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Abstract— The IT world is moving towards innovation and technology. The growth of data is exponentially increasing in various 

domains like healthcare, Iot, Biometrics and many more. With periodic batch processing data, it is not possible to provide the 

required information to take instant decisions. Streaming data analytics is the bloodstream of modern applications. The traditional 

cloud-based storage model is giving way to do in-memory analytics processing of big data streams. There are many domains where 

real-time processing of data is used for taking timely decisions that can minimize the risks of human lives and resources, enhance 

the quality of human lives, increase efficiency of resources management and proficiency, etc. Therefore, Real time Data is required 

in every field. This brings the requirement of Real time Analytics Platform . Adaptation of Data First Approach is needed for Data-

Driven applications to address the many issues like removal of Data Silos to create Single Integrated Platform, Complex Data 

Governance, analytics too time consuming and expensive, High cost on current systems and enabling real time analytics. In this 

Paper, we will discuss Real Time analytics platform based on Reactive Machine learning ,Functional Programming and Kappa 

Architecture for Monitoring, Alerting, IoT Based applications or event Driven applications. 

Index Terms— reactive machine learning, linked Analyses, Kafka, Nifi, Flink, Druid, Reactive Programming.healthcare,IoT. 
 

1. INTRODUCTION 
  

In this changing world, Performing analytics in real time 

becomes a highlighted aspect. So, the concept of real time 

should be clear.  Real time data is the streaming of data 

having a tight deadlines in terms of time [1]. We normally 

consider that if our platform is able to capture any event 

within 1 ms, then we call it as real-time data.  This can be 

explained with an example. Let us suppose an application 

is running in the system. This running process is an event. 

Rather than querying explicitly from the system, the 

system will automatically notify to other system about the 

event and push the relevant data of event to other systems. 

This whole procedure is known as Real Time Processing. 

Real time data is used in every domain.  Many 

organizations are collecting large amount of data 

regarding their products, services or even about their 

organizational activities like tracking employees activities 

through various methods used like log tracking, taking 

screenshots at regular intervals. When we have to work in 

log analytics, fraud detection or real-time analytics, 

healthcare analytics, the data should be act upon at that 

instant only when it receives. Therefore, processing of 

huge volumes of data is not enough. There is a need to 

process them in real-time so that any organization can 

take decisions immediately whenever any important event  

 

occurs. This is required in Intelligence and surveillance 

systems, fraud detection, Alerting Platforms, etc. 

 

The performance of query also plays an important part in 

IT world domain. The time interval from the submission 

of query to the required service to receive the required 

response should be less than 1ms. This feature become 

possible by the use of Real Time Processing [2]. With the 

use of efficient performance of query it becomes possible 

to trace the applications. This query performance is 

dependent upon response time and throughput of the 

application. 

 

The data that is produced continuously like mobile 

applications, web clickstreams, application logs and IoT 

sensors need to monitor [3]. Recent data is highly 

valuable in decision making if act on it in time but the 

analysis of historical as well as as recent data can helps to 

take a better decisions. The key requirement to stream real 

time data are correctness, durability, reactivity and 

reliability [4].  Sometimes, real time data is also generated 

in queues like a resource is shared among multiple 

consumers or  data is transferred asynchronously between 

two processes [5]. So, there is a need to design a system 

that receives events, archives them, performs offline and 

real-time computations, and merges the results of those 
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computations into coherent information. All of this should 

be happened at the scale of millions events per second.   

 

Stream is said to have unbounded data that is carried 

sequentially from a set of producers to a set of consumers. 

This means that the data coming from infinite sources is 

sequentially flows from set of producers to set of 

consumers in the form of topics. Producers and 

consumers works independently and do not have 

awareness about each other rather they share topics with 

each other. This complete process is known as publish-

subscribe. 

 

Queues is one of the traditional system in which 

computation is performed individually per message. But 

in case of stream processing multiple inputs and records 

are processed simultaneously. In traditional messaging 

system one cannot go back, but this issue is resolved by 

stream processing. For example kafka is a pull based 

model for stream processing that keeps the messages for a 

configurable amount of time. This allows consumers to 

"go back" and consume messages multiple times or if a 

new consumer is added, it can read the complete history. 

