
ISSN (Online) 2394-2320 
 

International Journal of Engineering Research in Computer Science and Engineering  

(IJERCSE)  

Vol 4, Issue 11, November 2017 

 

All Rights Reserved © 2017 IJERCSE                     113  

 

An Efficient Method for Software Reliability Using 

Modified Genetic Algorithm: Inflection S-Shaped 

Model  
[1] Dr. R.Satyaprasad, 

[2] G. Bharathi 
[1] 

Assoc.Professor, Dept. of CSE, Acharya Nagarjuna University. 
[2] 

Research Scholar, Rayalaseema University.                                           
 

Abstract -  In order to assess software reliability, many software reliability growth models (SRGMs) have been proposed in the past 

four decades. In principle, two widely used methods for the parameter estimation of SRGMs are the maximum likelihood 

estimation (MLE) and the least squares estimation (LSE). However, the approach of these two estimations may impose some 

restrictions on SRGMs, such as the existence of derivatives from formulated models or the needs for complex calculation. In this 

paper, we propose a modified genetic algorithm (MGA) to assess the reliability of software considering the Time domain software 

failure data using Inflection S-shaped model which is NonHomogenous Poisson Process (NHPP) based. Experiments based on real 

software failure data are performed, and the results show that the proposed genetic algorithm is more effective and faster than 

traditional algorithms. 

 

Keywords - Software reliability, Inflection S-shaped model, Time domain data, Mean Value Function, Modified Genetic Algorithm, 

NHPP.

 

 I. INTRODUCTION 

 

Software reliability assessment is important to evaluate 

the quality of software system, since it is one of the most 

important attribute of software. One of the most difficult 

problems of software industry is to ship a reliable product. 

Therefore it is necessary to have accurate and fast 

estimation techniques for verifying software reliability. 

For Four decades, many Software Reliability Growth 

Models (SRGMs) have been proposed in estimating 

reliability growth of software products. SRGMs can be 

used to depict the behaviour of observed software failures 

characterized by either times of failures (i.e Time domain 

data) or by the number of failures at fixed times (i.e 

Interval domain data) (Lyu, 1996).  

The parameters of SRGMs are generally unknown and 

have to be estimated based on collected failure data. Two 

of the most popular estimation techniques are Maximum 

Likelihood Estimation (MLE) and Least Squares 

Estimation (LSE) (Goel, 1985; Ohba, 1984). In fact, MLE 

and LSE involve the property of probability theory and 

statistical analysis. Thus, this may impose some 

restrictions on the parameter estimation of SRGMs (Costa 

et al., 2007; Minohara and Tohma, 1995) such as the 

continuity, the unimodality, the existence of derivatives 

from formulated models, the complex likelihood function, 

etc. The method of MLE estimation by solving a set of 

simultaneous equations and is better in deriving 

confidence intervals. The method of LSE minimizes the  

 

sum of squares of the deviations between what we 

actually observe and what we expect. Nevertheless, LSE 

is suitable for fitting data from small to medium sample 

sizes (Wood, 1996), while MLE is considered to be better 

statistical estimator for large sample sizes.  In particular, 

when the formulated model of SRGMs is complicated or 

the sample size of failure data is large, these two 

estimation techniques may not be effective to find out the 

optimal solutions and generally require to be solved 

numerically. Hence, the more effective and applicable 

approaches for the parameter estimation of SRGMs may 

be necessary.  In recent years, the Genetic Algorithms 

(GAs) has gained popularity in solving the optimization 

problem of scientific fields (Goldberg, 1989 ; Mitchell, 

1998). Because, the parameter estimation can be 

reformulated as a searching process within the domain of 

all the feasible solutions (Harman and Jones, 2001; Jiang, 

2006), it may be attractive to introduce GA into the 

process of software reliability modeling (Dai et al., 2003). 

Therefore, in this paper we will propose a modified 

genetic algorithm (MGA) to estimate the parameter of the 

SRGMs. We will attempt to modify GA‟s operators with 

weighted bit mutation and a rebuilding mechanism to 

improve the performance and efficiency of estimations. 

