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Abstract— Approximate computing can decrease the design complexity with an increase in performance and power efficiency for 

error resilient applications. This brief deals with a new design approach for approximation of multipliers. The partial products of 

the multiplier are altered to introduce varying probability terms. Logic complexity of approximation is varied for the accumulation 

of altered partial products based on their probability. The proposed approximation is utilized in two variants of 16-bit multipliers. 

Synthesis results reveal that two proposed multipliers achieve power savings of 72% and 38%, respectively, compared to an exact 

multiplier. They have better accuracy when contrasted with existing estimated multipliers. Mean relative blunder figures are as 

low as 7.6% and 0.02% for the proposed inexact multipliers, which are superior to the past works. Execution of the proposed 

multipliers is assessed with a picture handling application, where one of the proposed models accomplishes the most astounding 

pinnacle flag to commotion proportion. 
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 INTRODUCTION 

 

Inexact or approximate computing has been 

adopted in recent years as a viable approach to reduce 

power consumption and improve the overall efficiency of 

computers. In approximate computing, circuits are not 

implemented exactly according to the specification, but 

they are simplified in order to reduce power consumption 

or increase operation frequency. It is assumed that the 

errors occurring in simplified circuits are acceptable, 

which is typical for error resilient application domains 

such as multimedia, classification and data mining. 

Approximate computing has emerged as a 

potential solution for the design of energy-efficient digital 

systems [1]. Applications such as multimedia, recognition 

and data mining are inherently error-tolerant and do not 

require a perfect accuracy in computation. For these 

applications, approximate circuits may play an important 

role as a promising alternative for reducing area, power 

and delay in digital systems that can tolerate some loss of 

accuracy, thereby achieving better performance in energy 

efficiency. In [1], approximate full adders are proposed at 

transistor level and they are utilized in digital signal 

processing applications. Their proposed full adders are 

used in accumulation of partial products in multipliers.  

To reduce hardware complexity of multipliers, 

truncation is widely employed in fixed-width multiplier 

designs. Then a constant or variable correction term is 

added to compensate for the quantization error introduced  

 

by the truncated part [2], [3]. Approximation techniques 

in multipliers focus on accumulation of partial products, 

which is crucial in terms of power consumption. Broken 

array multiplier is implemented in [4], where the least 

significant bits of inputs are truncated, while forming 

partial products to reduce hardware complexity. The 

proposed multiplier in [4] saves few adder circuits in 

partial product accumulation.  

In [5], two designs of approximate 4-2 

compressors are presented and used in partial product 

reduction tree of four variants of 8 × 8 Dadda multiplier. 

The major drawback of the proposed compressors in [5] is 

that they give nonzero output for zero valued inputs, 

which largely affects the mean relative error (MRE) as 

discussed later. The approximate design proposed in this 

brief overcomes the existing drawback. This leads to 

better precision.  

In static segment multiplier (SSM) proposed in 

[6], m-bit segments are derived from n-bit operands based 

on leading 1 bit of the operands. Then, m × m 

multiplication is performed instead of n × n 

multiplication, where m<n. Partial product perforation 

(PPP) multiplier in [7] omits k successive partial products 

starting from jth position, where j ∈ [0, n-1] and k ∈ [1, 

min(n-j, n-1)] of a n-bit multiplier. In [8], 2 × 2 

approximate multiplier based on modifying an entry in the 

Karnaugh map is proposed and used as a building block to 

construct 4 × 4 and 8 × 8 multipliers. In [9], inaccurate 
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counter design has been proposed for use in power 

efficient Wallace tree multiplier. A new approximate 

adder is presented in [10] which is utilized for partial 

product accumulation of the multiplier. For 16-bit 

approximate multiplier in [10], 26% of reduction in power 

is accomplished compared to exact multiplier. 

Approximation of 8-bit Wallace tree multiplier due to 

voltage over-scaling (VOS) is discussed in [11]. Lowering 

supply voltage creates paths failing to meet delay 

constraints leading to error.  