This makes stream processing possible, because it allows 

for more complex applications  

 

Event driven applications like alerts can automatically 

generated in case memory of CPU is full or a loan 

application is accepted or rejected. To handle event driven 

applications effectively, reactive machine learning is very 

helpful[6].  Generally, a one main loop of events are 

created, and whenever any event occurs that main loop 

will listen and react to that event by using callback 

function. Events are delivered in the order they are 

received, like a queue. Unlike with a queue, events are 

persisted even after they’re delivered. There are many 

Event driven applications such as Failure alerts, Ad 

Optimization, Real-Time Fraud Detection, Real Time 

Application and network monitoring, Web Personalized 

Offers and many more.  

 

The unusual behaviour pattern of the data needs to 

consider to detect the presence of an error in the system. 

The system produces log that contains the information 

about the state of the system. Outiers can be detected by 

analysing the log data so that security of the system can 

be protected [7].  

 

In this paper a approach is introduced to perform anomaly 

detection and method for prevention. Detection of 

anomaly is not sufficient. The evaluation behind the 

occurrence of anomaly is also an important aspect.  So, 

Linked analysis is used to find the cause of anomaly 

within the data. It is a technique that finds the 

relationships between the nodes or objects. Next approach 

is preventive maintenance of data from anomaly. To 

implement it reactive machine learning is used that works 

smartly and provides response in timely manner.  

This paper is organised into three sections. Section 1 

describes introduction. Section 2 highlights the concept of  

Reactive programming and Reactive machine learning. 

Section 3 enlighten about the detail structure and working 

of architecture. 

 

2.  REACTIVE PROGRAMMING 

 

Reactive programming is a programming with 

asynchronous data streams. Reactive programming 

manages asynchronous data flows between sources of 

data and components that need to react to that data. 

Programming paradigms that help you build Reactive 

Systems [8]. In other terms, Reactive programming is 

about registering callbacks to an event to allow callback 

executions whenever a concerned event is occurred. This 

optimized usage of system resources such as threads, 

memory, CPUs etc. 

It decomposes problem in 

to multiple discrete steps where each can be executed in 

an asynchronous ( move on to another task before it 

finishes) and non-blocking fashion, and then can be 

composed to produce a workflow possibly unbounded in 

its inputs or outputs. Reactive programming is related to 

data flow since the emphasis is on the flow of data rather 

than the flow of control. 

Reactive programming is a great paradigm for managing 

internal logic and dataflow transformation,as a way of 

optimizing code clarity, performance and resource 

efficiency and utilization. 

 

2.1 Why Should Adopt Reactive Programming 

1. We can divide the system into multiple monoliths/ 

micro-services/ components that are going to 

communicate with each other using messages.  

2. To build a scalable system, we can handle large amount 

of data or large numbers of user requests and react to the 

ever-growing data. 
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3. Handles failures/ errors will make the system more 

fault-tolerant. 

4. Responsive system is fast and timely available.  

 

Four Reactive Principles : 

● Responsive  

● Resilient  

● Scalable  

● Message-driven 

 

Reactive application are built on four guiding principles. 

Systems built as Reactive are more Scalable, Resilient , 

loosely-coupled and flexible. This makes them easier to 

develop. Reactive systems are significantly more tolerant 

to failure and when failure does occur they meet it with 

elegance rather than disaster. Reactive Systems are highly 

responsive. Responsiveness is impossible to achieve 

without both scalability and resilience. 

 
Responsive : The System responds in a timely manner . 

Problems may be detected quickly and deal with it 

effectively . A responsive system is quick to react to all 

users . quickness under various conditions, such as failure 

of an external system. Responsive systems provide rapid 

and consistent response times , establishing reliable upper 

bounds so they deliver a consistent quality of service . 

This consistent behavior builds end user confidence , and 

encourages further interaction. 

 

Resilient : System is resilient if it can recover quickly 

from failure. The system stays responsive in the face of 

failure. It means that application stay responsive even in 

case of any failures. reacting to failure will make the 

system more fault-tolerant. system that is not resilient will 

be unresponsive after a failure . Resilience is achieved by 

replication, containment, isolation and delegation. 

Failures can be software , hardware or connection failure. 

Failure are contained within each component of the 

system , in isolating system component independent from 

each other. when any part of the system can fail recover 

without compromising the system as a whole . 

Replication reduces the risk of data loss, and impact of 

failure on the availability of retrieval and storage of 

information . 

 

Scalable : The system stays responsive under varying 

workload. Scalable is about responsiveness under varying 

workload meaning that the throughput of a system scales 

up or down automatically to meet varying demand as 

resources are added or removed. System is scalable if it is 

able to expanded according to its usage. scalable system is 

easily upgraded on demand or varying workload in order 

to ensure responsiveness under various workload . 

