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Abstract -  Hybrid configurable logic block architectures for field-programmable gate arrays that contain a mixture of lookup tables 

and hardened multiplexers are evaluated toward the goal of higher logic density and area reduction. Multiple hybrid configurable 

logic block architectures, both nonfracturable and fracturable with varying MUX:LUT logic element ratios are evaluated across 

two benchmark suites (VTR and CHStone) using a custom tool flow consisting of LegUp-HLS, Odin-II front-end synthesis, ABC 

logic synthesis and technology mapping, and VPR for packing, placement, routing, and architecture exploration. VPR is used to 

model the new hybrid configurable logic block and verify post place and route implementation. In this paper experimentally, we 

show that for nonfracturable architectures, without any mapped optimizations, we naturally save up to∼8% area post place and 

route. For fracturable architectures, experiments show that only marginal gains are seen after place-and-route up to∼2%. For both 

nonfracturable and fracturable architectures, we see minimal impact on timing performance for the architectures with best area-

efficiency. 

Keywords — FPGA, Multiplexer logic element, Complex logic block, mapping technologies 

 

INTRODUCTION 

 

A field-programmable gate array (FPGA) is a block of 

programmable logic that can implement multi-level logic 

functions. FPGAs are most commonly used as separate 

commodity chips that can be programmed to implement 

large functions. However, small blocks of FPGA logic 

can be useful components on-chip to allow the user of the 

chip to customize part of the chip’s logical function. An 

FPGA block must implement both combinational logic 

functions and interconnect to be able to construct multi-

level logic functions. There are several different 

technologies for programming FPGAs, but most logic 

processes are unlikely to implement anti-fuses or similar 

hard programming technologies. 

Throughout the history of field-programmable gate arrays 

(FPGAs), lookup tables (LUTs) have been the primary 

logic element (LE) used to realize combinational logic. A 

K-input LUT is generic and very flexible able to 

implement any K-input Boolean function. The use of 

LUTs simplifies technology mapping as the problem is 

reduced to a graph covering problem. However, an 

exponential area price is paid as larger LUTs are 

considered. The value of K between 4 and 6 is typically 

seen in industry and academia, and this range has been 

demonstrated to offer a good area/performance 

compromise. Recently, a number of other works have 

explored alternative FPGA LE architectures for 

performance improvement to close the large gap between 

FPGAs and application-specific integrated circuits 

(ASICs)  

 

 

A.  LOOKUP TABLES 

The basic method used to build a combinational logic 

block (CLB) also called a logic element in an SRAM-

based FPGA is the lookup table (LUT). As shown in 

Figure, the lookup table is an SRAM that is used to 

implement a truth table. Each address in the SRAM 

represents a combination of inputs to the logic element. 

The value stored at that address represents the value of the 

function for that input combination. An n-input function 

requires an SRAM with locations. 

  

 
Fig -1 Lookup Tables 

 

Because a basic SRAM is not clocked, the lookup table 

logic element operates much as any other logic gate as its 

inputs changes, its output changes after some delay. 

 

B. PROGRAMMING A LOOKUP TABLE  

Unlike a typical logic gate, the function represented by 

the logic element can be changed by changing the values 

of the bits stored in the SRAM. As a result, the n-input 
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logic element can represent functions (though some of 

these functions are permutations of each other).   

 

 
Fig-2 Programming A Lookup Table 

 

  A typical logic element has four inputs. The delay 

through the lookup table is independent of the bits stored 

in the SRAM, so the delay through the logic element is 

the same for all functions. This means that, for example, a 

lookup table-based logic element will exhibit the same 

delay for a 4-input XOR and a 4-input NAND. In 

contrast, a 4-input XOR built with static CMOS logic is 

considerably slower than a 4-input NAND. Of course, the 

static logic gate is generally faster than the logic element. 

Logic elements generally contain registers flip-flops and 

latches as well as combinational logic. A flip-flop or latch 

is small compared to the combinational logic element (in 

sharp contrast to the situation in custom VLSI), so it 

makes sense to add it to the combinational logic element. 

Using a separate cell for the memory element would 

simply take up routing resources.  The memory element is 

connected to the output; whether it stores a given value is 

controlled by its clock and enable inputs. 

