performance of different techniques was compared in 

terms of normalized absolute error (NAE). We used 80 

percent of the time series data for training and 20 percent of 

the data for testing. We then employed all of the selected 

techniques to produce forecasts using MATLAB 7.0 

environment (MathWorks, 2005b). 

 

VI. CONCLUSION 

 

We reviewed the importance of supply chain models as a 

valuable, rare, inimitable, non-substitutable, and 

heterogeneous resource that leads to a competitive advantage 

to the firms in a supply chain. We also considered the 

advantages and disadvantages of supply chain models based 
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on optimization methods and multiagent and CBR. While 

optimization models are good at providing solutions with 

precision, it takes time and effort to build quality models and 

a supporting database. Furthermore, it is getting harder to 

build the models as the problem domain expands. Although 

multi-agent and CBR based models provide near-optimal 

solutions, less effort is required to build the models which 

can be used with less expertise. This approach is more 

amenable to model complexities caused by the expansion of 

the problem domain. CBR can accommodate additional 

problem dimensions and multi-agent can address 

collaboration and 
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