
ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 4, Issue 11, November 2017

All Rights Reserved © 2017 IJERCSE 383

Real Time Monitoring, Alerting and Anomaly

Detection Analytics Platform Using Reactive

Programming
[1]

 Jagreet Kaur,
[2]

 Dr. Kulwinder Singh Mann
[1]

 Research Scholar, IKGPTU, Jalandhar, India.

[2]

 Professor and Head of the IT Department, GNDEC, Ludhiana, India

Abstract— The IT world is moving towards innovation and technology. The growth of data is exponentially increasing in various

domains like healthcare, Iot, Biometrics and many more. With periodic batch processing data, it is not possible to provide the

required information to take instant decisions. Streaming data analytics is the bloodstream of modern applications. The traditional

cloud-based storage model is giving way to do in-memory analytics processing of big data streams. There are many domains where

real-time processing of data is used for taking timely decisions that can minimize the risks of human lives and resources, enhance

the quality of human lives, increase efficiency of resources management and proficiency, etc. Therefore, Real time Data is required

in every field. This brings the requirement of Real time Analytics Platform . Adaptation of Data First Approach is needed for Data-

Driven applications to address the many issues like removal of Data Silos to create Single Integrated Platform, Complex Data

Governance, analytics too time consuming and expensive, High cost on current systems and enabling real time analytics. In this

Paper, we will discuss Real Time analytics platform based on Reactive Machine learning ,Functional Programming and Kappa

Architecture for Monitoring, Alerting, IoT Based applications or event Driven applications.

Index Terms— reactive machine learning, linked Analyses, Kafka, Nifi, Flink, Druid, Reactive Programming.healthcare,IoT.

1. INTRODUCTION

In this changing world, Performing analytics in real time

becomes a highlighted aspect. So, the concept of real time

should be clear. Real time data is the streaming of data

having a tight deadlines in terms of time [1]. We normally

consider that if our platform is able to capture any event

within 1 ms, then we call it as real-time data. This can be

explained with an example. Let us suppose an application

is running in the system. This running process is an event.

Rather than querying explicitly from the system, the

system will automatically notify to other system about the

event and push the relevant data of event to other systems.

This whole procedure is known as Real Time Processing.

Real time data is used in every domain. Many

organizations are collecting large amount of data

regarding their products, services or even about their

organizational activities like tracking employees activities

through various methods used like log tracking, taking

screenshots at regular intervals. When we have to work in

log analytics, fraud detection or real-time analytics,

healthcare analytics, the data should be act upon at that

instant only when it receives. Therefore, processing of

huge volumes of data is not enough. There is a need to

process them in real-time so that any organization can

take decisions immediately whenever any important event

occurs. This is required in Intelligence and surveillance

systems, fraud detection, Alerting Platforms, etc.

The performance of query also plays an important part in

IT world domain. The time interval from the submission

of query to the required service to receive the required

response should be less than 1ms. This feature become

possible by the use of Real Time Processing [2]. With the

use of efficient performance of query it becomes possible

to trace the applications. This query performance is

dependent upon response time and throughput of the

application.

The data that is produced continuously like mobile

applications, web clickstreams, application logs and IoT

sensors need to monitor [3]. Recent data is highly

valuable in decision making if act on it in time but the

analysis of historical as well as as recent data can helps to

take a better decisions. The key requirement to stream real

time data are correctness, durability, reactivity and

reliability [4]. Sometimes, real time data is also generated

in queues like a resource is shared among multiple

consumers or data is transferred asynchronously between

two processes [5]. So, there is a need to design a system

that receives events, archives them, performs offline and

real-time computations, and merges the results of those

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 4, Issue 11, November 2017

 All Rights Reserved © 2017 IJERCSE 384

computations into coherent information. All of this should

be happened at the scale of millions events per second.

Stream is said to have unbounded data that is carried

sequentially from a set of producers to a set of consumers.

This means that the data coming from infinite sources is

sequentially flows from set of producers to set of

consumers in the form of topics. Producers and

consumers works independently and do not have

awareness about each other rather they share topics with

each other. This complete process is known as publish-

subscribe.

