
 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 4, Issue 11, November 2017

All Rights Reserved © 2017 IJERCSE 123

Review on Software Testing Techniques

[1] Praveen Dominic,

 [1]Department of Computer Science and Engineering, Galgotias University, Yamuna Expressway Greater Noida,

Uttar Pradesh

[1] praveen.dominic@galgotiasuniversity.edu.in

Abstract: Software testing is the method of running an application in order to find bugs (errors or other defects) in the

software. Demand for software applications has pushed developed software quality assurance toward new heights. It has

been seen as the most critical stage of the life cycle of software development. Testing will test the software item to assess the

difference between real and specified conditions and to evaluate the software features. Software testing results in a

minimization of defects and a reduction in software costs. Software testing is an unavoidable part of the life cycle of Software

Development, and keeping its criticality in the process of pre- and post-development makes it something that should be

catered for with enhanced and efficient methods and techniques. In order to reduce errors, maintenance and overall

software costs, software testing is important. One of the main problems in the area of software testing is how to get a proper

set of test cases to test a software system. The aim of this paper is to study various and improved software testing techniques

for better quality control purposes.

Keywords: Automation Testing, Software Testing Life Cycle, Testing Frameworks, Testing Methodologies.

INTRODUCTION

Testing is known as an evaluation process that either

the particular system meets or fails to meet its

originally stated requirements. It is mainly a process

that includes the validation and testing phase whether

the system developed meets the user-defined

requirements[1]. This activity thus results in a

difference between the actual results and the expected

results. Software Testing refers to bug tracking, errors

or missing requirements in software developed. So,

this is an examination that gives the stakeholders the

exact knowledge about the product's quality. Testing

may also be taken as a risk-based practice[2]. The

important thing that testers need to learn during the

testing process is how to simplify a large number of

tests into manageable tests, and how to make wise

decisions about the risks that are important to test or

not[3].

Fig. 1 illustrates the relation between cost of testing

and errors. Fig. 1 clearly shows that the cost of testing

all forms, i.e. functional and non-functional, goes up

drastically. Then decision making for what to test or

eliminate tests will cause a lot of bugs to be

overlooked. The successful research aim is to do the

optimum amount of testing in order to minimize the

extra testing effort. Software testing is a necessary part

of quality assurance software according to Fig.1. The

value of testing can be viewed from life-critical

software testing (e.g., flight control) which can be

highly expensive due to the risk of delays in

scheduling, cost overruns or cancellation. Testing has

some levels and measures according to which the

person performing the test varies from level to

level[4]. Unit testing, Implementation testing and

Application testing are the three basic steps in the

software testing. Each of these steps is either tested by

the developer of the software or by the quality

assurance engineer who is also known as software

tester.

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 4, Issue 11, November 2017

All Rights Reserved © 2017 IJERCSE 124

Figure 1: Every Software Project has Optimal

Test Effort

SOFTWARE TESTING METHODOLOGIES:

The value of software testing to software quality

cannot be overstated. Testing the program to find all

the errors is mandatory after code development and

they must be debugged before software release. Even

if all the errors in the significant software cannot be

detected and debugged at every point, it is attempted

to remove all the errors as much as possible. Testing

helps find the bugs; it is not able to conclude that the

software is bug-free[5].

Test techniques generally have two parts (Fig. 2):

Static Testing

Dynamic Testing

Figure 2: Testing Techniques

Manual Testing (Static Testing):

This applies to the evaluation method where the code

is not executed. It does not involve highly qualified

professionals as in this phase; the actual

implementation of the program is not completed. It

starts with the Software Development Life Cycle

(SDLC) initial phase; hence it is also known as the

verification testing. The main goal of static testing is

to improve software product performance by helping

software professionals identify and solve their errors

early in the process of software development.

Documentation such as the Software Requirement

Specification (SRS), design documentation, source

code, test suites, and web page material are subject to

static testing. It is achieved before the code is released.

As a result, it provides both code assessment as well

as documentation [6].

Techniques for the static testing include:

i. Inspection: Locating defects is done primarily.