 

Message-driven : Reactive Systems rely on asynchronous 

message-passing. To construct a boundary between 

components that ensures loose coupling , isolation and 

location transparency . Location transparency makes it 

possible to work within a single machine / node  or across 

a cluster . Non-Blocking communication allows recipients 

to only consume resource while active, leading to less 

system overhead. 

 

2.3 Need of Reactive Programming and Functional 

Programming  

Reactive programming is programming with 

asynchronous streams of data. For example,  facebook 

feed would be a data stream, click events, user inputs, 

caches, data structures. User listen to that stream and 

'react' accordingly. So, reactive programming involves 

programming with flow of time and computational events. 

It also focuses on multiple events and tasks can be 

completed at same time as code is asynchronous in nature.  

It also focuses on managing the synchronisation of states 

between  multiple events. 

 

The idea behind functional reactive programming is to 

model things like user input in a more declarative way by 

making their behavior more specific. Functional reactive 

modelling models change over time by introducing two 

data types 'events' and 'behaviors'. Events represent a 

value at a particular time whereas behavior represent 

values that vary continually over time. When these 

concepts are combined in a functional way,  the entire 

program becomes a combination of events and behaviors 
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[10]. The use of functional reactive programming  raises 

the level of abstraction of code, so need to focus on 

interdependence of events that define logic, rather than 

focussing on implementation details. 

 

2.4 Need of Reactive Machine Learning in Prevention of 

Anomalies 

AI, machine learning, and mathematics provide a 

powerful combination that changes the endpoint 

protection scenario. The previous reactive approaches are 

being replaced with a new approach, where prevention is 

the method for protection [9]. The predictive and 

preventative techniques used by AI can be applied across 

platforms, operating systems, file types and devices. The 

machine learning systems can very well recommends 

detections and generate alerts but the  expectation is that 

the system will stay return predictions despite failure or 

changes in load. These requirements can be hard to 

achieve in machine learning. So, Reactive machine 

learning solves various problems. In reactive machine 

learning, Events from the outside world are sensed and 

turned into facts which can be further used to produce 

features [11] and labels using feature generators. The 

learning models can be learned from implementation of  

either external or internal  learning algorithms. After the 

evaluation of the model, the model is published. To make 

the model reactive, the model should follow the reactive 

strategy like replication, containment and supervision. 

The reactive model can replicate ie execute the same 

component at more than one place at a same time. To 

prevent the failure of single component without affecting 

the other components, reactive model can use 

containment. Containment can be implemented using 

different systems. Lastly, reactive systems should use the 

strategy of supervision to organize components.The 

strategy of supervision gives a point of control, where the 

reactive traits are being achieved by the actual runtime 

behavior of the system. 

Systems built as Reactive Systems are more scalable, 

loosely-coupled and flexible. This makes developers 

easier to develop and amenable to change. They are more 

tolerant of failure and when failure does occur they can 

handle with elegance rather than disaster.  

 

2.5 Requirement of  Interactive Analytics and Druid  

Interactive analytics is an extension of real time analytics. 

It provides the facility to run complex queries using 

complex data landscapes where we have the complexity 

intelligence to visit thousands of nodes in real time [12]. 

Druid is a distributed database that stores the data column 

wise i.e. column-oriented database. Today users need that 

application should posses low query latency and druid 

takes less than a second to execute the query. It also helps 

to store the large amount of historical metrics and can 

ingest high velocity of data [13]. 

 

3. PROPOSED KAPPA ARCHITECTURE OF 

EVENT/DATA DRIVEN APPLICATIONS 

Kappa Architecture: it is an architecture that makes 

possible to process the data in real time. It simply 

removes the batch processing layer and introduces 

Streaming Processing Architecture for the processing of 

Streaming data. 

As shown in fig1 the components of Architecture are Data 

Sources, Apache NiFi, Apache Kafka, Apache Flink and 

Druid. Each component is explained below: 

      

 
Fig 1. Components of Architecture 

 

●Data Sources: it is the first component of architecture. 

These sources are responsible for providing the data. 

Various data sources are available such as API 

(Application Program Interface), databases, Agents and 

Files.  

API is consist of HTTP protocol which is responsible for 

sending the data to the data collector. Next is databases, 

various types of databases are available such as RDBMS 

i.e. Relational Database Management System that stores 

the data in rows and columns. Another database is NoSql. 

It is used to store the unstructured type of data. Next 

comes Agents, they are used when there is no direct way 

to collect the data from data source. So, an agent is used 

that will run on that framework and sends the data to the 

data collector. Lastly, files can directly provide the data to 

the data collector in textual format. 