In this paper, we propose incorporating (some) hardened 

multiplexers (MUXs) in the FPGA logic blocks as a 

means of increasing silicon area efficiency and logic 

density. The MUX-based logic blocks for the FPGAs 

have seen success in early commercial architectures, such 

as the Actel ACT-1/2/3 architectures, and efficient 

mapping to these structures has been studied in the early 

1990s. However, their use in commercial chips has 

waned, perhaps partly due to the ease with which logic 

functions can be mapped into LUTs, simplifying the 

entire computer aided design (CAD) flow. Nevertheless, 

it is widely understood that the LUTs are inefficient at 

implementing MUXs, and that MUXs are frequently used 

in logic circuits. To underscore the inefficiency of LUTs 

implementing MUXs, consider that a six input LUT (6-

LUT) is essentially a 64-to-1 MUX (to select 1 of 64 

truth-table rows) and 64-SRAM configuration cells, yet it 

can only realize a 4-to-1 MUX (4 data+2 select=6 inputs). 

In this paper, we present a six-input LE based on a 4-to-1 

MUX, MUX4, that can realize a subset of six-input 

Boolean logic functions, and a new hybrid complex logic 

block (CLB) that contains a mixture of MUX4s and 6-

LUTs. The proposed MUX4s are small compared with a 

6-LUT (15% of 6-LUT area), and can efficiently map all 

{2,3}-input functions and some {4,5,6}-input functions.  

In addition, we explore factorability of Les the ability to 

split the LEs into multiple smaller elements in both LUTs 

and MUX4s to increase logic density. The ratio of LEs 

that should be LUTs versus MUX4s is also explored 

toward optimizing logic density for both nonfracturable 

and fracturable FPGA architectures. To facilitate the 

architecture exploration, we developed a CAD flow for 

mapping into the proposed hybrid CLBs, created using 

ABC and VPR, and describe technology mapping 

techniques that encourage the selection of logic functions 

that can be embedded into the MUX4 elements. The main 

contributions in this paper are as follows. 

 

1)Two hybrid CLB architectures (nonfracturable and 

fracturable) that contain a mixture of MUX4 LEs and the 

traditional LUTs yielding up to 8% area savings. 

 

2) Mapping techniques called Natural Mux and Mux Map 

targeted toward the hybrid CLB architecture that optimize 

for area, while preserving the original mapping depth. 

 

3) A full post-place-and-route architecture evaluation with 

VTR7, and CHStone benchmarks facilitated by LegUp-

HLS, the Verilog-to-Routing project showing impact on 

both area and delay. 

 

Compared with the preliminary publication, we have 

performed transistor level modeling of the MUX4 LE, 

further studied the fracturable architectures, and unified 

the open source tool-flow from C through LegUp-HLS to 

the VTR flow. Sparse crossbars (versus full crossbars in 

the previous work) have also been included in our CLBs, 

increasing modeling accuracy. The new transistor-level 

modeling of the MUX4 also provides more accurate 

results as compared with the previous work. Results have 

also been expanded with the inclusion of timing results as 

well as larger architectural ratio sweeps. 

 

II. LITERATURE REVIEW 

 

Recent works have shown that the heterogeneous 

architectures and synthesis methods can have a significant 

impact on improving logic density and delay, narrowing 

the ASIC–FPGA gap. Works by Anderson and Wang 
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with “gated” LUTs, then with asymmetric LUT LEs, 

show that the LUT elements present in commercial 

FPGAs provide unnecessary flexibility. Toward improved 

delay and area, the macrocell-based FPGA architectures 

have been proposed. These studies describe significant 

changes to the traditional FPGA architectures, whereas 

the changes proposed here build on architectures used in 

industry and academia. Similarly, and-inverter cones have 

been proposed as replacements for the LUTs, inspired by 

and-inverter graphs (AIGs). 

 Purnaprajna and Ienne explored the possibility of 

repurposing the existing MUXs contained within the 

Xilinx Logic Slices. Similar to this work, they use the 

ABC priority cut mapped as well as VPR for packing, 

place, and route. However, their work is primarily delay-

based showing an average speed up of 16% using only ten 

of 19 VTR7 benchmarks. 