Moderators conduct the code walkthrough. A checklist

is prepared in this type of formal review for checking

the working document.

ii. Walkthrough: The process is not formal. That

process is being led by the authors. According to his

or her thought process, the Author advises the

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 4, Issue 11, November 2017

All Rights Reserved © 2017 IJERCSE 125

participants through the document to achieve a

common perception. It is particularly useful for

documents of a higher level, such as requirement

specification, etc.

iii. Technical Reviews: A professional review round is

conducted to check whether the code is conducted in

accordance with the technical specifications and

standards that may include test plans, test strategy, and

test scripts.

iv. Informal Reviews: It is the methodology of static

testing in which the text is checked unofficially, and

useful observations are implemented.

Automated Testing (Dynamic Testing):

Dynamic Testing is a software testing method which

analyzes the code's dynamic behavior. In dynamic

testing, also known as validation where it considers the

actual system. It requires the highly skilled

professional having the proper knowledge of the

domain. Dynamic testing requires checking the input

values of the program and analyzing the output

values[7].

Progressive testing is composed of two types:

A. White Box Testing

B. Black Box Testing

C. Grey Box Testing

White Box testing:

Internal system specifications and structures are

conspicuously created. So, detecting and solving

problems is acutely cost-effective. Bugs are to be

detected before triggering bickering. Therefore, they

are going to summarize this approach as testing

software with its internal structure and coding details.

White box testing is also known as precise box

analysis or evaluation of the white box or glass box

testing or transparent box testing, and structural

testing. It's a method to finding errors that the tester

has complete data within. In large systems and

networks this technique is not used much for

debugging. Various types of white box testing involve

base path testing, loop testing, testing of the control

structure, etc. White-box testing tests the internal

structure or functioning of a program, while

programming abilities and the system's domestic

background are used to design test cases. The tester

appoints inputs through the code to apply paths and

finalize the appropriate outputs. This is similar to the

nodes testing in a circuit. White-box Testing can be

used in the software testing process at unit integration

and system level. This is commonly done at unit level.

Although this testing methodology may reveal several

mistakes, it may not recognize the missing

specifications and unimplemented parts of the

specification [8].

White-box Testing includes these methods:

Application Programming Interface testing tests the

application using both public and private APIs by

generating checks to satisfy such interface coverage

requirements.

Fault Injection Methods – Application of faults to

deliberately evaluate the efficacy of test methods.

Tools for code coverage can assess the integrity of a

test suite created using any method, including black-

box testing. This gives the software team the ability to

check the parts of a system that are rarely tested, and

ensures verification of the most important function

points.

Function coverage is the approach which informs

about the performed functions.

Statement coverage is the approach that says 100 per

cent of the number of lines performed to complete the

test. This guarantees at least once execution of all

application paths or branches. This helps to ensure

quality.

Black Box testing:

A black box test is a test in which its user does not

know or control internal information and workings. It

meets criteria for specifications and output the basic

aim is to identify the system's requirements. Black box

testing contains very little or no evidence on the

system's internal logical structure. Therefore, it only

tests the system's basic features. It ensures that each

input is accepted appropriately and that outputs are

produced correctly. Black-box testing checks the

features, without any internal implementation

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 4, Issue 11, November 2017

All Rights Reserved © 2017 IJERCSE 126

information. The testers have only an understanding of

what the software should be doing, not how it does it.

This is done simply according to the feature of the

customers. The tester knows only the set of inputs and

the particular outputs [9].

Methods for checking the Black Box include:

i. Equivalence Partitioning: This methodology breaks

up a program's input domain into analogous groups

from which test cases can be derived. Therefore, the

number of test cases can be minimized.

ii. Boundary Value Analysis: This addresses boundary

checking, or where the extreme boundary values are

chosen. This includes minimum, maximum, error and

typical values.

iii. Fuzzing: This approach takes random data. In an

automated or semi-automated session, it is used to

identify application bugs, using malformed or semi-

malformed data injection.

iv. Orthogonal Array Testing: The input domain in this

technique is limited but too broad for exhaustive

testing to handle.

v. Cause-Effect Graph: This testing technique starts

with the generation of a graph and the relation between

impact and its causes.

vi. All Pair Testing: The main goal is to have a

collection of test cases, including all the pairs. Here,

test cases are designed to perform any possible

discrete combinations of every couple parameters

input.

vii. State Transition Testing: This approach to testing

is useful for navigating a graphical user interface.

Grey-Box Testing:

Gray box testing is the software testing technique, with

limited knowledge of the application's internal

structure and design. It is defined as a package of

testing software that has some data about its internal

logic and underlying code. It uses structures and

algorithms for the internal information. This strategy

requires integration selection between two or more

code modules, written by completely different

developers. This technique involves reverse

engineering in order to work out the maximum values.

