

 All Rights Reserved © 2017 IJERCSE 18

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 4, Issue 11, November 2017

Automated Generation of a Natural Challenge File

for File Carving Algorithms

[1]
 K. Srinivas,

[2]
 Dr. T. Venugopal

[1]
 Research Scholar (External) in CSE JNTUH University Hyderabad, Telangana, India

[2]
 Professor, Department of CSE, JNTUH College of Engineering, Sultanpur Sangareddy Dist. Telangana, India

Abstract:- File Carving is a technique of reassembling unordered mixed file fragments, without using files’ metadata such as FAT,

for reconstructing the actual files present on the disk. In the areas of data recovery and digital forensics this situation arises. A

challenge file consists of number of files, in the form of fragments, mixed in random order. In this paper authors have presented a

software system that generates a challenge file by implementing, at user level, a file system which broadly follows FAT file system.

This software system uses a large size file to store file fragments just like a kernel level file system uses disk to store files. The

kernel level file system fragments the file, as per the availability of free clusters, at the time of creation of the file. By viewing the

challenge file as a virtual disk, it consists of the number of virtual clusters. The software system presented in this paper, a user

level file system, fragments the file, as per the availability of free clusters, on the virtual disk i.e., the challenge file. This challenge

file consists of mixed file fragments of number of user files. The content of the challenge file is a result of software module which

broadly follows FAT file system. The challenge file thus generated is, therefore a natural challenge file. This challenge file

provides the writers of file carving algorithms a platform to test their algorithms. The designers of file carvers can use the

challenge file conveniently as a virtual disk, in place of the actual disk, thus eliminating the need of physical hard disk for testing

their algorithms. There are number of other benefits of this approach as outlined in this paper

Index Terms: File carving; file system; challenge file; digital forensics; data recovery

I. INTRODUCTION

When a user saves a file on a disk, the Operating

System uses its File System component to handle it. A File

System is a set of software modules, at kernel level, for file

handling operations. Assume that a user has created a file

named as “one.txt” containing the text “abc”. The size of

this file is 3 bytes. The file system allocates one free

clusters for this new file, at the time of its creation, from

the pool of free clusters that it maintains. A cluster is a set

of consecutive sectors on the disk. In this paper authors use

the term cluster to mean consecutive 4096 number of bytes

each cluster starting at byte offset in a challenge file, equals

to, a multiple of 4096. A cluster is an allocation unit. The

kernel file system views the disk as a set of clusters than as

a set of bytes. When a new file is created by a user, the

required number of free clusters is allocated for it. And

when a file is deleted all the used clusters by the file are

freed. So, for the above “one.txt” file, one cluster is

allocated. Thus when the properties of the file “one.txt” are

viewed on Windows 7 Operating System, we notice file

size as 3 bytes and size on disk as 4096 bytes.

Figure 1. File fragments and entries in directory and

FAT

Fig. 2. File fragments and modified entries in directory

and FAT after deleting a.txt file

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 4, Issue 11, November 2017

 All Rights Reserved © 2017 IJERCSE 19

Consider a file named “a.txt” of size 10KB on the disk

saved at cluster numbers 100, 105 and 120. To perform

read operation on this file, the file system obtains these

clusters numbers (that were saved in file system‟s data

structures when the file was created, as shown in Fig 1),

reads data from these clusters and presents the data to user

application. It is up to user application how to interpret this

data. When the file is deleted, the File System changes the

first byte of file name of a.txt to „_‟. Then it stores 0 in

each of the FAT locations at indexes 100, 105 and 120 to

indicate that the clusters 100, 105 and 120 are free now.