Previous works on logic complexity reduction 

focus on straightforward application of approximate 

adders and compressors to the partial products. In this 

brief, the partial products are altered to introduce terms 

with different probabilities. Probability statistics of the 

altered partial products are analyzed, which is followed 

by systematic approximation. Simplified arithmetic units 

(half-adder, full-adder, and 4-2 compressor) are proposed 

for approximation. The arithmetic units are not only 

reduced in complexity, but care is also taken that error 

value is maintained low. While systemic approximation 

helps in achieving better accuracy, reduced logic 

complexity of approximate arithmetic units consumes less 

power and area. The proposed multipliers outperforms the 

existing multiplier designs in terms of area, power, and 

error, and achieves better peak signal to noise ratio 

(PSNR) values in image processing application.  

Error distance (ED) can be defined as the 

arithmetic distance between a correct output and 

approximate output for a given input. In [12], 

approximate adders are evaluated and normalized ED 

(NED) is proposed as nearly invariant metric independent 

of the size of the approximate circuit. Also, traditional 

error analysis, MRE is found for existing and proposed 

multiplier designs. 

II. PROPOSED ARCHITECTURE 

Implementation of multiplier comprises three 

steps: generation of partial products, partial products 

reduction tree, and finally, a vector merge addition to 

produce final product from the sum and carry rows 

generated from the reduction tree. Second step consumes 

more power. In this brief, approximation is applied in 

reduction tree stage. 

Approximate hardware circuits, contrary to 

software approximations, offer transistors reduction, 

lower dynamic and leakage power, lower circuit delay, 

and opportunity for downsizing. Motivated by the limited 

research on approximate multipliers, compared with the 

extensive research on approximate adders, and explicitly 

the lack of approximate techniques targeting the partial 

product generation, we omit the generation of some 

partial products, thus reducing the number of partial 

products that have to be accumulated, we decrease the 

area, power, and depth of the accumulation tree. 

An 8-bit unsigned multiplier is used for 

illustration to describe the proposed method in 

approximation of multipliers. Consider two 8-bit unsigned 

input operands α = ∑
7 

m=0 αm2
m
 and β = ∑

7
n=0 βn2

n
. The 

partial product am,n = αm · βn in Fig. 1 is the result of AND 

operation between the bits of αm and βn. 

 

Fig. 1: Transformation of generated partial products 

into altered partial products. 

From statistical point of view, the partial product 

am,n has a probability of 1/4 of being 1. In the columns 

containing more than three partial products, the partial 

products am,n and an,m are combined to form propogate and 

generate signals as given in (1). The resulting propogate 

and generate signals form altered partial products pm,n and 

gm,n. From column 3 with weight 2
3
 to column 11 with 

weight 2
11

, the partial products am,n and an,m are replaced 
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by altered partial products pm,n and gm,n. The original and 

transformed partial product matrices are shown in Fig. 1 

 
The probability of the altered partial product gm,n 

being one is 1/16, which is significantly lower than 1/4 of 

am,n. The probability of altered partial product pm,n being 

one is 1/16 + 3/16 + 3/16 = 7/16, which is higher than 

gm,n. These factors are considered, while applying 

approximation to the altered partial product matrix. 

A. Approximation of Altered Partial Products gm,n  

In this paper, we target the design of power–error 

efficient multiplication circuits. We differ from the 

previous works by exploring approximation on the 

generation of the partial products. The proposed method 

can be easily applied in any multiplier architecture 

without the need for a special design, in contrast to related 

works. 

The accumulation of generate signals is done column 

wise. As each element has a probability of 1/16 of being 

one, two elements being 1 in the same column even 

decreases. For example, in a column with 4 generate 

signals, probability of all numbers being 0 is (1 − pr)
4
, 

only one element being one is 4pr(1 − pr)
3
, the probability 

of two elements being one in the column is 6pr
2
(1 − pr)

2
, 

three ones is 4pr
3
(1− pr) and probability of all elements 

being 1 is pr4, where pr is 1/16. The probability statistics 

for a number of generate elements m in each column is 

given in Table I.  