In this article, we study the technology mapping problem 

for a novel field-programmable gate array (FPGA) 

architecture that is based on k-input single-output 

programmable logic array- (PLA) like cells, or, k/m-

macro cells. Each cell in this architecture can implement a 

single output function of up to k inputs and up to m 

product terms. We develop a very efficient technology 

mapping algorithm, km flow, for this new type of 

architecture. The experimental results show that our 

algorithm can achieve depth-optimality on almost all the 

test cases in a set of 16 Microelectronics Center of North 

Carolina (MCNC) benchmarks. Furthermore it is shown 

that on this set of benchmarks, with only a relatively 

small number of product terms (m≤k+3), the k/m-macro 

cell-based FPGAs can achieve the same or similar 

mapping depth compared with the traditional k-input 

single-output lookup table- (k-LUT-) based FPGAs. We 

also investigate the total area and delay of k/m-macro 

cell-based FPGAs and compare them with those of the 

commonly used 4-LUT-based FPGAs. The experimental 

results show that k/m-macro cell-based FPGAs can 

outperform 4-LUT-based FPGAs in terms of both delay 

and area after placement and routing by VPR on this set 

of benchmarks. This paper presents experimental 

measurements of the differences between a 90-nm CMOS 

field programmable gate array (FPGA) and 90-nm CMOS 

standard-cell application specific integrated circuits 

(ASICs) in terms of logic density, circuit speed, and 

power consumption for core logic. We are motivated to 

make these measurements to enable system designers to 

make better informed choices between these two media 

and to give insight to FPGA makers on the deficiencies to 

attack and, thereby, improve FPGAs. We describe the 

methodology by which the measurements were obtained 

and show that, for circuits containing only look-up table-

based logic and flip-flops, the ratio of silicon area 

required to implement them in FPGAs and ASICs is on 

average 35. Modern FPGAs also contain “hard” blocks 

such as multiplier/ accumulators and block memories. We 

find that these blocks reduce this average area gap 

significantly to as little as 18 for our benchmarks, and we 

estimate that extensive use of these hard blocks could 

potentially lower the gap to below five. The ratio of 

critical-path delay, from FPGA to ASIC, is roughly three 

to four with less influence from block memory and hard 

multipliers. The dynamic power consumption ratio is 

approximately 14 times and, with hard blocks, this gap 

generally becomes smaller. 

In this paper the new architectural proposals are routinely 

generated in both academia and industry. For FPGA’s to 

continue to grow, it is important that these new 

architectural ideas are fairly and accurately evaluated, so 

that those worthy ideas can be included in future chips. 

Typically, this evaluation is done using experimentation. 

However, the use of experimentation is dangerous, since 

it requires making assumptions regarding the tools and 

architecture of the device in question. If these 

assumptions are not accurate, the conclusions from the 

experiments may not be meaningful. In this paper, we 

investigate the sensitivity of FPGA architectural 

conclusions to experimental variations. To make our 

study concrete, we evaluate the sensitivity of four 

previously published and well-known FPGA architectural 

results: lookup-table size, switch block topology, cluster 

size, and memory size. It is shown that these experiments 

are significantly affected by the assumptions, tools, and 

techniques used in the experiments. 

   

III. PROPOSED ARCHITECTURES 

 

A. MUX4: 4-TO-1 MULTIPLEXER LOGIC ELEMENT 

 The MUX4 LE shown in Fig. 3 consists of a 4-

to-1 MUX with optional inversion on its inputs that allow 

the realization of any {2,3}-input function, some {4,5}-

input functions, and one 6-input function a 4-to-1 MUX 

itself with optional inversion on the data inputs. A 4-to-1 

MUX matches the input pin count of a 6-LUT, allowing 

for fair comparisons with respect to the connectivity and 

intra cluster routing. Any two-input Boolean function can 

be easily implemented in the MUX4: the two function 

inputs can be tied to the select lines and the truth table 

values (logic-0or logic-1) can be routed to the data inputs 

accordingly. For three-input functions; consider that 

Shannon decomposition about one variable produces 

cofactors with at most two variables. A second 
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decomposition of the cofactors about one of their two 

remaining variables produces cofactors with at most one 

variable. Such single-variable cofactors can be fed to the 

data inputs (the optional inversion may be needed), with 

the decomposition variables feeding the select inputs. 

Likewise, functions of more than four inputs can be 

implemented in the MUX4 as long as Shannon 

decomposition with respect to any two inputs produces 

cofactors with at most one input. 

  

 
Fig.3. MUX4 LE depicting optional data input 

inversions 

 

B. Logic Elements, Fracturability, and MUX4-Based 

Variants. 