The testing of grey boxes is objective and non-

intrusive. Grey-box Testing holds the knowledge of

internal data structures and algorithms to design

experiments when conducting those tests at the user

level. The tester does not have full access to source

code for the program. Some subtypes of grey-box

testing are as follows[10]:

i. State-Model-Testing: It examines each method of

object, transition, and transition paths in each state of

object.

ii. Class-Diagram Testing: It examines all of the

derived classes of the base class.

iii. Sequence-Diagram Testing: It explores all the

methods used in the sequence diagram.

iv. Thread-Based Testing: All classes of single Use-

Cases are integrated into this approach, and then

testing is carried out. This approach continues until all

of the courses of all Use-Cases are considered.

v. Use-Based Testing: In this test, the testing is

performed on the classes that either need the services

from other courses or need no services.

CONCLUSION

Software testing is a method of executing a program to

determine whether or not it meets the stated

requirement. The design of the test case is carried out,

a plan can be developed and the results can be

evaluated against the standards prescribed. Testing is

the most crucial part of the life cycle of software

development, as it is something on which the product's

final delivery depends. It is time consuming and a

complex process therefore it includes improved

technologies and groundbreaking methodologies. It

allows implementation of Automated Testing and

other different Test Metrics before and during the

testing process. It can improve an existing test method

for both time efficiency as well as efficient and reliable

final product that not only satisfy the defined

specifications but also provide optimum operating

performance.

REFERENCES

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 4, Issue 11, November 2017

All Rights Reserved © 2017 IJERCSE 127

1. A. A. Sawant, P. H. Bari, and P. . Chawan,

“Software Testing Techniques and

Strategies,” J. Eng. Res. Appl., 2012.

2. S. Abhijit, B. Pranit, and C. P.M, “Software

Testing Techniques and Strategies,” Int. J.

Eng. Res. Appl., vol. 4, no. 4, pp. 99–102,

2014.

3. D. Bhargava and A. Veda, “A Different

Techniques and Strategies for Software

Testing,” Int. J. Eng. Sci. Res. Technol., vol.

2, no. 12, pp. 3754–3756, 2013.

4. M. A. Jamil, M. Arif, N. S. A. Abubakar, and

A. Ahmad, “Software testing techniques: A

literature review,” in Proceedings - 6th

International Conference on Information and

Communication Technology for the Muslim

World, ICT4M 2016, 2017, doi:

10.1109/ICT4M.2016.40.

5. G. J. Myers, T. M. Thomas, and C. Sandler,

The Art of Software Testing 3rd Edition.

2011.

6. R. Misra, C. R. Panigrahi, B. Panda, and B.

Pati, “Software design,” in Application

Development and Design: Concepts,

Methodologies, Tools, and Applications,

2017.

7. S. Anand et al., “An orchestrated survey of

methodologies for automated software test

case generation,” J. Syst. Softw., 2013, doi:

10.1016/j.jss.2013.02.061.

8. M. Ehmer and F. Khan, “A Comparative

Study of White Box, Black Box and Grey

Box Testing Techniques,” Int. J. Adv.

Comput. Sci. Appl., 2012, doi:

10.14569/ijacsa.2012.030603.

9. C. Henard, M. Papadakis, M. Harman, Y. Jia,

and Y. Le Traon, “Comparing white-box and

black-box test prioritization,” in Proceedings

- International Conference on Software

Engineering, 2016, doi:

10.1145/2884781.2884791.

10. W. Yang, M. R. Prasad, and T. Xie, “A grey-

box approach for automated GUI-model

generation of mobile applications,” in

Lecture Notes in Computer Science

(including subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in

Bioinformatics), 2013, doi: 10.1007/978-3-

642-37057-1_19.

11. P.Andrew, J.Anish Kumar, R.Santhya,

Prof.S.Balamurugan, S.Charanyaa, " Certain

Investigations on Securing Moving Data

Objects" International Journal of Innovative

Research in Computer and Communication

Engineering, 2(2): 3033-3040, 2014.

12. P.Andrew, J.Anish Kumar, R.Santhya,

Prof.S.Balamurugan, S.Charanyaa, " Survey

on Approaches Developed for Preserving

Privacy of Data Objects" International

Advanced Research Journal in Science,

Engineering and Technology Vol 1, Issue 2,

October 2014

