

International Journal of Engineering Research in Computer Science and Engineering (IJERCSE) Vol 4, Issue 12, December 2017

Survey on Different Data Security Cryptographic Algorithms

^[1] S. SweetlinSusilabai, ^[2] Dr.D. S. Mahendran, ^[3] Dr. S. John Peter

^[1] Research scholar, Manonmaniam Sundaranar University, Tirunelveli

^[2] Associate Professor in computer science, Aditanar college of Arts & Science, Tiruchendur.

^[3] Associate professor & Head, Department of Computer science, St.Xaviers College, Tirunelveli.

Abstract: - In today's world cloud computing grows very fast and transferring a vast amount of data confidentially through clouds by using security algorithms. Clouds are the new platform in Information Technology (IT) and business world. Huge Number of users' stores their secured data on Cloud. We send more private data in the clouds. Data security is the most important role in transferring data through clouds. Cryptography is a technique that allows the user to send and receive the confidential data using security algorithms. So, data security is an important factor in cloud computing for ensuring clients data is placed in the secure mode in the cloud. In this paper, there are a number of existing cryptographic techniques used to implement security in cloud and we have to discuss the number of symmetric and asymmetric algorithms. We have focused on a comparative study of various cryptographic algorithms like DES, 3DES, AES, RC2, RC4, RC5, RC6, TWOFISH, THREEFISH, BLOWFISH, and RSA. We have to analyze their ability to secure data, key size, block size, features.

Keywords: Cryptography, Encryption, Symmetric Key Algorithm, Asymmetric key Algorithm, RSA and BLOWFISH.

I. INTRODUCTION

The main important work of the Cryptography encryption algorithm is used to give security against unauthorized access. Cryptography is a fundamental building block for building information systems. Cryptography [1][2] is the science of secure data. It is a technique to transmit secure data between two parties. It uses two things i.e. plain text and cipher text. The sender can send plain text, it is an original data. The plain text can be converted into cipher text by using encryption algorithm and cipher text can be converted into plain text by using decryption algorithm. We can expect that the cryptography will become more and more important with time.

The main goal of cryptography is to effectively deal with the following areas:

1) Confidentiality:

It allows keeping the confidential information in computer and it is transmitted to be accessed only by the authorized party and not by someone else.

2) Secrecy:

It is a term synonymous with confidentiality and privacy. There are numerous approaches to providing confidentiality, ranging from physical protection to mathematical algorithms which render data unintelligible.

3) Data integrity:

It is a service which secures the unauthorized modification of data. To ensure data integrity, one must have the capability to detect data manipulation by unauthorized parties. Only the authorized user is permitted to change the transmitted data. No one is allowed in between the sender and receiver to modify the given data.

4) Authentication

It is a service related to identification of two parties. The sender and receiver entering into a communication should identify each other. The information received by any computer has to check the identity of the sender that whether the information is arriving from a authorized user or a unauthorized identity.

Vol 4, Issue 12, December 2017

5) Non-repudiation:

It is a service which prevents an entity from denying previous commitments or actions. When disputes arise due to an entity denying that certain actions were taken, a means to resolve the situation is necessary. Ensure that neither the sender, nor the receiver of message should be able to deny the transmission.

6) Access Control:

Access Control specifies and controls who can access what.

7) Availability:

The principle of availability states that resources should be available to authorized parties all the times.

II. CRYPTOGRAPHY ALGORITHMS

There are many cryptographic algorithms used for encryption data. Cryptographic algorithms mostly classified into two broad categories.

- i) Symmetric key algorithm
- ii) Asymmetric key algorithm

i) Symmetric key algorithm

Symmetric key algorithm [2] uses same key for both encryption and decryption. Symmetric key algorithm is known as secret key or shared key algorithm or public key algorithm. It During data transmission the sender and receiver uses same secret key. Only one key is used for doing encryption and decryption. so this algorithm depends on two factors-secrecy of the key and its distribution for its success. Symmetric key algorithms are AES, DES, 3DES, RC2, RC4, RC5, RC6, TWOFISH, THREEFISH, BLOWFISH.