Finally, the applicability of proposed MGA, the result of 

parameter estimation and the reliability with Inflection S-

shaped model will also be demonstrated through real data.     

The rest of this paper is organized as follows. Section 2 

surveys NHPP based SRGMs and in specific Inflection S-



 
 

ISSN (Online) 2394-2320 
 

International Journal of Engineering Research in Computer Science and Engineering  

(IJERCSE)  

Vol 4, Issue 10, November 2017 
 

 

                                                     All Rights Reserved © 2017 IJERCSE                                       114 

shaped Model along with the past researches of GAs in 

software engineering areas. In Section 3, an effective 

MGA is proposed to solve the parameter estimation of 

reliability models. Then, the experimental results based 

on two failure data are presented and discussed in Section 

4. Finally, some conclusions are given in Section 5. 

 

II. LITERATURE SURVEY. 

A. NHPP model. 

The Non-Homogenous Poisson Process (NHPP) based 

software reliability growth models (SRGMs) are proved 

to be quite successful in practical software reliability 

engineering (Musa et al., 1987). The main issue in the 

NHPP model is to determine an appropriate mean value 

function to denote the expected number of failures 

experienced up to a certain time point. Model parameters 

can be estimated by using Modified Genetic Algorithm 

(MGA). Various NHPP SRGMs have been built upon 

various assumptions. Many of the SRGMs assume that 

each time a failure occurs, the fault that caused it can be 

immediately removed and no new faults are introduced. 

Which is usually called perfect debugging. Imperfect 

debugging models have proposed a relaxation of the 

above assumption (Pham, 1993).  

A fault is a statement in a program which causes one or 

more failures. Software Reliability Growth is defined by 

the mathematical relationship that exists between the time 

span of testing a program and the cumulative number of 

errors discovered. After failure detection, we find a fault 

and define a fix for the fault. The exponential software 

reliability growth models are designed to describe the 

failure detection process. 

Let    , 0N t t   be the cumulative number of 

software failures by time „t‟. m(t) is the mean value 

function, representing the expected number of software 

failures by time „t‟.   t
 

is the failure intensity 

function, which is proportional to the residual fault 

content. Thus     1 btm t a e 
 
and  

 dm t
t

dt
   

. where „a‟ denotes the initial number of  faults contained 

in a program and „b‟ represents the fault detection rate. In 

software reliability, the initial number of faults and the 

fault detection rate are always unknown. The maximum 

likelihood technique can be used to evaluate the unknown 

parameters. This paper deals with the application of 

Inflection S-shaped model on application test data 

collected from literature, which is of Time domain data 

(i.e ungrouped).  

SRGMs are a statistical interpolation of defect detection 

data by mathematical functions. They have been grouped 

into two classes of models-Concave and S-shaped. The 

only way to verify and validate the software is by testing. 

This involves running the software and checking for 

unexpected behaviour of the software output (kapur, 

2009). SRGMs are used to estimate the reliability of a 

software product. In literature, we have several SRGMs 

developed to monitor the reliability growth during the 

testing phase of the software development. Software 

reliability is defined as the probability of failure-free 

software operation for specified period of time „t‟ in a 

specified environment. 

Inflection S-shaped model 

Software reliability growth models(SRGM‟s) are useful to 

assess the reliability for quality management and testing-

progress control of software development. They have 

been grouped into two classes of models concave and S-

shaped. The most important thing about both models is 

that they have the same asymptotic behavior, i.e., the 

defect detection rate decreases as the number of defects 

detected (and repaired) increases, and the total number of 

defects detected asymptotically approaches a finite value. 

The inflection S-shaped model was proposed by Ohba in 

1984. This model assumes that the fault detection rate 

increases throughout a test period. The model has a 

parameter, called the inflection rate, that indicates the 

ratio of detectable faults to the total number of faults in 

the target software. True, sustained exponential growth 

cannot exist in the real world. Eventually all exponential, 

amplifying processes will uncover underlying stabilizing 

processes that act as limits to growth. The shift from 

exponential to asymptotic growth is known as sigmoidal, 

or S-shaped, growth. 

Ohba models the dependency of faults by postulating the 

following assumptions: 

• Some of the faults are not detectable before some other 

faults are removed. 