TABLE I 

PROBABILITY STATISTICS OF GENERATE 

SIGNALS 

 

Based on Table I, using OR gate in the 

accumulation of column wise generate elements in the 

altered partial product matrix provides exact result in 

most of the cases. The probability of error (Perr ) while 

using OR gate for reduction of generate signals in each 

column is also listed in Table I. As can be seen, the 

probability of misprediction is very low. As the number of 

generate signals increases, the error probability increases 

linearly. However, the value of error also rises. To 

prevent this, the maximum number of generate signals to 

be grouped by OR gate is kept at 4. For a column having 

m generate signals, [m/4] OR gates are used. 

B. Approximation of Other Partial Products 

The accumulation of other partial products with 

probability 1/4 for am,n and 7/16 for pm,n uses approximate 

circuits. Approximate half-adder, full-adder, and 4-2 

compressor are proposed for their accumulation.  

Carry and Sum are two outputs of these 

approximate circuits. Since Carr y has higher weight of 

binary bit, error in Carr y bit will contribute more by 

producing error difference of two in the output. 

Approximation is handled in such a way that the absolute 

difference between actual output and approximate output 

is always maintained as one. Hence Carr y outputs are 

approximated only for the cases, where Sum is 

approximated.  

TABLE II 

TRUTH TABLE OF APPROXIMATE HALF ADDER 

 

TABLE III  

TRUTH TABLE OF APPROXIMATE FULL ADDER 
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In adders and compressors, XOR gates tend to 

contribute to high area and delay. For approximating half-

adder, XOR gate of Sum is replaced with OR gate as 

given in (2). This results in one error in the Sum 

computation as seen in the truth table of approximate 

half-adder in Table II. A tick mark denotes that 

approximate output matches with correct output and cross 

mark denotes mismatch 

 
In the approximation of full-adder, one of the 

two XOR gates is replaced with OR gate in Sum 

calculation. This results in error in last two cases out of 

eight cases. Carr y is modified as in (3) introducing one 

error. This provides more simplification, while 

maintaining the difference between original and 

approximate value as one. The truth table of approximate 

full-adder is given in Table III. 

 
Two approximate 4-2 compressors in [5] 

produce nonzero output even for the cases where all 

inputs are zero. This results in high ED and high degree of 

precision loss especially in cases of zeros in all bits or in 

most significant parts of the reduction tree. The proposed 

4-2 compressor overcomes this drawback. In 4-2 

compressor, three bits are required for the output only 

when all the four inputs are 1, which happens only once 

out of 16 cases. 

A widely used structure for compression is the 4-

2 compressor; a 4-2 compressor can be implemented with 

a carry bit between adjacent slices (Ψ=1). The carry bit 

from the position to the right is denoted as cin while the 

carry bit into the higher position is denoted as cout. The 

two output bits in positions i and i + 1are also referred to 

as the sum and carry respectively. 

TABLE IV 

TRUTH TABLE OF APPROXIMATE 4-2 

COMPRESSOR 

 

This property is taken to eliminate one of the 

three output bits in 4-2 compressor. To maintain minimal 

error difference as one, the output “100" (the value of 4) 

for four inputs being one has to be replaced with outputs 

“11" (the value of 3). For Sum computation, one out of 

three XOR gates is replaced with OR gate. Also, to make 

the Sum corresponding to the case where all inputs are 

ones as one, an additional circuit x1 · x2 · x3 · x4 is 

added to the Sum expression. This results in error in five 

out of 16 cases. Carr y is simplified as in (4). The 

corresponding truth table is given in Table IV 

 

Fig. 2 shows the reduction of altered partial 

product matrix of 8 × 8 approximate multiplier. It requires 

two stages to produce sum and carry outputs for vector 

merge addition step. Four 2-input OR gates, four 3-input 

OR gates, and one 4-input OR gates are required for the 

reduction of generate signals from columns 3 to 11. The 
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resultant signals of OR gates are labeled as Gi 

corresponding to the column i with weight 2i . For 

reducing other partial products, 3 approximate half-

adders, 3 approximate full-adders, and 3 approximate 

compressors are required in the first stage to produce Sum 

and Carr y signals, Si and Ci corresponding to column i. 

The elements in the second stage are reduced using 1 

approximate half-adder and 11 approximate full-adders 

producing final two operands xi and yi to be fed to ripple 

carry adder for the final computation of the result. 