D I P C

ii) Asymmetric key algorithm

Asymmetric key algorithm [9] uses two different keys for encryption and decryption. For encryption it uses public key and private key is used for decryption. Sender sends encrypted text with public key and receiver receive the decrypted text with private key. Asymmetric algorithms are Diffe-Hellman and RSA Public Key Encryption

Fig.2.3. Asymmetric Key Cryptography

• AES (Advanced Encryption Standard)

AES [16] is also called Rijndael's algorithm. It is a symmetric cipher algorithm. It encrypts the data blocks of 128 bits using secret key. It has a variable key length of 128, 192 or 256 bits. It encrypts 128 bit data block into 10,12 and 14 rounds. Each round allows four rounds i.e Substitute byte, shift rows, Mix column, add round key. It uses different rounds of data.

DES (Data Encryption Standard)

DES [2] is a symmetric key algorithm. It uses a block size of 64 bits and key size of 56 bits. To encrypt the data which is 64 bits in size. It is a feistal structure which divides

International Journal of Engineering Research in Computer Science and Engineering (IJERCSE) Vol 4, Jasua 12, December 2017

Vol 4, Issue 12, December 2017

a block into two equal size. It allows series of S-boxes and P-boxes. DES completes the 16 rounds of encryption.

• 3DES (Triple Data Encryption Standard)

3DES [3] uses the Data Encryption Standard (DES) algorithm three times to each data block. It is also called T-DES. It has 64 bit block size and uses 56 bits of key length. It uses three 64 bit keys, so overall key length is 192 bits. The data can be encrypted first key the data can be decrypted again with the second key, and finally encrypted again with third key.

• RC2

RC2 is a symmetric block cipher security algorithm. It operates on block size of 64 bit and make use of variable size keys ranging from 8 to 128 bits. RC2 is susceptible to differential attacks

• RC4

RC4 is the stream cipher cryptography. It uses both encryption and decryption XOR together with a collection of generated keys. It uses keys of random length and this is commonly known as producer of pseudo arbitrary numbers.

• RC5

RC5 is the symmetric key cipher algorithm. It stands for "Rivest Cipher" .It is also called "Ron's code". It uses key sizes of 32,64 or 128 bits. But normally 64 bits are suggested. It uses 1 to 256 rounds. But normally 12 rounds are to be suggested. It is well suited for software and hardware implementations.

• RC6

RC6 is more accurately specified as RC6. RC6 uses a block size of 128 bits and uses key sizes of 128, 192 and 256 bits. RC6 structure is similar to RC5 in structure. It is symmetric cipher algorithm.RC6 is susceptible to brute force attacks

TWOFISH

Two fish algorithm [7] is a symmetric block cipher cryptography. It is efficient for software. It uses key sizes of 128, 192 and 256 bits. It allows 16 rounds of encryption algorithm. It allows good level of security.

• THREEFISH

Three fish algorithm [13] is a symmetric block cipher. It is tweakable block cipher. It takes three inputs, a key, a tweak and block of message. It uses three types of keys 256 bits, 512 bits or 1024 bits.

• BLOWFISH Algorithm

Blowfish algorithm [15] is a symmetric key algorithm it has 64 bit block size and variable key length from 32 bits to 448 bits. It has larger key size so it is very difficult to break the code. It is strong encryption algorithm [13]. It has 16 rounds.

• RSA algorithm.

Rivest, Shamir and Adlemen developed RSA algorithm. RSA algorithm [14] is a asymmetric cryptography. RSA is a public key algorithm. It uses two keys. Public and Private Key is used for encryption and decryption. It is a highly secured public key encryption algorithm. By using this cryptography, it is very difficult to find what private key is used for public key.

• Diffie Helman

In this each party generates a key pair and distributes the public key. After obtaining an authentic copy of public keys, then shared secret can be used as the key for a symmetric cipher .The Diffie-Hellman algorithm grants two users to establish a shared secret key and to communicate over an insecure communication channel.

III. LITERATURE SURVEY

Many cryptographic algorithms have already been discussed.

Aamer Nadeem and Dr M. Younus Javed [1] describes the four of the popular secret key encryption algorithms, i.e., DES, 3DES, AES(Rijndael), and Blowfish. Their performance is compared by encrypting input files of varying contents and sizes, on different Hardware platforms. In this paper, authors compared the performance of the algorithms. Blowfish is fastest one. Blowfish uses larger block of size with single execution time cycle.