• The detection rate is proportional to the number of 

detectable faults in the program. 

• Failure rate of each detectable fault is constant and 

identical. 

• All faults can be removed. 



 
 

ISSN (Online) 2394-2320 
 

International Journal of Engineering Research in Computer Science and Engineering  

(IJERCSE)  

Vol 4, Issue 10, November 2017 
 

 

                                                     All Rights Reserved © 2017 IJERCSE                                       115 

Assuming [Ohba 1984b]:  
1 bt

b
b t

e 



 

This model is characterized by the following mean value 

function: 

 bt

bt
e

e

a
tm 





 1

1
)(


 

where „b‟ is the failure detection rate, and „  ‟ is the 

inflection factor. The failure intensity function is given as: 

 

 
2

1
( )

1

bt

bt

abe
t

e














.  

III. MIDIFIED GENETIC ALGORITHM. 

 

Genetic Algorithm (GA) has been popularly used to solve 

various optimization problems. GA has advantages of 

easy implementation with large search space and rapid 

convergence on good quality solutions. It does not impose 

restrictions on the continuity, the existence of derivatives, 

and the unimodality of evaluation functions. Traditional 

GA has several steps for searching process:  

 chromosome representation;  

GA simulates the initial population of parametric solution 

represented as chromosomes. Each chromosome is 

encoded as string of bits. Since the parameters of SRGMs 

are usually real numbers, we proposed an IEEE floating-

point standard to encode chromosomes. 

 

Chromosome Representation and Weighted Bit Mutation 

 fitness function;  

 least squares estimation (LSE) 

 
Where, MSE is a measure to compare the differences 

between actual values and estimators  

 Selection scheme: The selection scheme is to select 

the candidate chromosomes from the current 

population based on their fitness values. Our goal is 

to maximize fitness function for finding the best 

parameters. With these fitness values, we can further 

adopt roulette wheel selection and uniform crossover 

to choose candidate chromosomes. The roulette 

wheel selection does not guarantee that the fittest 

chromosome will always be selected for generating 

offspring in searching process. This may spend more 

numbers of generations on finding a solution. Thus, 

we propose a rebuilding mechanism. Among each 

generation, one best chromosome is kept at the end of 

the population to avoid disappearance from the 

selection scheme. This mechanism does not violate 

GA‟s original purpose. If the next generation 

produces a much more suitable chromosome, the 

previous kept chromosome will be replaced. 

 Crossover operator: Two chromosomes are chosen 

from the population and are exchanged in part with 

each other in order to improve their fitness value. The 

uniform crossover is one of the simplest form 

(Goldberg, 1989). The crossover may happen at 

different bits with a probability called crossover rate, 

P. This rate typically ranges from 0.5 to 0.8 from GA 

literatures (Jiang, 2007). It is decide to adopt uniform 

crossover in our experiments. 

 Mutation operator: We found that some bits are less 

efficient during bit mutation based on IEEE floating-

point format. If we mutate at sign bit, the whole 

string will be changed from a plus to a minus. 

Because the estimated parameters are usually a 

positive real number, this mutation may be useless. 

Similarly, if we mutate at a very high exponential bit 

or at a very low fractional bit, the whole string will 

respectively be 2
±128

 times the original or only be 

changed slightly. In fact, these mutations may be too 

severe or negligible. Sensitivity analysis on different 

bit mutations will be investigated. Depending on this 

analytic result, we further provide a weighted bit 

mutation. 

 Stopping criteria: The searching process will 

iteratively evolve parametric solutions until the 

maximal generations equal to 10000 trials or the best 

fitness function does not change in the past 1000 

trials.   

A. Algorithm for parameter estimation  

In this section, we show how to modify the traditional GA 

to estimate the parameters of SRGMs. The detailed 

algorithm of MGA is shown below. It is noted that all the 

proposed mechanisms of MGA are built by using Java 

programming language. 