The actual data of a file a.txt is not erased. It is illustrated

in Fig 2. If the files were deleted accidentally they need to

be recovered. If the File System data structures „directory‟

and/or „FAT‟ is/are corrupted and files‟ data is available on

the disk then File System cannot present the files‟ data to

the user. Important files may need to be recovered from a

state of a disk in which file‟s content is available but not its

metadata. Criminals using computers for their criminal

activities may also intentionally delete or format the disk

on knowing the raid by investigating agencies. In this case

also files‟ data is available on the disk but its metadata is

not available. The investigating agencies, on obtaining

such disks, need to find the files that were created or used

by criminals. To face the above situations technically in the

areas of data recovery and digital forensics, a new

technology known as file carving has evolved. File carving

is a technique of reassembling mixed file fragments, in the

absence of files‟ metadata, to reconstruct the actual files

present on the disk. In conventional method of reading a

file, the File System refers to file system‟s data structures,

then reads the data present in the clusters and presents it to

the application at user level. The situations described in the

above paragraphs are not suitable for accessing files using a

conventional method. File carving is an unconventional

method of accessing files from the disk when the files‟

metadata is missing. A file carving algorithm, during its

development phase, needs to test a used disk partition of

small size to verify the correctness of the developed

algorithm. As a replacement for the test disk, in the recent

research, a large file containing mixed file fragments but

not containing the metadata is used to verify the correctness

of the developed file carving algorithms. When a used disk

partition is considered, it contains naturally file fragments

because the file system always cannot allocate clusters in

contiguous area on the disk for a file. The same state is

created artificially on a large file and is used as an

alternative to a test disk. This large file therefore contains

unordered mixed file fragments of number of files without

any metadata of files. It is a challenge for a file carving

algorithm to join these pieces for reconstructing the actual

files present in it and present to the user applications.

Therefore, a large file containing unordered, mixed file

fragments of number of files without any files‟ metadata is

called a challenge file. The authors are not aware of

availability of any tool to construct a challenge file that is as

natural as a used disk partition. In this paper, authors

present a software system that implements an automated

construction of a challenge file that is as natural as a used

disk partition. The presentation of our work is planned, in

this paper, as follows. In section II, structure of a challenge

file is described. In section III, the principles adopted for

creating a challenge file are described. In section IV, design

and implementation of software system is presented. In

section V, results of our experiments are presented.

II. STRUCTURE OF A CHALLENGE FILE

The automated construction of a natural challenge file

consists of the THREE phases. 1). An initial phases 2)

Construction phase 3) Fine-tuning phase. In this section, the

structure of a challenge file during each of the above phases

is described.

A. Structure Of a Challenge File in Initial Phase

In an initial phase, the challenge file is viewed as consisting

of contiguous clusters with each cluster containing all zeros

in it. A cluster is a set of 4096 contiguous bytes starting at a

byte offset satisfying the equation (1). The above state of a

challenge file is equivalent to a disk containing no files on it

and files system data structures in resonance with the same.

The structure of a challenge file, thus is as shown in Figure

3.

Byte-offset % 4096 = 0 (1)

Figure 3. Structure of a challenge file in initial phase

B. Structure of a Challenge File in Construction Phase

During construction phase, the challenge file consists of

three regions as shown in Figure 4. The three regions are a)

DIR b) FAT c) Data Clusters as described in section I. The

state of a challenge file is equivalent to a disk containing

many files of which three files File-A, File-B and File-C

such that the File-A and File-B (fragmented files) and File-C

(contiguous file) they required 4 clusters, 3 clusters and 2

clusters respectively. The three files together require 9

clusters. Therefore nine corresponding locations of FAT

store non-zero values. All FAT locations corresponding to

free clusters store zeroes. The three entries in DIR are

allocated one for each of the three files File-A, File-B and

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 4, Issue 11, November 2017

 All Rights Reserved © 2017 IJERCSE 20

File-C. The total number of allocated entries in DIR region

is equal to the number of files created on the disk.

Figure 4. Structure of a challenge file during

construction phase

C. Structure of a Challenge File in Fine-tuning Phase

The structure of a challenge file after fine-tuning phase

is shown in Figure 5. It is equivalent to a „used disk‟

containing data of files created during the construction

phase but not containing metadata of all the files created

during the construction phase. Therefore, in Figure 5 data

of File-A, File-B and File-C is present but does not contain

their metadata.

Figure 5. Structure of a challenge file after fine-

tuning phase

The above challenge file is a challenge for a file carving

algorithm. File carving algorithm, during its development

phase, can be verified about its correctness in joining pieces

for retrieving File-A, File-B, File-C and others. Submitting

challenge file to file carver developer is equivalent to

submitting a disk to a digital forensic expert or a data

recovery expert. The challenge file acts as a used disk for

file carving algorithms and therefore we use virtual disk as

a synonym for the term challenge file.