Ankita verma, Paramita guha, Sunitha Misra[2] compares various key algorithms i.e AES, DES, 3DES, Blowfish and RSA. They compared on different set of parameters. This study also states that AES and blowfish are the most secure algorithms. These algorithms provide better speed and power consumption when compared to other algorithms.

Brijesh Kumar Patel, Mukti Pathak [3] presents detailed analysis of symmetric and asymmetric algorithm is compared on the basis of different parameters. This paper analyzed the terms of Authentication, Flexibility, Reliability, Robustness, Scalability, Security. They presents blowfish has yet no attack.

Chaitali Haldankar, Sonia Kuwelkar[4] discussed AES and blowfish algorithms. They compared t the superiority of Blowfish algorithm with AES depending on throughput, processing time. Finally conclude that Blowfish is the best when compared to AES throughput and speed.

Deepika Rani Bansal and Preeti Thakur [5] reviewed different existing symmetric key and asymmetric key algorithms .They found that symmetric key algorithms are faster than Asymmetric key algorithms . In this survey, They suggest that blowfish performed best among other

International Journal of Engineering Research in Computer Science and Engineering (IJERCSE) Vol 4 Jasua 12 December 2017

Vol 4, Issue 12, December 2017

symmetric key algorithms .They surveyed Performance of blowfish on various types of file like image file , text file , video file etc. with different loads under different operating system and various web browsers .

Gurjeevan Singh, Ashwani Kumar Singla, K.S. Sandha[6] presents the performance evaluation of symmetric algorithms of AES,3DES, blowfish and DES. They concluded that Blowfish has better performance than other algorithms followed by AES in terms of throughput. Secondly 3DES has least efficient of all the studied symmetric algorithms.

K.Lakshmi Narayanan [7] analyze encryption security depending on encryption speed and power consumption for both the algorithms. The author proved that the Blowfish encryption algorithm may be well suitable for wireless network application security. This paper discussed AES and BLOWFISH algorithms. These results showed that Blowfish has superior performance than AES since Blowfish has not any known security weak points. The blowfish considered as an excellent standard encryption algorithm. Blowfish algorithm is faster than AES. Thus Blowfish algorithm may be more appropriate for wireless.

Maulik P. Chaudhari , anjay R. Patel [8] describes that the Blowfish algorithm is faster than other encryption algorithm. It reduces the execution time and provides a better security and it reduces less memory usage when compared to any other algorithm. To improve the performance of blowfish to prevent from brust force attack, change the size of plain text and try o minimize the key size of blowfish and making round.

Mitali, Vijay Kumar and Arvind Sharma [9] discussed AES, DES, 3DES, and Blowfish algorithms. They have survived all strength and weakness of all algorithms. This focuses performance of these encryption algorithms. They surveyed that Blowfish has better performance than other algorithms followed by AES.

Md. Alam Hossain, Md. Biddut Hossain, Md. Shafin Uddin, Shariar Md. Imtiaz [10] discussed AES, BLOWFISH, DES, RC4, RSA encryption algorithms. In this performance have been compared depends on key sizes and file sizes with all symmetric and asymmetric algorithms. They conclude that the symmetric encryption/decryption techniques are faster than the asymmetric encryption/decryption techniques

Pramod Gorakh Patil, Vijay Kumar Verma [11] discussed encryption techniques. They compared different parameters like key size, security level, modification and flexibility. The study of this paper blowfish and 3 DES give flexibility. And also allows high level of security.

Priyadarshini Patil,, Prashant Narayankar, Narayan D G, Meena S M [12] compares encryption techniques has its own strong and weak points. The comparison was made depends on performance, strength and weakness of the algorithms. Finally suggests that the memory required for implementation is smallest in blowfish whereas it is largest in RSA. DES and AES encryption algorithms require medium size of memory. So blowfish is best choice. Results shows that RSA consumes more time for encryption and decryption compared to others encryption algorithms. Blowfish consumes the least time amongst all. Blowfish is efficient in software. The concluded that AES can be used in applications where confidentiality and integrity is of highest priority. When evaluating DES, 3DES, AES, Blowfish and RSA algorithms based on parameters entropy, Blowfish secures highest priority; Blowfish is strongest against guessing attacks. When compared to time and memory in the application, Blowfish is the best suited algorithm. When compared to cryptographic strength is a major factor in the application, AES is the best suited algorithm. When compared to network bandwidth in the application; DES is the best suited algorithm.