1. Initialize a population of chromosomes randomly 



 
 

ISSN (Online) 2394-2320 
 

International Journal of Engineering Research in Computer Science and Engineering  

(IJERCSE)  

Vol 4, Issue 10, November 2017 
 

 

                                                     All Rights Reserved © 2017 IJERCSE                                       116 

2. FOR (Iteration i=1; i<=Maximum generation 

&& termination condition=FALSE; i=i+1) 

a. Calculate fitness for all individual 

chromosomes  

b. Reproduce offspring by roulette 

selection 

c. Choose two chromosomes from the 

population in order and randomize a 

probability p  

d. IF p < Crossover rate THEN  

i. Generate two offsprings by 

recombining two 

chromosomes. 

ENDIF  

e. Choose a chromosome from the 

population in order and randomize a 

probability q  

f. IF q < Mutation rate THEN   

i. mutate the chosen 

chromosome at a weighted bit 

position  

ENDIF 

g. Keep the fittest parent in the end of 

population  

h. Check termination condition   

3. ENDFOR 

4. Output estimated parameters  

 

I. ILLUSTRATING THE MGA. 

A. Data Analysis. 

There are two common types of failure data: time-domain 

and interval-domain. Some software reliability models 

can handle both types of data. The time domain approach 

involves recording the individual times at which failure 

occurred. The interval domain approach is characterized 

by counting the number of failures occurring during a 

fixed period (e.g., test session, hour, week, day). The 

collected data is the Time Between Failures. Based on the 

failure data collected from the literature, we used 

cumulative failures data for software reliability using 

Inflection S-shaped model.   

B. Distribution of Time between failures  

Based on the inter failure data given in Table 2 and 3, we 

compute the software failures process through Mean 

Value Control chart. We used cumulative time between 

failures data for software reliability monitoring using 

Inflection S-shaped model. The use of cumulative quality 

is a different and new approach, which is of particular 

advantage in reliability.  

„


a ‟ and „


b ‟ are Maximum Likely hood Estimates of 

parameters and the values can be computed using iterative 

method for the given cumulative time between failures 

data. Using „a‟ and „b‟ values we can compute ( )m t . 

Assuming an acceptable probability of false alarm of 

0.27%, the control limits can be obtained as (Xie, 2002): 

  99865.01
1

1



 



bt

btU e
e

T


  

  5.01
1

1



 



bt

btC e
e

T
  

  00135.01
1

1



 



bt

btL e
e

T


  

These limits are converted to ( )Um t , ( )Cm t and ( )Lm t  

form. They are used to find whether the software process 

is in control or not by placing the points in Failure control 

shown in figure 1 and 2 . A point below the control limit 

( )Lm t  indicates an alarming signal. A point above the 

control limit ( )Um t indicates better quality. If the points 

are falling within the control limits, it indicates the 

software process is in stable condition. The values of 

control limits are as follows. 

TABLE I.  Estimated parameters and control limits 

Data 

Set 

Parameters Control limits 

a B UCL CL LCL 

DS1 84.963130 0.039024 84.848429 42.481564 0.114700 

DS2 22.000137 0.093427 21.970437 11.000068 0.029700 

 

TABLE II.  DS1 - Successive differences of mean value 

function 

 

Failure 

Number 

Time 

Between 

failures m(t) 

Successive 

Differences 

1 5.5 15.775220 4.596044 

2 7.33 20.371264 6.358231 

3 10.08 26.729496 54.455937 

4 80.97 81.185432 0.537410 



 
 

ISSN (Online) 2394-2320 
 

International Journal of Engineering Research in Computer Science and Engineering  

(IJERCSE)  

Vol 4, Issue 10, November 2017 
 

 

                                                     All Rights Reserved © 2017 IJERCSE                                       117 

5 84.91 81.722843 1.432892 

6 99.89 83.155735 0.228695 

7 103.36 83.384430 0.508112 

8 113.32 83.892542 0.384027 

9 124.71 84.276569 0.370446 

10 144.59 84.647015 0.083036 

 

TABLE III.  DS2 - Successive differences of mean value 

function 

 

Failure 

Number 

Time 

Between 

failures 

m(t) 
Successive 

Differences 

1 0.5 0.958339 2.140314 

2 1.7 3.098653 4.212373 

3 4.5 7.311025 3.193476 

4 7.2 10.504501 2.595063 

5 10 13.099564 2.143737 

6 13 15.243301 1.032924 

7 14.8 16.276225 0.456349 

8 15.7 16.732574 0.639359 

9 17.1 17.371933 1.281512 

10 20.6 18.653445 0.905970 

 