III. THE TECHNIQUE OF CONSTRUCTION OF

A CHALLENGE FILE

A. The Technique of Construction in Initial Phase

A virtual disk (i.e. a challenge file) of user specified size

S GB is created in binary mode and initialized to contain all

zeroes. Depending upon the size of the virtual disk, the

size DIR region and the size of FAT region are calculated.

The various parameters for the virtual disk are specified in

the Table 1. The cluster size is decided as 4KB as this is the

common size used in Operating Systems. Each directory

entry contains two fields namely filename and starting

cluster. The directory entry size is 16 bytes because the

filename maximum size is decided as 14 bytes and 2 bytes

for starting cluster number. Each cluster number is

represented by a 2byte unsigned number and hence the

maximum number of clusters supported is 216 clusters.

TABLE 1. THE SPECIFICATIONS OF VIRTUAL

DISK

B. The Technique of Construction in Construction Phase

In this phase, the user performs a sequence of command

operations of his choice. Each command is selected from

the following list a) Create a new file b) Modify an existing

file c) Delete a file. The result of the sequence of operations

is that the user files are saved on the virtual disk (i.e., the

challenge file) in fragmented/contiguous areas depending

upon the availability of free clusters for each file just like the

kernel level file system saves files on a real disk. Therefore

natural fragmentation is achieved. The above operation is

automated by executing a script file containing text that

represents a sequence of command operations of user‟s

choice. Therefore automated generation of a natural

challenge file is achieved. The challenge file contains

metadata during this phase.

C. The Technique of Construction in Fine-tuning Phase

In this phase, the DIR and FAT regions of virtual disk are

erased so that the virtual disk is a real challenge for the file

carving algorithm. After the three phases of construction are

over the result is a challenge file. It contains data of user

files in data clusters but does not contain any metadata. This

challenge file is generated automatically by executing a

script file. The files are naturally fragmented just like a file

system fragments files on the disk because the similar file

system is used but in user space.

IV. DESIGN AND IMPLEMENTATION

This software system consists of the following four

classes. 1) DIR class 2) FAT class 3) FileSystem Class 4)

UserSpace Class. In this section, the responsibilities

assigned to these classes are described in detail .

A. The DIR Class

DIR class is assigned with the following responsibilities. 1)

Write a Directory entry 2) Obtain a free directory entry 3)

Obtain a start cluster of a given file 4)Make free an existing

directory entry. Each directory entry consists of two fields.

They are filename and starting cluster number. Maximum

size of a filename is fixed as 14 characters. Each cluster

number is represented by 2 bytes. So each directory size is

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 4, Issue 11, November 2017

 All Rights Reserved © 2017 IJERCSE 21

16 bytes. The member function is supposed to prepare the

record containing these two fields and should write this

record to the first free entry in the directory table. A slot in

a directory table is said to be free if its starting cluster

number is zero or filename starting byte is „_‟. This

operation needs to be performed when a new file is created

on a virtual disk. To read a file present on the virtual disk,

in conventional method, we need to know the fat chain of a

file. The fat chain starting cluster is present in directory

region and the actual chain is present in fat region. The end

of the fat chain is marked as a number 0xFFFF. The initial

cluster number is obtained from the file‟s corresponding

entry in directory region. When a file is deleted, the

corresponding entry in the directory region must be made

free. It is marked as a free entry by changing the first byte

of filename to „_‟. When the directory region is initialized

the whole of it is written with all zeroes. It is not required

to make the starting cluster as zero for an entry

corresponding to the file being deleted. In kernel level file

system, each entry in a directory table contains other

attributes like file size, time of file creation etc. From file

carving point of view, it is required to introduce

fragmentation naturally and therefore it does not require

storing all the attributes of a file in directory entry. So the

fields in a directory are restricted to filename and starting

cluster number in user space file system.