Two families of architectures were created:  

 

1) Without fracturable LEs  

 

2) With fracturable LEs.  

 

In this paper, the fracturable LEs refer to an architectural 

element on which one or more logic functions can be 

optionally mapped. Nonfracturable LEs refer to an 

architectural element on which only one logic function is 

mapped. In the nonfracturable architectures, the MUX4 

element shown in Fig. 3 is used together with 

nonfracturable 6-LUTs. This element shares the same 

number of inputs as a 6-LUT lending for fair comparison 

with respect to the input connectivity. For the fracturable 

architecture, we consider an eight-input LE, closely 

matched with the adaptive logic module in recent Altera 

Stratix FPGA families. For the MUX4 variant, Dual 

MUX4, we use two MUX4s within a single eight-input 

LE. In the configuration, shown in Fig. 4, the two MUX4s 

are wired to have dedicated select inputs and shared data 

inputs. This configuration allows this structure to map 

two independent (no shared inputs) three-input functions, 

while larger functions may be mapped dependent on the 

shared inputs between both functions. An architecture in 

which a 4-to-1 MUX (MUX4) is fractured into two 

smaller 2-to-1 MUXs was considered. 

  

 

 
Fig.4. Dual MUX4 LE that utilizes dedicated select 

inputs and shared data Inputs 

 

C. HYBRID COMPLEX LOGIC BLOCK 

A variety of different architectures were considered the 

first being a nonfracturable architecture. In the 

nonfracturable architecture, the CLB has 40 inputs and 

ten basic LEs (BLEs), with each BLE having six inputs 

and one output. Fig.5 shows this nonfracturable CLB 

architecture with BLEs that contain an optional register. 

We vary the ratio of MUX4s to LUTs within the ten 

elements CLB from 1:9 to 5:5 MUX4s:6-LUTs. The 

MUX4 element is proposed to work in conjunction with 

6-LUTs, creating a hybrid CLB with a mixture of 6-LUTs 

and MUX4s (or MUX4 variants).  

  

 
Fig. 5. Hybrid CLB with a 50% depopulated intra-CLB 

crossbar depicting BLE internals for nonfracturable 

(one optional register and one output) architecture. 

 

Fig. 6 shows the organization of our CLB and internal 

BLEs. For fracturable architectures, the CLB has 80 

inputs and ten BLEs, with each BLE having eight inputs 

and two outputs emulating an Altera Stratix Adaptive-

LUT. The same sweep of MUX4 to LUT ratios was also 

performed. Fig. 4 shows the fracturable architecture with 

eight inputs to each BLE that contains two optional 
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registers. We evaluate fracturability of LEs versus 

nonfracturable LEs in the context of MUX4 elements 

since fracturable LUTs are common in commercial 

architectures. For example, Altera Adaptive 6-LUTs in 

Stratix IV and Xilinx Virtex 5 6-LUTs can be fractured 

into two smaller LUTs with some limitations on inputs. 

  

 
Fig.6. Hybrid CLB with a 50% depopulated intra-CLB 

crossbar depicting BLE internals for a fracturable (two 

optional registers and two outputs) architecture. 

 

D. AREA MODELING 

1) MUX4 Logic Element: Initial estimates of the MUX4 

element showed that the MUX4 is∼10% the area of a 6-

LUT overall. A 4-to-1 MUX can be realized with three 2-

to-1 MUXs. Hence, the MUX4 element contains seven 2-

to-1 MUXs, four SRAM cells, and four inverters in total 

(see Fig. 1). The optional inversion uses the four SRAM 

cells, whereas the rest of the LE configuration is 

performed through routing. In addition, the depth of the 

MUX tree is halved compared with the 6-LUT, which has 

six 2-to-1 MUXs on its longest paths. Conservatively, 

assuming constant pass transistor sizing and that the area 

of a 2-to-1 MUX and six transistor SRAM cell are 

roughly equivalent, the MUX4 element has (1/16)th the 

SRAM area and(1/8)th the MUX area of a 6-LUT. 

These estimates were revised using transistor level 

modeling of the circuit blocks. Transistor-level 

optimization of the constituent circuit blocks of an FPGA 

requires an understanding of the optimal area-delay 

tradeoffs for each individual circuit block. This requires 

extracting a representative critical path, which is a path 

whose composition of blocks and topology will be similar 

to the critical path of a specific design. Extracting the 

representative critical path allows us to judge to what 

extent each individual block is timing critical, which thus 

establishes an area-delay tradeoff goals for each block. 