 

Fig. 2: Reduction of altered partial products. 

C. Two Variants of Multipliers  

Two variants of multipliers are proposed. In the 

first case (Multiplier1), approximation is applied in all 

columns of partial products of n-bit multiplier, whereas in 

Multiplier2, approximate circuits are used in n − 1 least 

significant columns. 

III. RESULTS AND DISCUSSION 

Every rough multiplier are intended for n = 16. 

The multipliers are actualized in Verilog and combined 

utilizing Synopsys Design Compiler and a TSMC 65 nm 

standard cell library at the regular procedure corner, with 

temperature 25 °C and supply voltage 1 V. From the 

Synopsys dc reports, we get region, delay, dynamic power 

and spillage control. Multiplier1 applies estimation in all 

segments, while in Multiplier2, guess is connected in 15 

minimum noteworthy segments amid fractional item 

decrease. For the proposed multipliers, the changed 

incomplete items are created and compacted utilizing 

half-viper, full-snake, and 4-2 compressor structures to 

frame last two lines of fractional items. The productivity 

of the proposed multipliers is contrasted and existing 

rough multipliers [5]– [8].  

Inaccurate compressor outline 2 of [5] is utilized 

to plan compressor based multipliers ACM1, where all 

segments are approximated and ACM2, where just 15 

minimum huge sections are approximated. SSM [6] for m 

= 12 and n = 16 is intended for execution. PPP 

configuration talked about in [7] for j = 2, k = 2 is 

outlined and executed under Dadda tree structure. In [8], 

the halfway item framework of 16-bit under planned 

multiplier (UDM) involves inexact 2 × 2 fractional items 

collected together with correct convey spare adders. 

Thorough blunder investigation of the surmised 

multipliers is finished utilizing MATLAB.  

Correct 16-bit multiplier is outlined utilizing 

Dadda tree structure. Table V thinks about all outlines as 

far as zone, delay, control, control postpone item (PDP), 

and region control item (APP). NED and MRE of the 

inexact multipliers are recorded in Table VI. In the event 

that high estimation can be endured for sparing more 

power, Multiplier1 and ACM1 are the contender to be 

considered. It can be seen that Multiplier1 has better APP, 

though ACM1 has better PDP. Be that as it may, 

Multiplier1 has 64% lower NED and three requests of 

extent bring down MRE, contrasted with ACM1. It ought 

to be noticed that high estimations of MRE for ACMs are 

expected to nonzero yield for contributions with each of 

the zeros. 

TABLE V 

SYNTHESIS RESULTS OF EXACT, EXISTING, AND 

PROPOSED APPROXIMATE MULTIPLIERS 

 

TABLE VI 

ERROR METRICS FOR 16-bit MULTIPLIER 
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Multiplier2 offers 32% area savings and 38% 

power savings, over the exact multiplier. ACM2 provides 

22% and 30% area and power savings, respectively. SSM 

has 19% area and 31% power savings over accurate 

multiplier. Perforated multiplier has 6% and 12% area and 

power savings, respectively. UDM provides 19% and 

26% area and power savings. Multiplier2 has one order of 

lower MRE than ACM2, two orders of lower MRE than 

UDM, 73% lower MRE than PPP, and 62% lower MRE 

than SSM. NED of Multiplier2 outperforms all 

approximate multipliers except ACM2. ACM2 exhibits 

10% lower NED than Multiplier2.  

Multiplier2 produces large ED relative to 

ACM2. However, lower MRE indicates that Multiplier2 

has smaller relative error values. Table VII gives a 

comprehensive comparison of approximate multipliers to 

get an idea of tradeoff between design metrics and error 

metrics.  

TABLE VII 

RANKING OF APPROXIMATE MULTIPLIERS IN 

TERMS OF DESIGN AND ERROR METRICS 

 

Multiplier1 delivers the lowest APP; Multiplier2 

delivers the lowest MRE value. Overall, Multiplier2 has 

better PDP, APP, and MRE over ACM2, SSM, perforated 

multiplier, and UDM, with lower NED in most cases as 

well. For applications where high power savings are 

desired with more error tolerance, Multiplier1 can be 

used. For moderate power savings with better 

performance, Multiplier2 is suggested. MRE distribution 

of 16-bit versions of Multiplier1 and Multiplier2 is shown 

in Fig. 3.  