B. The FAT Class

The FAT class is assigned with the following

responsibilities. 1) Get the required number of free clusters

2) Given a set of cluster numbers, form a fat chain 3)

Obtain the fat chain given a starting cluster number. The

FAT region is basically an array, each element occupying 2

bytes. When the FFAT entry is zero, then the

corresponding cluster is a free cluster. When a new file is

created or when an existing file is extended, we need a

certain number of free clusters on the virtual disk so that

the new file data or extended file data is written to these

clusters. After writing data to the free clusters, a fat chain

needs to be formed. If a file‟s data is written to cluster

numbers 10, 105 and 120 then at 10th location the element

100 is written. At 100th location the element 105 is

written. At 105th location, the element 120 is written. At

120th location, the element 0xFFFF is written. The value

0xFFFF marks the last cluster in the chain. Suppose that a

file is stored at cluster numbers 10, 105 and 120. When a

file is to be read, starting cluster number is obtained from a

directory region. The value 10 is obtained from the

corresponding entry in a directory region. Then in the fat

region, the element at 10th location is read. Its value is

105. Then the element at 105th location is read. Its value

is 120. Then the element at location 120 is read. The value

at this location is 0xFFFF. So the fat chain is 10->105-

>120.

C. The FileSystem Class
The FileSystem class is assigned with the following

responsibilities. 1) Read the cluster data given a cluster

number 2) write data to the specified cluster. Irrespective of

file type, the file system always views the file content as a

sequence of bytes. To read a file, a starting cluster is

obtained from a directory entry. Then fat chain is obtained

from the fat region. Then one-by-one cluster data is read to

present it to the user application. So it is required to have a

facility in User Space File System (USFS) class that reads

the cluster data given a cluster number. When a new file is

created, it obtains a free directory entry, finds the number of

required clusters, forms fat chain and then writes data to the

data clusters. Therefore, in File System class it is required

to have one facility for writing the file‟s bytes to the

specified cluster.

D. The UserSpace Class

The UserSpace class is assigned mainly with the

following responsibilities. 1) Create a file 2) Modify a file 3)

Delete a file. These operations are implemented using the

facilities provided by the above three classes.

The programming language C++ is used to implement

the above classes. The four C++ classes are given below.

class DIR

{

public:

int write_dir_entry(char *fn , unsigned int sc) ;

unsigned int get_free_entry() ;

unsigned int get_start_cluster(char *fn) ;

int make_dir_entry_free(char *fn) ;

} ;

class FAT

{

public:

ui get_free_cl() ;

ui get_next_cl(ui clno) ;

ui get_next_cls(ui clno , ui cls[]) ;

void set_next_cl(ui clno , ui nextcl) ;

ui FAT::operator [] (ui clno);

int get_free_cls(ui cls[] , ui n) ;

void set_next_cls(ui cls[] , ui n) ;

void free_next_cls(ui cls[] , ui clcnt) ;

} ;

class FileSystem

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 4, Issue 11, November 2017

 All Rights Reserved © 2017 IJERCSE 22

{

public:

void read_cl(ui clno , uc b[CLSIZE] , ui bytecnt) ;

void write_cl(ui clno , uc b[CLSIZE] , ui bytecnt) ;

} ;

class UserSpace

{

DIR dir ;

FAT fat ;

FileSystem fs ;

char command[60] ;

char cmd[20], char arg1[20], char arg2[20] ;

public:

void showfile() ;

void format() ;

void hdump(ul low=0 , ul high=240) ;

void write(char fn[]) ;

void directory() ;

ui del() ;

void modify() ;

UserSpace() ;

void create() ;

void help() ;

} ;

Implementation of the two important operations of

FileSystem class is explained below. The read_cl()member

function reads a specified cluster from a challenge file into

a buffer b. Using fseek() the file pointer is made to point to

the starting byte of the specified cluster. fread() is used

toread the cluster of size 4KB into buffer b. The write_cl()

member function writes a buffer „bytes‟ to a specified

cluster on virtual disk. Using fseek() the file pointer is

made to point to the starting byte of the specified cluster.

fwrite() statement writes the buffer of size 4KB to the

virtual disk. In the above two member functions and all

other applicable member functions, “test.dat” is a virtual

disk and acts as a challenge file after completing the three

phases of construction.

void FileSystem :: read_cl(ui clno , uc b[] , ui bytecnt)

{

FILE *fp = fopen("test.dat" , "rb+") ;

fseek(fp , CLSIZE * (long)clno , 0) ;

fread(b , 1 , bytecnt , fp) ;

fclose(fp) ;

}

The program utilizing the above classes is compiled and

executed using Turbo C++ compiler and the results of the

experiments are presented in the next section.