 

●Apache NiFi:  it is an powerful and reliable system to 

receive and process the data from various data sources. It 

is a UI platform which receives the data from defined 

source and stores the information to defined destination. 
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Here, processors are used to pull the data from a source, 

performs transformation method and stores to the 

mentioned destination. But, in case of Agents as a data 

source data is pushed from an agent to NiFi. 

 

●Apache Kafka: it is a fast and scalable publish-subscribe 

messaging system. It consist of two components such as 

producer and consumer [14]. The incoming data is written 

sequentially to the disk. Firstly, the producer will publish 

the data or messages to topic (user defined category like 

Apache NiFi) and the consumer such as Apache Spark, 

Apache Flink, etc will subscribe the messages to perform 

further processing of data. 

 

●Apache Beam: Apache Beam is an open source model 

that is used for defining both batch and streaming 

processing pipelines.  It is basically used for parallel data 

processing in the which the data is divided into various 

small chunks and they are processed independently and in 

parallel form also. Apache Beam consist of runners that 

translate the pipeline of data into the defined in the beam 

program. To run the Apache Beam program appropriate 

runner has to defined which we want to execute in the 

pipeline.  

 

●Apache Flink: it is an open source stream processing 

framework for data streaming applications. It can handle 

both in-memory and disk-based processing. Therefore, 

apache flink is used for both batch and streaming data 

processing. It supports iterative processing for machine 

learning algorithms, string management, graph processing 

and many more. 

 

●Druid: it is an open source data storage that can quickly 

ingest the large amount of data. It is used for executing 

queries in low-latency. The main usage of druid is to store 

the time series data in an aggregate way [15]. Therefore, 

while making schema of this database there is a need to 

set minimum aggregation time interval.  

 

3.1 Need of Unified Processing  

Unified Process is a  framework used for guidance in 

tasks and projects of the organisation. Each activity is 

consist of input and output but they can be used 

differently in different situations. There is a need of this 

framework as its main objective is to examine which tools 

is performing what kind of activity, at what time tools 

will perform a particular activity, what are the inputs and 

outputs of each activity and how one can reach to the 

solution.  

 

3.1.1 Selection of Components 

Apache Nifi: Apache NiFi is used for both real time and 

batch processing. It supports both standalone and cluster 

mode and performs better error handling. 

 

Apache Kafka: in the digital environment, the services are 

working on wider stream of data. Therefore, performing 

analytics in real time becomes essential. But, the 

traditional batch processing not able to solve the problem 

in real time. Therefore, apache kafka is used to extract the 

wider amount of data in real time. The role of Apache 

Kafka is to develop the real time pipelines and streaming 

applications. 

 

Apache Beam and Apache Flink: they both can be used 

for streaming and batch processing. They allow to process 

the data at once only i.e. there is no need to process 

streaming and batch data separately. Apache Beam is 

used to maintain the efficiency of the application by 

providing the excellent portability facility in such a way 

that it can execute the pipelines on different runners. As 

mentioned above, Apache Flink consist of Flink ML 

library. This library provides in-memory data streaming, 

iterative processing of algorithms and streaming ML 

exclusively for the processing of streaming data.   

 

Druid: Druid is an open source Data Warehouse and 

recently it is used highly in analytics industry for 

advanced aggregation queries like top 5 users by some 

dimensions ( like cpu usage, disk usage etc). So The Main 

Use Case of Druid is for running low latency aggregation 

queries over petabytes of data. The underlying 

architecture stores the data in aggregate way as we define 

our minimum level of aggregation we required while 

designing our schema. So Druid is highly optimized for 

aggregation queries. 

 

3.1.2 Working:  

 
Fig 2. Working of Architecture 

 

As shown in fig 2 we have sensor data or log data. The 



 
 

ISSN (Online) 2394-2320 
 

International Journal of Engineering Research in Computer Science and Engineering  

(IJERCSE)  

Vol 4, Issue 11, November 2017 
 

 

                                                     All Rights Reserved © 2017 IJERCSE                                       388 

data is present in the form of time series [16] i.e. the 

attributes are dependent on time. Firstly, the data from 

sensor device is collected and stored in the druid database. 