Queues is one of the traditional system in which

computation is performed individually per message. But

in case of stream processing multiple inputs and records

are processed simultaneously. In traditional messaging

system one cannot go back, but this issue is resolved by

stream processing. For example kafka is a pull based

model for stream processing that keeps the messages for a

configurable amount of time. This allows consumers to

"go back" and consume messages multiple times or if a

new consumer is added, it can read the complete history.

This makes stream processing possible, because it allows

for more complex applications

Event driven applications like alerts can automatically

generated in case memory of CPU is full or a loan

application is accepted or rejected. To handle event driven

applications effectively, reactive machine learning is very

helpful[6]. Generally, a one main loop of events are

created, and whenever any event occurs that main loop

will listen and react to that event by using callback

function. Events are delivered in the order they are

received, like a queue. Unlike with a queue, events are

persisted even after they’re delivered. There are many

Event driven applications such as Failure alerts, Ad

Optimization, Real-Time Fraud Detection, Real Time

Application and network monitoring, Web Personalized

Offers and many more.

The unusual behaviour pattern of the data needs to

consider to detect the presence of an error in the system.

The system produces log that contains the information

about the state of the system. Outiers can be detected by

analysing the log data so that security of the system can

be protected [7].

In this paper a approach is introduced to perform anomaly

detection and method for prevention. Detection of

anomaly is not sufficient. The evaluation behind the

occurrence of anomaly is also an important aspect. So,

Linked analysis is used to find the cause of anomaly

within the data. It is a technique that finds the

relationships between the nodes or objects. Next approach

is preventive maintenance of data from anomaly. To

implement it reactive machine learning is used that works

smartly and provides response in timely manner.

This paper is organised into three sections. Section 1

describes introduction. Section 2 highlights the concept of

Reactive programming and Reactive machine learning.

Section 3 enlighten about the detail structure and working

of architecture.

2. REACTIVE PROGRAMMING

Reactive programming is a programming with

asynchronous data streams. Reactive programming

manages asynchronous data flows between sources of

data and components that need to react to that data.

Programming paradigms that help you build Reactive

Systems [8]. In other terms, Reactive programming is

about registering callbacks to an event to allow callback

executions whenever a concerned event is occurred. This

optimized usage of system resources such as threads,

memory, CPUs etc.

It decomposes problem in

to multiple discrete steps where each can be executed in

an asynchronous (move on to another task before it

finishes) and non-blocking fashion, and then can be

composed to produce a workflow possibly unbounded in

its inputs or outputs. Reactive programming is related to

data flow since the emphasis is on the flow of data rather

than the flow of control.

Reactive programming is a great paradigm for managing

internal logic and dataflow transformation,as a way of

optimizing code clarity, performance and resource

efficiency and utilization.

2.1 Why Should Adopt Reactive Programming

1. We can divide the system into multiple monoliths/

micro-services/ components that are going to

communicate with each other using messages.

2. To build a scalable system, we can handle large amount

of data or large numbers of user requests and react to the

ever-growing data.

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 4, Issue 11, November 2017

 All Rights Reserved © 2017 IJERCSE 385

3. Handles failures/ errors will make the system more

fault-tolerant.

4. Responsive system is fast and timely available.

Four Reactive Principles :

● Responsive

● Resilient

● Scalable

● Message-driven

Reactive application are built on four guiding principles.

Systems built as Reactive are more Scalable, Resilient ,

loosely-coupled and flexible. This makes them easier to

develop. Reactive systems are significantly more tolerant

to failure and when failure does occur they meet it with

elegance rather than disaster. Reactive Systems are highly

responsive. Responsiveness is impossible to achieve

without both scalability and resilience.

Responsive : The System responds in a timely manner .

Problems may be detected quickly and deal with it

effectively . A responsive system is quick to react to all

users . quickness under various conditions, such as failure

of an external system. Responsive systems provide rapid

and consistent response times , establishing reliable upper

bounds so they deliver a consistent quality of service .

This consistent behavior builds end user confidence , and

encourages further interaction.

Resilient : System is resilient if it can recover quickly

from failure. The system stays responsive in the face of

failure. It means that application stay responsive even in

case of any failures. reacting to failure will make the

system more fault-tolerant. system that is not resilient will

be unresponsive after a failure . Resilience is achieved by

replication, containment, isolation and delegation.

Failures can be software , hardware or connection failure.

Failure are contained within each component of the

system , in isolating system component independent from

each other. when any part of the system can fail recover

without compromising the system as a whole .