V. EXPERIMENTS AND RESULTS

The various operations supported by User Space File

System (USFS) software for the user are shown in the

screenshot in Figure 6. In the screenshot, vd> is a prompt

for the user. The prompt vd is a short form for virtual disk.

“?” is a command to display a list of commands that are

available for the user to execute.

Figure 6. Response of “?” command

Figure 7. Response of “directory” command

When “del” command is executed, it can be seen that the

total files is 5. And it can also be seen that the deleted

filename‟s starting byte is changed to “_”. This is the

procedure adopted in FAT file system. In Figure 9,

screenshot of “hexdump” command is shown. It contains

the cluster number at the top followed by a list of sub

commands and followed by a table showing the content of

challenge file. The table has 3 columns. The first column

gives offset range. The second column displays content in

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 4, Issue 11, November 2017

 All Rights Reserved © 2017 IJERCSE 23

the specified offset range, in hex formats. In third column,

same content in the form of text is displayed

Figure 8. Response of “del” command

Figure 9. Response of “hexdump” command

The table 2 gives the list of sub commands of “hexdump”

command and their actions. These sub-commands help file

carver developer to view different portions of the challenge

file. Correctness of the challenge file can be verified with

the help of the subcommands. Then the correctness of their

file carver algorithms can be verified by using the verified

challenge file as input media.

TABLE 2. SUBCOMMANDS OF “HEXDUMP”

Finally “format” command is executed as part of the fine-

tuning phase that erases the metadata. A disk containing

files content but not containing the metadata of files is the

prime condition for any file carving algorithm.

VI. BENEFITS OF AUTOMATED GENERATION

• Avoid purchase of physical used disks.

• Disk size flexibility

• Natural generation of challenge file

• Avoid artificial /manual generation of challenge

file

• Various scenarios can be generated on each

virtual disk

• Number of virtual disks can be created

• The virtual disk can be zipped and sent easily

over an internet

• Avoids read/write operations on physical disk in

raw mode

• Researchers can implement their new ideas of

file system without the need to work at kernel level

• Before the final step of automated construction,

the directory and fat regions contain the correct answer to

the proposed challenge.

• International workshops like DFRWS can create

challenge files using USFS and compare participants results

with the correct results available in the directory and fat

regions before fine-tuning step

• The source code can be used on any platform

where as FUSE and Kernel level programming are specific

to Linux

VII. CONCLUSION

The User Space File System (USFS) is need of the hour until

new file systems take over for solving the problem of file

carving altogether. At present, file carving algorithms are

file type specific and for future file types new techniques

need to be designed. No file carving algorithm can yield

any useful result if the criminal executes a loop that zeroes

out the entire disk. This hazardous operation needs O(N)

time where N is the number of clusters on a disk. And

hence it is practically possible for a criminal. Methods to

prevent such operations by criminals need to be invented. In

future work authors would like to try to address this

problem.

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 4, Issue 11, November 2017

 All Rights Reserved © 2017 IJERCSE 24

REFERENCES

[1] Nasir Memon, Anandabrata Pal, “Automated

Reassembly of File Fragmented Images Using

Greedy Algorithms”, IEEE Transactions on Image

Processing, Volume 15, No.2, February, 2006

[2] Maurice J Bach Pearson, “The Design of the Unix

Operating System” (Pearson)

[3] Peter Abel, “IBM PC Assembly Language and

Programming”, Third Edition – PHI..

[4] Kulesh Shanmugasundaram, Nasir Memon, Automatic

Reassembly of Document Fragments via Context Based

Statistical Models, Department of Computer and

Information Science Polytechnic University Brooklyn.