The flow of data pipeline is made using Apache Nifi. As 

whole tool cannot be uploaded into the sensor device, 

therefore it is decided to upload the developed data flow 

pipeline into MiniNiFi. MiniNiFi is a small part of 

Apache NiFi itself. After data ingestion, the producer 

component of Apache Kafka will publish the data in the 

form of messages to topic. Then, Apache Beam as 

consumer subscribe to topics and processes the published 

messages. Apache Beam will execute the Apache Flink 

runner that allows the Apache Flink to be execute. First, 

monitoring of data is performed. To do so, rules are 

defined in the database like mongodb for eg, temperature 

> 55. Therefore when the data is fetched by Apache Flink, 

it will compare the values of data with the defined rules 

and check whether the data will break or cross the rule. If 

the rules are breaking an event will be triggered. This 

process is known as reactive programming. All the events 

are notified through email and are stored in mongodb to 

maintain the track of notifications. 

 

Next is anomaly detection. After receiving data from 

Apache Beam FlinkMl library will be used. There are two 

ways to detect anomaly such as supervised and 

unsupervised learning. The type of approach used for 

anomaly detection depends upon the data received by 

Apache Flink. In supervised learning labelled data is 

present on the other hand in unsupervised learning 

unlabelled data is given.  Firstly, supervised learning is 

performed for training data points so that they can be 

classified into anomalous and non-anomalous data points. 

But, for supervised learning there should be labeled 

anomalous data points. The most common supervised 

learning algorithms are: supervised neural networks, 

support vector machine learning, k-nearest neighbours, 

Bayesian networks and Decision trees. In case of k-

nearest neighbours, approximate distance between the 

data points is calculated and then assignment of unlabeled 

data points is made according to the class of k-nearest 

neighbour. On the other hand, bayesian networks can 

encode the probabilistic relationships between the 

variables. This algorithm is mostly used with the 

combination of statistical techniques. 

 

Another approach for detecting anomaly is unsupervised 

learning. One can apply unsupervised learning to train 

CART so that prediction of next data points in the series 

could be made. To implement this, confidence interval or 

prediction error is made. Therefore, to detect anomalous 

data points Generalised ESD-Test is implemented to 

check which data points are present within or outside the 

confidence interval. The most common unsupervised 

algorithms are self-organizing maps (SOM), K-means, C-

means, expectation-maximization meta-algorithm (EM), 

adaptive resonance theory (ART), and one-class support 

vector machine. 

 

Next part is finding the cause of occurrence of anomaly 

[17].  The approach that will be used is graph processing 

using Apache Flink. Every node in the graph represents 

the sensor data.  The pattern matching score of each 

sensor data is computed. When the anomalous data is 

detected, the similar patterns are examined. After that 

random walk algorithm is implemented over the call 

graph. Basically, random walk is performed over the call 

graph depending upon the similarity score. The sensor 

data is picked up randomly in sequence among the 

neighbours in the call graph. The pickup probability of 

sensor data depends upon the relevance of anomaly sensor 

node. More the  visits on a certain sensor by random walk 

gives that the anomaly on that sensor can best explain the 

anomalies of all the other sensors. Thus, the probability of 

visiting each score can be taken as root cause of the 

sensor node. 

 

Lastly, preventive maintenance has to be performed. The 

approach used is Reactive Machine Learning. Firstly, as 

mentioned above monitoring of sensor data is performed 

using reactive programming. When any suspicious 

activity is observed, machine learning algorithms using 

apache flink is used for maintenance. The machine 

learning algorithms are neural network, Bayesian network 

and support network machine.  

 

CONCLUSIONS 

 

In this paper we have discussed different ways in which 

the problem of anomalies  has been detected and have 

attempted to provide an overview of the detailed system 

architecture on various techniques. The proposed 

architecture can support for analytics by providing batch 

and stream computing, extendable storage solution and 

query management. To achieve more efficient result, 

there is still a need to handle the data that is growing time 
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by time at high rate and larger scale with tons of 

inconsistent data sources. To process data at high rate, 

concurrency and effectivity is the main issue and the 

performance of analytics job depends upon memory 

allocation/deallocation.To build alerting platform, 

reactive programming can be used. To maintain the 

analysis logic in both batch and real time layer, it is easy 

to used kappa architecture as it is very helpful to process 

data with less overhead and more flexibility as discussed 

in paper. In the end, we only want to say that to monitor 

real time data, to generate alerts  and to do analytics,  we 

have many open source platforms like Apache Kafka for 

providing high ingestion rate and Apache Storm, Apache 

Flink to provide true real-time streaming, processing and 

analyzing but it all depends on us that how smartly we use 

these components and use them efficiently to make Data 

Pipeline Great. 
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