Replication reduces the risk of data loss, and impact of

failure on the availability of retrieval and storage of

information .

Scalable : The system stays responsive under varying

workload. Scalable is about responsiveness under varying

workload meaning that the throughput of a system scales

up or down automatically to meet varying demand as

resources are added or removed. System is scalable if it is

able to expanded according to its usage. scalable system is

easily upgraded on demand or varying workload in order

to ensure responsiveness under various workload .

Message-driven : Reactive Systems rely on asynchronous

message-passing. To construct a boundary between

components that ensures loose coupling , isolation and

location transparency . Location transparency makes it

possible to work within a single machine / node or across

a cluster . Non-Blocking communication allows recipients

to only consume resource while active, leading to less

system overhead.

2.3 Need of Reactive Programming and Functional

Programming

Reactive programming is programming with

asynchronous streams of data. For example, facebook

feed would be a data stream, click events, user inputs,

caches, data structures. User listen to that stream and

'react' accordingly. So, reactive programming involves

programming with flow of time and computational events.

It also focuses on multiple events and tasks can be

completed at same time as code is asynchronous in nature.

It also focuses on managing the synchronisation of states

between multiple events.

The idea behind functional reactive programming is to

model things like user input in a more declarative way by

making their behavior more specific. Functional reactive

modelling models change over time by introducing two

data types 'events' and 'behaviors'. Events represent a

value at a particular time whereas behavior represent

values that vary continually over time. When these

concepts are combined in a functional way, the entire

program becomes a combination of events and behaviors

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 4, Issue 11, November 2017

 All Rights Reserved © 2017 IJERCSE 386

[10]. The use of functional reactive programming raises

the level of abstraction of code, so need to focus on

interdependence of events that define logic, rather than

focussing on implementation details.

2.4 Need of Reactive Machine Learning in Prevention of

Anomalies

AI, machine learning, and mathematics provide a

powerful combination that changes the endpoint

protection scenario. The previous reactive approaches are

being replaced with a new approach, where prevention is

the method for protection [9]. The predictive and

preventative techniques used by AI can be applied across

platforms, operating systems, file types and devices. The

machine learning systems can very well recommends

detections and generate alerts but the expectation is that

the system will stay return predictions despite failure or

changes in load. These requirements can be hard to

achieve in machine learning. So, Reactive machine

learning solves various problems. In reactive machine

learning, Events from the outside world are sensed and

turned into facts which can be further used to produce

features [11] and labels using feature generators. The

learning models can be learned from implementation of

either external or internal learning algorithms. After the

evaluation of the model, the model is published. To make

the model reactive, the model should follow the reactive

strategy like replication, containment and supervision.

The reactive model can replicate ie execute the same

component at more than one place at a same time. To

prevent the failure of single component without affecting

the other components, reactive model can use

containment. Containment can be implemented using

different systems. Lastly, reactive systems should use the

strategy of supervision to organize components.The

strategy of supervision gives a point of control, where the

reactive traits are being achieved by the actual runtime

behavior of the system.

Systems built as Reactive Systems are more scalable,

loosely-coupled and flexible. This makes developers

easier to develop and amenable to change. They are more

tolerant of failure and when failure does occur they can

handle with elegance rather than disaster.

2.5 Requirement of Interactive Analytics and Druid

Interactive analytics is an extension of real time analytics.

It provides the facility to run complex queries using

complex data landscapes where we have the complexity

intelligence to visit thousands of nodes in real time [12].

Druid is a distributed database that stores the data column

wise i.e. column-oriented database. Today users need that

application should posses low query latency and druid

takes less than a second to execute the query. It also helps

to store the large amount of historical metrics and can

ingest high velocity of data [13].

3. PROPOSED KAPPA ARCHITECTURE OF

EVENT/DATA DRIVEN APPLICATIONS

Kappa Architecture: it is an architecture that makes

possible to process the data in real time. It simply

removes the batch processing layer and introduces

Streaming Processing Architecture for the processing of

Streaming data.

As shown in fig1 the components of Architecture are Data

Sources, Apache NiFi, Apache Kafka, Apache Flink and

Druid. Each component is explained below:

Fig 1. Components of Architecture

●Data Sources: it is the first component of architecture.

These sources are responsible for providing the data.