This is in line with the transistor-level optimization tool 

developed previously. We use the results of prior work to 

establish the optimal area-delay tradeoff for 6-LUTs in 

conventional island-style FPGA architecture with typical 

architectural parameters. The resulting 6-LUT delay 

serves as a point of reference for optimization for the 

circuits considered in this paper: in the interest of 

maximizing area reduction while allowing performance to 

be maintained (ignoring the differences in cell counts 

between mapping to a conventional LUT and the LEs 

proposed in this paper), we attempt to match the delay of 

a 6-LUT while minimizing the area of each of the variants 

of the MUX4 circuits. Transistor level modeling and 

optimizations were based on a9 predictive 22-nm high 

performance process [21], while the area model presented 

in prior work [20] was used to estimate the area of various 

circuit structures. With this methodology, we determined 

an area-delay optimal 6-LUT has an area of 930 

minimum-width transistors, and a worst-case delay of 261 

ps. For the MUX4 cell and Dual MUX4 cell, a minimum 

area and minimum delay cell was created. The minimum 

area MUX4 cell has an area of 95 minimum width 

transistors and a delay of 204 ps; all transistors were 

minimum-width in this case, and as the minimum area 

solution for this circuit was able to meet (and improve 

upon) the worst-case delay target of a 6-LUT. Similarly, 

the Dual MUX4 cell has an area of 249 minimum-width 

transistors while meeting the worst-case delay 

requirement. However, we chose to use the minimum 

delay design for both the MUX4 and Dual MUX4 

elements for the rest of the study as there is not a 

significant increase in area  over the minimum area 

design. 

 

2) FPGA Area Model: 

Although determining the area of a MUX4 element 

relative to a 6-LUT is important, we need to also examine 

global FPGA area considering the number of CLB tiles, 

area overheads within the CLB and routing area per CLB. 

Throughout this paper, global FPGA area was estimated 

assuming that, per tile, 50% of the area is inter cluster and 

intra cluster routing, 30% of the area is used for LUTs, 

and 20% for registers and other miscellaneous logic, 

following Anderson and Wang and a private 

communication. It is important to note that this 50%–

30%–20% model is an estimate based on a traditional full 

FPGA design where-by the routing and internal CLB 

crossbars are optimized toward 6-LUTs. Production of an 

optimized FPGA utilizing our new MUX4 elements 

would surely change said model. However, optimizing the 

entire routing architecture toward our MUX4 variants, 
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measuring the routing architecture, and closing the loop 

by creating a more accurate model is out of the scope of 

this work. Using this model, we can make some 

observations about the hybrid CLB architecture. The 30% 

that normally would account for ten 6-LUT LEs within 

the tile is now split between the smaller MUX4 elements 

and 6-LUTs.  

 

IV. TECHNOLOGY MAPPING USING ABC 

 

ABC was used for technology mapping, with 

modifications that allow for MUX4-embeddable function 

identification and MUX2-embeddable function 

identification in the case of fracturable MUX4s and 

custom mapping. The internal data structure used within 

the ABC is an AIG, where the logic circuit is represented 

using 2-input AND gates with inverters. Priority Cuts 

mapping in ABC (invoked with the if command) was 

modified to perform our custom technology mapping. 

This mapper traverses the AIG from primary inputs to 

primary outputs finding intermediate mappings for 

internal nodes and finally the primary outputs, using a 

dynamic programming approach. The priority cuts 

mapper performs multiple passes on the AIG to find the 

best cut per node. For depth-oriented mapping, the 

mapper first prioritizes mapping depth then optimizes for 

area discarding cuts whose selection would increase the 

overall depth of the mapped network. Based on this 

standard mapper, two mapper variants were produced and 

evaluated. The first variant, Natural Mux, evaluates and 

identifies internal functions that are MUX4-embeddable, 

agnostic of the target architecture; i.e., this flow uses the 

default priority cuts mapping and performs a post 

processing step to identify MUX4-embeddable functions. 

From this mapping, we can evaluate what area savings are 

possible without any mapper changes. The second variant 

Mux Map, area-weights the MUX4-embeddable cuts 

relative to 6-LUT cuts, thereby establishing a preference 

for selection/creation of MUX4-embeddable solutions. 