Rajdeep Bhanot and Rahul Hans [13] analyzed a study on the encryption algorithms. They found that each algorithm has its own strengths depending in their different parameters. This study observed Strength of each algorithm depends on key agreement, types of encryption used, number of keys and key length. A comparison was made on basis of these parameters. It was concluded that blowfish is the more secure and fastest algorithm.

Rakhi Emeleya, Dr. Sanjay Agarwal [14] presents cloud security algorithms. They survey the study of RSA,RC4,KP –ABE ,AES and blowfish algorithms. A comparison was made with key length and computation time of different encryption algorithms. Finally suggests that blowfish algorithm give better performance and more security and strongest against intruders. It allows longer key size do it is more secure. But the encryption time is slow. The authors suggest that blowfish algorithm reducing of two S-boxes will increase the speed. Veena Parihar, Mr. Aishwary Kulshrestha [15] describes the study of blowfish algorithm. In this paper suggests blowfish does not have any week points. Blowfish is the standard encryption algorithm. This paper analyzed all types of image sizes and also the format that can be encrypted.

IV. COMPARISON BETWEEN SYMMETRIC AND ASYMMETRIC ALGORITHMS

Algorithm	Advantages	Disadvantages
Symmetric Key	1)In Symmetric	1)Symmetric
Algorithm	Cryptosystems,	cryptosystems
_	encrypted data can be	have a problem
	transferred on the link	of key
	even if there is a	transportation.
	possibility that the	The secret key is
	data will be	to be transmitted
	intercepted. Since	to the receiving
	there is no key	system before the
	transmitted with the	actual message is

Vol 4, Issue 12, December 2017

	data, the chances of data being decrypted are null. 2)A symmetric cryptosystem uses password authentication to	to be transmitted. Every means of electronic communication is insecure as it is impossible to guarantee that no one will be able		3DES[Triple Data Encry ption standa rd Algori thm]	Symm etric Key algorit hm	112, 192, 256 bits	128 bits	Same	Feistel	48	Fast
	prove the receiver's identity. A system only which possesses the secret key can decrypt a	to tap communication channels. So the only secure way of exchanging		RC2	Symm etric Key algorit hm	8, 128, 64 by defa ult	64 bits	Same	Feistel	16	Stre am ciph er
Asymmetric Key Algorithm	1) In asymmetric or public key.	exchanging them personally. 1)A disadvantage of using public-	-	RC4	Symm etric Key algorit hm	Var iabl e	40- 2048	Same	Feistel stream	256	Mod erate secu rity
	cryptography there is no need for exchanging keys, thus eliminating the key	key cryptography for encryption is speed: there are		RC5	Symm etric Key algorit hm	0 to 204 0 bits	32, 64 or 128 bits	same		12	
	 distribution problem 2) The primary advantage of public- key cryptography is increased security: the 	key encryption methods which are significantly faster than any		RC6	Symm etric Key algorit hm	128 to 256 bits	128 bits	Same	Feistel	20	Goo d Secu rity
	private keys do not ever need to be transmitted or revealed to anyone. 3) Can provide digital signatures that can be repudiated	currently available public- key encryption method.		TWO FISH	Symm etric Key algorit hm	128, 192, 256 bits	256, 512, 1024 bits	same	Feistel	16	Goo d secu rity lack s in spee d
			e	THRE EFIS H	Symm etric Key algorit	128 bits	256, 512, 1024	same	Feistal	72	-

V. COMPARISON OF VARIOUS CRYPTOGRAPHY **TECHNIOUES**

I Lennigo Eb								
Algori thms	Algor ithm type	Key size	Block size	Encrypt ion & Decrypt ion Key	Struct ure	Ro un d	feat ures	
AES [Adva nced Encry ption standa rd Algori thm]	Symm etric Key algorit hm	128, 192, 256 bits	64 bits	Same	Substit ution permut ation	10, 12, 14	Exc ellen t Secu rity, Fast and Flex ible	
DES[Data Encry ption standa rd Algori thm]	Symm etric Key algorit hm	56 bits	64 bits	Same	Feistel	16	Not Stro ng Eno ugh	