Various data sources are available such as API

(Application Program Interface), databases, Agents and

Files.

API is consist of HTTP protocol which is responsible for

sending the data to the data collector. Next is databases,

various types of databases are available such as RDBMS

i.e. Relational Database Management System that stores

the data in rows and columns. Another database is NoSql.

It is used to store the unstructured type of data. Next

comes Agents, they are used when there is no direct way

to collect the data from data source. So, an agent is used

that will run on that framework and sends the data to the

data collector. Lastly, files can directly provide the data to

the data collector in textual format.

●Apache NiFi: it is an powerful and reliable system to

receive and process the data from various data sources. It

is a UI platform which receives the data from defined

source and stores the information to defined destination.

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 4, Issue 11, November 2017

 All Rights Reserved © 2017 IJERCSE 387

Here, processors are used to pull the data from a source,

performs transformation method and stores to the

mentioned destination. But, in case of Agents as a data

source data is pushed from an agent to NiFi.

●Apache Kafka: it is a fast and scalable publish-subscribe

messaging system. It consist of two components such as

producer and consumer [14]. The incoming data is written

sequentially to the disk. Firstly, the producer will publish

the data or messages to topic (user defined category like

Apache NiFi) and the consumer such as Apache Spark,

Apache Flink, etc will subscribe the messages to perform

further processing of data.

●Apache Beam: Apache Beam is an open source model

that is used for defining both batch and streaming

processing pipelines. It is basically used for parallel data

processing in the which the data is divided into various

small chunks and they are processed independently and in

parallel form also. Apache Beam consist of runners that

translate the pipeline of data into the defined in the beam

program. To run the Apache Beam program appropriate

runner has to defined which we want to execute in the

pipeline.

●Apache Flink: it is an open source stream processing

framework for data streaming applications. It can handle

both in-memory and disk-based processing. Therefore,

apache flink is used for both batch and streaming data

processing. It supports iterative processing for machine

learning algorithms, string management, graph processing

and many more.

●Druid: it is an open source data storage that can quickly

ingest the large amount of data. It is used for executing

queries in low-latency. The main usage of druid is to store

the time series data in an aggregate way [15]. Therefore,

while making schema of this database there is a need to

set minimum aggregation time interval.

3.1 Need of Unified Processing

Unified Process is a framework used for guidance in

tasks and projects of the organisation. Each activity is

consist of input and output but they can be used

differently in different situations. There is a need of this

framework as its main objective is to examine which tools

is performing what kind of activity, at what time tools

will perform a particular activity, what are the inputs and

outputs of each activity and how one can reach to the

solution.

3.1.1 Selection of Components

Apache Nifi: Apache NiFi is used for both real time and

batch processing. It supports both standalone and cluster

mode and performs better error handling.

Apache Kafka: in the digital environment, the services are

working on wider stream of data. Therefore, performing

analytics in real time becomes essential. But, the

traditional batch processing not able to solve the problem

in real time. Therefore, apache kafka is used to extract the

wider amount of data in real time. The role of Apache

Kafka is to develop the real time pipelines and streaming

applications.

Apache Beam and Apache Flink: they both can be used

for streaming and batch processing. They allow to process

the data at once only i.e. there is no need to process

streaming and batch data separately. Apache Beam is

used to maintain the efficiency of the application by

providing the excellent portability facility in such a way

that it can execute the pipelines on different runners. As

mentioned above, Apache Flink consist of Flink ML

library. This library provides in-memory data streaming,

iterative processing of algorithms and streaming ML

exclusively for the processing of streaming data.

Druid: Druid is an open source Data Warehouse and

recently it is used highly in analytics industry for

advanced aggregation queries like top 5 users by some

dimensions (like cpu usage, disk usage etc). So The Main

Use Case of Druid is for running low latency aggregation

queries over petabytes of data. The underlying

architecture stores the data in aggregate way as we define

our minimum level of aggregation we required while

designing our schema. So Druid is highly optimized for

aggregation queries.

3.1.2 Working:

Fig 2. Working of Architecture

As shown in fig 2 we have sensor data or log data. The

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 4, Issue 11, November 2017

 All Rights Reserved © 2017 IJERCSE 388

data is present in the form of time series [16] i.e. the

attributes are dependent on time. Firstly, the data from

sensor device is collected and stored in the druid database.