 

V. MODELING USING VPR 

 

VPR was used to perform architectural evaluation. The 

standard ten 6-LUT CLB architecture in 40-nm included 

with the VPR distribution was used for baseline 

modeling. The hybrid CLBs shown in Figs. 3 and 4 were 

modeled using the XML-based VPR architectural 

language. The snippet from the architecture file for the 

physical block hardened MUX4 element, this code 

specifies a MUX4 as a six-input one-output black box to 

the VPR. In addition, since all MUX4s can also be 

mapped to the 6-LUTs, an additional mode was added to 

the 6-LUT physical block. The mode concept allows the 

VPR packer to pack LUTs into LUTs (as usual), but also 

enables MUX4s to be packed into the LUTs. The 

architectures with CLBs having MUX4: LUT ratios from 

1:9 to 5:5 were created from the baseline 40-nm 

architectures with delays obtained through circuit 

simulations of the MUX4 variants. Importantly, we made 

minor modifications to the VPR packing algorithm itself, 

so that the MUX4 net list elements are preferred to be 

packed into the MUX4 Les in the architecture (while 

limiting packing MUX4 net list elements into LUTs). The 

modifications involved changing the attraction function 

during the CLB packing. One change was to ensure that 

the logic functions that were MUX4 embeddable were 

preferentially packed into a physical MUX4 element and 

not into an LUT. Another was to apply a negative weight 

on MUX4-embeddable functions when the current CLB’s 

physical MUX4 elements are all occupied also preventing 

MUX4-embeddable functions from being placed into the 

LUTs. Without this, the MUX4 net list elements might 

needlessly consume LUTs, which should be reserved, 

where possible, for those net list elements that demand 

their flexibility. This becomes doubly important for 

fracturable architectures, since their packing problem is 

more complex. Without this modification, a significant 

CLB usage increase was observed across all benchmark 

sets. 

 

EXTENSION 

FIR FILTER: A FIR (Finite Impulse Response) filter is 

defined as a filter that has impulse response for a finite 

duration of time. Now the design of FIR filter is made by 

using equiripple method. The advantages of using FIR 

filters are their guaranteed stability and freedom from 

phase distortion.  

 

FIR FILTER STRUCTURE  

                               
Figure 6 Direct Structure of an FIR Filter Above shows 

the structure of an Direct-form FIR filter and 

corresponding equation is given by            
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y(n) =b¬i x(n-i)= bTxT(n) ………………(1) 

The input vectors in fig can be represented as xT ( n ) = 

[x( n ), x( n −1),...x( n − L+1)] …(2)  

 

The coefficients in fig can be represented as                                                         

  bT=[b0,b1,…..bL-1]……………….(3)  

 

Output of FIR filter is the sum of all the partial products 

between input and coefficients.  Filters are signal 

conditioners. Each functions by accepting an input signal, 

blocking pre-specified frequency components, and 

passing the original signal minus those components to the 

output. For example, a typical phone line acts as a filter 

that limits frequencies to a range considerably smaller 

than the range of frequencies human beings can hear. 

That's why listening to CD- quality music over the phone 

is not as pleasing to the ear as listening to it directly. 

 

VI. RESULTS 

 

SIMULATION 

 
 

 RTL SCHEMATIC 

 
 

TECHNOLOGY 

 
 

DESIGN SUMMARY 

 
  

TIME DELAY 

 
 

VII. CONCLUSION 

 

In this paper we proposed a new hybrid CLB architecture 

containing MUX4 hard MUX elements and shown 

techniques for efficiently mapping to these architectures. 

We also provided analysis of the benchmark suites post 

mapping, discussing the distribution of functions within 

each benchmark suite. The area reductions for  
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nonfracturable architectures, is 8% and MUX4:LUT ratio 

is 4:6 and in the case of fracturable architecture the area 

reductions are 2%.The CHStone benchmarks being high-

level synthesized with LegUp-HLS also showed 

marginally better performance and this could be due to 

the way LegUp performs HLS on the CHStone 

benchmarks themselves. Overall, the addition of MUX4s 

to FPGA architectures minimally impact FMax and show 

potential for improving logic-density in nonfracturable 

architectures and modest potential for improving logic 

density in fracturable architecture. 
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