 
Fig. 3:  MRE distribution of (a) Multiplier1 and (b) 

Multiplier2. 

All possible outputs ranging from 0 to 65535
2
 

are categorized into 255 intervals. MRE of Multiplier2 is 

significantly low at higher product values, as exact units 

are used in most significant part of the multiplier. 

IV. APPLICATION IN IMAGE PROCESSING 

Geometric mean filter is widely used in image 

processing to reduce Gaussian noise [13]. The geometric 

mean filter is better at preserving edge features than the 

arithmetic mean filter. Two 16- bits per pixel gray scale 

images with Gaussian noise are considered. 3 × 3 mean 

filter is used, where each pixel of noisy image is replaced 

with geometric mean of 3 × 3 block of neighboring pixels 

centered around it. The algorithms are coded and 

implemented in MATLAB. Exact and approximate 16-bit 

multipliers are used to perform multiplication between 

16-bit pixels. PSNR is used as figure of merit to assess the 

quality of approximate multipliers. PSNR is based on 

mean-square error found between resulting image of exact 

multiplier and the images generated from approximate 

multipliers. Energy required by exact and approximate 

multiplication process while performing geometric mean 

filtering of the images is found using Synopsys 

Primetime. Further, exact multiplier is voltage scaled 

from 1 to 0.85 V (VOS), and its impact on energy 
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consumption and image quality is computed. The noisy 

input image and resultant image after denoising using 

exact and approximate multipliers, with their respective 

PSNRs and energy savings in μJ are shown in Figs. 4 and 

5, respectively.  

 
Fig. 4: (a) Input image-1 with Gaussian noise. 

Geometric mean filtered images and corresponding 

PSNR and energy savings in μJ using (b) exact 

multiplier, (c) Multiplier1, (d) Multiplier2, (e) ACM1, 

(f) ACM2, (g) SSM, (h) PPP, (i) UDM, and (j) VOS. 

 

Fig. 5: (a) Input image-2 with Gaussian noise. 

Geometric mean filtered images and corresponding 

PSNR and energy savings in μJ using (b) exact 

multiplier, (c) Multiplier1, (d) Multiplier2, (e) ACM1, 

(f) ACM2, (g) SSM, (h) PPP, (i) UDM, and (j) VOS. 

Energy required for exact multiplication process 

for image-1 and image-2 is 3.24 and 2.62 μJ , 

respectively. Although ACM1 has better energy savings 

compared to Multiplier1, Multiplier1 has significantly 

higher PSNR than ACM1. Multiplier2 shows the best 

PSNR among all the approximate designs. Multiplier2 has 

better energy savings, compared to ACM2, PPP, SSM, 

UDM, and VOS. The intensity of image-1 being mostly 

on the lower end of the histogram causes poor 

performance of ACM multipliers. As the switching 

activity impacts most significant part of the design in 

VOS, PSNR values are affected. 

V. CONCLUSION 

In this brief, to propose proficient inexact 

multipliers, fractional results of the multiplier are altered 

utilizing create and spread signs. Estimate is connected 

utilizing basic OR door for modified create halfway 

items. Inexact half-viper, full-snake, and 4-2 compressor 

are proposed to diminish staying fractional items. Two 

variations of rough multipliers are proposed, where 

estimation is connected in all n bits in Multiplier1 and just 

in n − 1 slightest huge part in Multiplier2. Multiplier1 and 

Multiplier2 accomplish noteworthy diminishment in 

range and power utilization contrasted and correct 

outlines. With APP funds being 87% and 58% for 

Multiplier1 and Multiplier2 regarding definite multipliers, 

they additionally outflank MPEG Compression Scheme in 

APP in examination with existing rough plans. They are 

likewise found to have better accuracy when contrasted 

with existing inexact multiplier outlines. The proposed 

multiplier plans can be utilized as a part of uses with 

negligible misfortune in yield quality while sparing 

noteworthy influence and territory. 
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