The flow of data pipeline is made using Apache Nifi. As

whole tool cannot be uploaded into the sensor device,

therefore it is decided to upload the developed data flow

pipeline into MiniNiFi. MiniNiFi is a small part of

Apache NiFi itself. After data ingestion, the producer

component of Apache Kafka will publish the data in the

form of messages to topic. Then, Apache Beam as

consumer subscribe to topics and processes the published

messages. Apache Beam will execute the Apache Flink

runner that allows the Apache Flink to be execute. First,

monitoring of data is performed. To do so, rules are

defined in the database like mongodb for eg, temperature

> 55. Therefore when the data is fetched by Apache Flink,

it will compare the values of data with the defined rules

and check whether the data will break or cross the rule. If

the rules are breaking an event will be triggered. This

process is known as reactive programming. All the events

are notified through email and are stored in mongodb to

maintain the track of notifications.

Next is anomaly detection. After receiving data from

Apache Beam FlinkMl library will be used. There are two

ways to detect anomaly such as supervised and

unsupervised learning. The type of approach used for

anomaly detection depends upon the data received by

Apache Flink. In supervised learning labelled data is

present on the other hand in unsupervised learning

unlabelled data is given. Firstly, supervised learning is

performed for training data points so that they can be

classified into anomalous and non-anomalous data points.

But, for supervised learning there should be labeled

anomalous data points. The most common supervised

learning algorithms are: supervised neural networks,

support vector machine learning, k-nearest neighbours,

Bayesian networks and Decision trees. In case of k-

nearest neighbours, approximate distance between the

data points is calculated and then assignment of unlabeled

data points is made according to the class of k-nearest

neighbour. On the other hand, bayesian networks can

encode the probabilistic relationships between the

variables. This algorithm is mostly used with the

combination of statistical techniques.

Another approach for detecting anomaly is unsupervised

learning. One can apply unsupervised learning to train

CART so that prediction of next data points in the series

could be made. To implement this, confidence interval or

prediction error is made. Therefore, to detect anomalous

data points Generalised ESD-Test is implemented to

check which data points are present within or outside the

confidence interval. The most common unsupervised

algorithms are self-organizing maps (SOM), K-means, C-

means, expectation-maximization meta-algorithm (EM),

adaptive resonance theory (ART), and one-class support

vector machine.

Next part is finding the cause of occurrence of anomaly

[17]. The approach that will be used is graph processing

using Apache Flink. Every node in the graph represents

the sensor data. The pattern matching score of each

sensor data is computed. When the anomalous data is

detected, the similar patterns are examined. After that

random walk algorithm is implemented over the call

graph. Basically, random walk is performed over the call

graph depending upon the similarity score. The sensor

data is picked up randomly in sequence among the

neighbours in the call graph. The pickup probability of

sensor data depends upon the relevance of anomaly sensor

node. More the visits on a certain sensor by random walk

gives that the anomaly on that sensor can best explain the

anomalies of all the other sensors. Thus, the probability of

visiting each score can be taken as root cause of the

sensor node.

Lastly, preventive maintenance has to be performed. The

approach used is Reactive Machine Learning. Firstly, as

mentioned above monitoring of sensor data is performed

using reactive programming. When any suspicious

activity is observed, machine learning algorithms using

apache flink is used for maintenance. The machine

learning algorithms are neural network, Bayesian network

and support network machine.

CONCLUSIONS

In this paper we have discussed different ways in which

the problem of anomalies has been detected and have

attempted to provide an overview of the detailed system

architecture on various techniques. The proposed

architecture can support for analytics by providing batch

and stream computing, extendable storage solution and

query management. To achieve more efficient result,

there is still a need to handle the data that is growing time

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 4, Issue 11, November 2017

 All Rights Reserved © 2017 IJERCSE 389

by time at high rate and larger scale with tons of

inconsistent data sources. To process data at high rate,

concurrency and effectivity is the main issue and the

performance of analytics job depends upon memory

allocation/deallocation.To build alerting platform,

reactive programming can be used. To maintain the

analysis logic in both batch and real time layer, it is easy

to used kappa architecture as it is very helpful to process

data with less overhead and more flexibility as discussed

in paper. In the end, we only want to say that to monitor

real time data, to generate alerts and to do analytics, we

have many open source platforms like Apache Kafka for

providing high ingestion rate and Apache Storm, Apache

Flink to provide true real-time streaming, processing and

analyzing but it all depends on us that how smartly we use

these components and use them efficiently to make Data

Pipeline Great.