VI.	COMPA	RISI	ON TAE	BLE FOR	STREN	GH A.	d ND
RSA	metric Key algorit hm	4 to 409 6 bits	128 bits	Differen t	key Algorit hm	1	Sec rity Lo

32-

448

bits

102

hm

Symm

etric

Key

algorit

hm

Asym

metric 4 to

bits

64

bits

Same

Feistel

Public

BLO

WFIS

Η

// 21 22 2		
	Merits	Demerits
Algorith		
m		
AES	1) AES	1) The size of key
	encryption is	length is too long that
	fast and flexible.	makes it complex

Goo

d

secu

rity, fast

Exc ellen

t

Secu

rity Low spee d

16

Vol 4, Issue 12, December 2017

	2) The AES has	sometimes.				
	also been			RC2	1) RC2 is three	1) The algorithm
	employed in				times faster than	encryption speed is
	other areas such				DES in software	independent of key
	as to secure				implementations	size
	information in			RC6	1) RC6 uses an	1)The main
	smart cards and				extra	performance limitation
	online				multiplication	of RC6 is its
	transactions.				operation that is	Reliance on
	6) The design				not present in	specialised hardware
	and strength of				RC5. This helps	support for
	all key lengths				to produce the	multiplication and
	of the AES				dependency of	rotation that is not
	algorithm (i.e.,				the rotation on	available on many
	128, 192 and				every bit of the	CPUs, in particular,
	256) are				word.	on RISC and low end
	sufficient to					processors. Thus, there
	protect classified					is a considerable
	information up					variety in the cipher's
	to the SECRET					performance results
	SECRET					across different
	SECKE1					hardware platforms.
	require use of					2) RC6 has favourable
	oither the 102 or					that makes the sink or
	256 key lengths					unat make the cipher
	250 key lenguis.					implementation on
DES	1) It has been a	1)) Its key size is too				limited resource
	popular secret	small			late	devices
1	key encryption		100			such as smartcards.
	algorithm.					
	0			BLOWF	1) Blowfish is	_
3DES	1) It uses 64 bit	1) 3DES is slower		ISH	fast as its	
	block size with	than other block cipher			encryption rate	
	192 bits of key	methods.			on 32-bit	
	size. It is simple	2) It has poor			microprocessor	
	like DES	performance.			is 26 clock	
	because the	The second			cycles per byte.	
	encryption				2) It is compact	
	method is				as it can execute	
	similar to the				in less than 5 kb	
	one in the				memory.	
	original DES but				3) It is simple	
	applied 3 times				because it uses	
	to increase the				only primitive	
	encryption level				operations like	
	and the average				addition, XOR	
	safe time.				and table	
	2) 3DES is easy				lookup, making	
	to implement in				its design and	
	both hardware				implementation	
	and software.				simple.	
					4) It has a	

Vol 4, Issue 12, December 2017

		-			
variable key				systems requires	
length up to a				the sharing of	
maximum of				some secret and	
448 bits long				sometimes	
making it both				requires trust of	
flexible and				a third party as	
secure.				well.	
5) No attack is				3) Digitally	
known to be				signed messages	
successful				can be proved	
against this				authentic to a	
Blowfish is				third party such	
unpatented				as a judge thus	
license-free and				allowing such	
is				messages to be	
available free for				legally hinding	
				leguny omanig.	
Blowfish has			DIFFIE	1) One way	1) The biggest
variants of 14				authentication is	limitation of this kind
rounds or less				froe with this	of algorithm is
6) Blowfish is			AN	turna of	of algorithm is
considered to be				algorithm	using this algorithm is
the best out of				argoritini	itself unperable to
all energyption					man in the middle
algorithms					attack
argoriums.					attack
	1) A displayer of			VII CONCL	
KSA I) KSA IS	1) A disadvantage of			VII. CONCL	USION
increased	using public-key		D		
security, as the	cryptography for	444	Data securi	ty is the most asp	bects of communication.
private keys do	they are yory slow in		Security of		ig encryption algorithms.
hot ever need to	they are very slow in		in this pap	ber we have analy	Zed various encryption
be transmitted of	processing.		algorithms.	we compare DES,	3DES, AES, RC2, RC4,
revealed to			RCS, RCO,	I WOFISH, I HKE	EFISH, BLOWFISH and
anyone.			RSA algorit	nms. we observed	that the strength of each
whereas in a	all E		encryption c	lepends on key size	, type of algorithm used,
secret-key	A AN LOUGH		number of k	eys and number of	bits in the key. we found
system, there is	HT IT H		that blowing	sh algorithm is bes	t when compared to all
always a chance			symmetric	key algorithms. B	lowfish provides better
that an enemy			performance	because of its	larger block size. This
could discover			algorithm is	more secure, work	tast and also in future.
the secret key			And there	is broad scope of	implement in blowfish
while it is being			algorithm.		
transmitted.					
2) Another					
major advantage				REFEREN	CES
of public-key					
systems is that			[1] Aamer	Nadeem, Dr M	. Younus Javed "A
they can provide			Performance	e Comparison of I	Data Encryption
a method for			Algorithms"	',IEEE-2005.	
digital					
signatures.			[2] Anki	ta verma, Para	amita guha, Sunitha
signatures. Authentication			[2] Anki Misra,"Com	ta verma, Para parative Study of D	amita guha, Sunitha Different Cryptographic