 
 

 
 

 

IV. CONCLUSION. 

A number of estimates of software quality are based on 

the parameter estimates of SRGMs. Therefore, the quality 

estimates can be derived based the quality estimates of 

parameters. Inorder to estimate the Software reliability, a 

robust method of estimating parameter is employed on 

Interval domain software failure data. The results of 

software reliability over the two failure data sets with 

Inflection S-shaped model is presented in table II and 

Table III. 

 

REFERENCES 

 

[1] Costa, E. O., de Souza, G. A.., Pozo, A. T. R and 

Vergilio, S. R. (2007). "Exploring Genetic Programming 

and Boosting Techniques to Model Software Reliability," 

IEEE Transactions on Reliability, vol.56, no. 3, pp. 422-

434.  

 

[2] Dai, Y. S.  Poh, K. L and Yang, B. (2003). 

"Optimal Testing-Resource Allocation with Genetic 

Algorithm for Modular Software Systems," Journal of 

Systems and Software, vol. 66, no. 1, pp. 47-55.  

 

[3] Goel, A. L. (1985). "Software Reliability 

Models: Assumptions, Limitations, and Applicability," 

IEEE Transactions on Software Engineering, vol. 11, no. 

12, pp. 1411-1423.  

 

[4] Goldberg, D.E. Genetic Algorithms in Search, 

Optimization, and Machine Learning, Addison-Wesley, 

1989.  

 

[5] Jiang, H. Y. (2006). "Can the Genetic Algorithm 

Be a Good Tool for Software Engineering Searching 

Problems?," Proceedings of the 30th IEEE International 

Computer Software and Applications Conference 

(COMPSAC 2006), pp. 362-366, Chicago, USA.  

 

[6] Kapur, P.K., Sunil kumar, K., Prashant, J. 

Ompal, S. (2009). “Incorporating concept of two types of 

imperfect debugging for developing flexible software 

reliability growth model in distributed development 

environment”, Journal of Technology and Engineering 

sciences,  Vol.1, No.1; Jan-Jun. 

 

[7] Lyu, M. R. Handbook of Software Reliability 

Engineering, McGraw-Hill, 1996. 

 



 
 

ISSN (Online) 2394-2320 
 

International Journal of Engineering Research in Computer Science and Engineering  

(IJERCSE)  

Vol 4, Issue 10, November 2017 
 

 

                                                     All Rights Reserved © 2017 IJERCSE                                       118 

[8] M. Harman and B. F. Jones, "Search-Based 

Software Engineering," Information and Software 

Technology, vol. 43, no. 14, pp. 833-839, 2001.  

 

[9] Minohara, T and Tohma, Y. (1995). "Parameter 

Estimation of Hyper-Geometric Distribution Software 

Reliability Growth Model by Genetic Algorithms," 

Proceedings of the 6th IEEE International Symposium on 

Software Reliability Engineering (ISSRE 1995), pp. 324-

329, Toulouse, France.  

 

[10] Mitchell, M. An Introduction to Genetic 

Algorithms, The MIT Press, 1998.  

 

[11] Musa, J.D., Iannino, A., Okumoto, k., 1987. 

“Software Reliability: Measurement Prediction 

Application”. McGraw-Hill, New York.  

 

[12] Ohba, M. (1984). "Software Reliability Analysis 

Models," IBM Journal of Research and Development, vol. 

28, no. 4, pp. 428-443. 

 

[13] Pham. H., 1993. “Software reliability 

assessment: Imperfect debugging and multiple failure 

types in software development”. EG&G-RAAM10737; 

Idaho National Engineering Laboratory. 

 

[14] Wood, A. (1996). "Predicting Software 

Reliability," IEEE Computer, vol. 29, no. 11, pp. 69-77.  

 

[15] Xie, M., Goh. T.N., Ranjan.P., “Some effective 

control chart procedures for reliability monitoring” -

Reliability engineering and System Safety 77 143 -150¸ 

2002. 

 