ACKNOWLEDGEMENT

Authors are highly thankful to the department of RIC,

IKG Punjab Technical University, Kapurthala, Punjab,

India for providing the opportunity to conduct this

research work.

REFERENCES

1. LI Zhao, ZHANG Chuang, CHEN Meng-meng,

XU Ke-fu.,“SpeedStream: a Real-time Stream Processing

Platform in the Cloud” International Conference on

Computer Engineering, November. 2014.

2. hao δ, Chuang Z, Ke-Fu X, et al. “A Computing

model for Real-Time Stream Processing, Cloud

Computing and Big Data”, International Conference on.

IEEE, 134-137, 2014.

3. Zhengping Qian, Yong He, Chunzhi Su, et al.

TimeStream: Reliable Stream Computation in the Cloud.

EuroSys, 2013:1-14.

4. Schmidt S., δegler T., Schaller D., et al. Real-

time Scheduling for Data Stream management Systems.

Real-Time Systems, 2005.

5. Mishne, G., Dalton, J., Li, Z., Sharma, A., & Lin,

J.,. Fast data in the era of big data: Twitter's real-time

related query suggestion architecture. In Proceedings of

the ACM SIGMOD International Conference on

Management of Data (pp. 1147-1158), 2013.

6. Abraham, B. and Chuang, A., Outlier detection

and time series modeling. Technometrics, pp-241–248,

1989.

7. Abe N., Zadrozny B., A Langford, “Outlier

detection by active learning” In Proceedings of the 12th

ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining. ACM Press, New York,

504–5, 2006.

8. E. Czaplicki and S. Chong. “Asynchronous

functional reactive programming for GUIs. In

Proceedings of the 34th ACM SIGPLAN Conference on

Programming Language Design and Implementation,

PLDI ’13, pages 411–422, New York, NY, USA, 2013.

9. C. Elliott and P. Hudak. “Functional reactive

animation” In Proceedings of the Second ACM

SIGPLAN International Conference on Functional

Programming, ICFP ’97, pages 263–273, New York, NY,

USA, 1997.

10. T. Salmon, D. Bhamare, A. Erbad, R. Jain, M.

Samaka, "Machine Learning for Anomaly Detection and

Categorization in Multi-cloud Environments," The 4th

IEEE International Conference on Cyber Security and

Cloud Computing (IEEE Cloud 2017), New York, June

26-28, 2017.

11. Li, H., Achim, A., Bull, D.: “Unsupervised video

anomaly detection using feature clustering”, IET Signal

Proc. 6, 521–533, 2012.

12. Fangjin Yang, Eric Tschetter, “Druid: A Real-

time Analytical Data Store”, SIGMOD '14 Proceedings of

the ACM SIGMOD international conference on

Management of data, June 2014

13. Samy Chambi, Daniel Lemire, Robert Godin,

Kamel Boukhalfa, Charles R. Allen, Fangjin Yang,

“Optimizing Druid with Roaring bitmaps”, IDEAS '16:

Proceedings of the 20th International Database

Engineering & Applications Symposium, July 2016.

14. Apache Kafka. http://kafka.apache.org/

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 4, Issue 11, November 2017

 All Rights Reserved © 2017 IJERCSE 390

15. Fangjin Yang, Eric Tschetter, Xavier Léauté,

Nelson Ray, Gian Merlino, Deep Ganguli, “Druid: a real-

time analytical data store”, SIGMOD '14: Proceedings of

the 2014 ACM SIGMOD International Conference on

Management of Data, June 2014.

16. E. Bainomugisha, A. L. Carreton, T. v. Cutsem,

S. Mostinckx, and W. d. Meuter. A survey on reactive

programming. ACM Comput. Surv., 45(4):52:1–52:34,

Aug. 2013. ISSN 0360-0300. doi:

10.1145/2501654.2501666

17. Laura Rettig, Mourad Khayati,”Online Anomaly

Detection over Big Data Streams”, ´IEEE International

Conference on Big Data, Switzerland, 2015.