International Journal of Engineering Research in Computer Science and Engineering (IJERCSE) Vol 4, Issue 12, December 2017

&Technology in computer science(IJETTCS), volume 5, Issue 2, March – April 2016

[3] Brijesh Kumar Patel, Mukti Pathak "Survey on Cryptography Algorithms" International Journal of Innovative Technology and Exploring Engineering Volume-4 Issue-7, (IJITEE),ISSN: 2278-3075, December 2014

[4]Chaitali Haldankar, Sonia Kuwelkar "Implementation of AES and blowfish Algorithm " IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN:2321-7308, Volume: 03 Special Issue: 03 | May-2014 | NCRIET-2014

[5] Deepika Rani Bansal and Preeti Thakur,"A review of symmetric key and asymmetric key encryption algorithms ", International Journal of Computer Science Engineering (IJCSE), Vol. 5, Mar 2016

[6] Gurjeevan Singh, Ashwani Kumar Singla, K.S. Sandha "Through Put Analysis of Various Encryption Algorithms", IJCST, Vol 2, September 2011

[7] K.Lakshmi Narayanan, "Performance Evaluation of Cryptographic Algorithms: AES and Blowfish", International Journal Of Technology And Engineering Science [IJTES]TM Vol 1(7), pp1064-1069, October 2013

[8] Maulik P. Chaudhari, anjay R. Patel "A Survey on Cryptography Algorithms" International Journal of Advance Research in Management Studies, Volume 2, Issue 3, March 2014

[9] Mitali, Vijay Kumar and Arvind Sharma "A Survey on Various Cryptography Techniques" International Journal of Emerging Trends & Technology in Computer Science (IJETTCS), Volume 3, Issue 4, July-August 2014

[10] Md. Alam Hossain, Md. Biddut Hossain, Md. Shafin Uddin, Shariar Md. Imtiaz "Performance Analysis of Different Cryptography Algorithms", International Journal of Advanced Research in Computer Science and Software Engineering, Volume 6, March 2016.

[11] Pramod Gorakh Patil, Vijay Kumar Verma "A Recent Survey on Different ymmetric Key Based Cryptographic Algorithms" IJCAT - International Journal of Computing and Technology, Volume 3, Issue 2, February 2016 ISSN : 2348 - 6090.

[12] Priyadarshini Patil,, Prashant Narayankar, Narayan D G., Meena S M "A comprehensive Evaluation of Cryptographic Algorithms: DES,3DES, AES, RSA and Blowfish" International Conference on Information Security & Privacy (ICISP2015), 11-12 December 2015, Elsevier.

[13] Rajdeep Bhanot and Rahul Hans, "A review and comparative analysis of various encryption algorithms", International Journal of Security and its application", vol.9, 2015.

[14] Rakhi Emeleya, Dr. Sanjay Agarwal, "A survey : Secure Data Storage Techniques in cloud computing", International journ.al on recent and innovation trends in computing and communication", volume 3, September 2015.

[15] Veena Parihar, Mr. Aishwary Kulshrestha, "Blowfish Algorithm : A detailed study", International Journal Technological Research For In