
ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 4, Issue 10, October 2017

 24

Multi version Concurrency Control for Object

Oriented Database Management System
[1] Sonal Kanungo,

[2]
Rustom. D Morena

[1]
Smt.Z.S.PatelCollege of Computer Application, Surat

[2]
Department of Computer Science, Veer Narmad South Gujarat University, Surat

Abstract - Now a day object-oriented databases (OODB) are being used in large scale applications in a different industry including

telecommunications, banking, manufacturing, insurance, and shipping. These applications are categorized by having complex data,

that is, data which is represented in the highly interconnected in an object model.

Object databases are very good at storing the complex data model, but it is generally up to the application developer to figure out

how to scale the application so that it runs efficiently with many concurrent users. The purpose of this paper is to explore various

techniques that can be used in object oriented databases to achieve high concurrency.

1. INTRODUCTION

An Object-Oriented Database Management System

(OODBMS) is a database that supports the modeling and

creation of data as objects. The set of related class

participating in the domain defines the structure of an

OODBMS. Database relationships like aggregation,

inheritance, composition and association relate the classes

with each other. These relationships can be represented

and understood as following - Inheritance as a "Is-a”

relationship, Association as a “Has-a” relationship,

Composition/ Aggregation as a “Is-part of” relationship.

In the traditional transactions, values of attributes are

altered and read in the database as per the requirement.

The effect of the frequent changes occurring in the

business requirement is well reflected in the

corresponding databases. The inherent schemas are

changed in order to adapt to this change. This makes it

imperative that the parallel execution of transactions be in

order to maintain the concurrency with the changes.

Several multigranular locking models are presented for

OODBMS. However, due to complex nature of

OODBMS and its ability to create the relationship chain

in domain gives birth to more relations. Due to this

property, there is a need for developing more

sophisticated concurrency control techniques.

1.1. Object Oriented Database Management System

There are areas where complex data are used such as

Computer-Aided Design (CAD), Computer-Aided

Software Engineering (CASE), Office Information

System(OIS), and Multimedia Systems, where in enriched

modelling capabilities of OODBMS supports these

applications.

Object-oriented databases system can reduce

maintenance, provide reusability of code and also

improve flexibility and reliability of system.

1.2. Benefits of OODBMS

1.2.1. OODBMS is combination of database and object-

oriented properties:

In OODBMS database properties are integrated with

object oriented programming language capabilities.

Object-oriented databases can work efficiently with

object-oriented programming languages like Java, C#, and

C++ etc.

1.2.2. No impedance mismatch problem:

Usage of RDBMS with object oriented languages results

in loss of time; as the objects have to be mapped to table

and vice versa. As there is no impedances mismatch

problem in OODBMS, it results into improvement in

performance.

1.2.3. Support complex structured data:

By using SQL, ODBC, and JDBC, the data can be stored

in the tables in an easy and convenient form in OODBMS

using Java or C++. An object can be a complex entity.

The object contains references to both dependent objects

and independent objects. An OODBMS can give

performance that is much faster than RDBMS. The reason

responsible for the higher efficiency is that, the data were

already in the well accepted format of Java and C++;

hence no translation is required at any stage of execution.

Complex data is processed with much ease.

2. CONCURRENCY CONTROL

The interaction of simultaneous transactions is controlled

by the various concurrency-control techniques. These

techniques keep consistency in the databases. In order to

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 4, Issue 10, October 2017

 25

provide better throughput, various concurrency control

techniques are provided in the literature. The lock

mechanism is used in lock based protocols. In order to

give concurrent access for data item, the permission is

only given when the data item is holding a lock. In this

condition, a lock cannot be granted to other incompatible

requesting transactions and these transactions have to wait

until all

incompatible locks held by previous transaction are

released, then only lock is granted. Obtaining and

releasing locks must be done properly. This is done in

order to ensure proper consistency and also avoid

deadlocks [1]. The protocols, which are Timestamp-

Based, a unique timestamp is given to each transaction in

order to ensure consistency. Timestamp is given when the

transaction is started. For each data item two timestamps

are stored. Write-timestamp is timestamp of last

successful write for data item and Read-timestamp is the

time stamp of last successful read. In order to access a

data, the data's read and write timestamps must always be

older than then requesting transaction, else this access is

denied and aborted. If the current transaction is late then it

has to be aborted. This mechanism ensures safer and

consistent data transaction which is free from deadlocks.

The only drawback is that the schedule may not be

cascade-less, and also it makes the system non-

recoverable.

The concept that the transaction will be executed

successfully is called as Optimistic concurrency control.

In the Optimistic concurrency control method, the

transaction executes fully with the hope that all will go

well during validation. The technique is called

"optimistic" because it assumes that little interference will

occur and hence there is no necessity to carry out

checking during transaction execution. This is called

optimistic as it is mainly dependent on transaction backup

for the control mechanism in an optimistic way. The

assumption behind Validation based protocols is that the

occurrence of read and write conflicts will be very rare.

During the transaction processing, the uncontrolled access

to shared data objects is allowed. The presence of any

conflicts must be checked by the validation based

protocol. Conflict resolution mainly leads to transaction

abort.

When most of the transactions are read-only transactions,

then the rate of conflicts will be low. In the optimistic

scheme, no records are locked and hence no deadlock will

occur [3].

The condition where the transaction needs to access the

whole database and the locking protocol

has been utilized, everything in the database must be

secured. This is a very tedious process. Hence the whole

database is locked for better performance. Thus, various

levels of granularity are characterized by the framework.

Multi granularity locking protocol is graphically

understood in the form of a tree [4]. Top-down order or

the leaf to root structure is proposed by various

granularity protocols. Deadlocks are found in this

protocol [5].

One more issue that arises with concurrency control is

that, a read operation might be delayed because the

appropriate value has not been written yet; or it might be

rejected

because the data that should have been read by this

request has already been overwritten [6]. By keeping old

duplicates of every data item, this issue could be taken

care off very easily. A new duplicate is created with each

successful write in a Multiversion method [5]. This offers

better controlling on the request of reads and writes. The

read and write don’t overwrite each other. The read

request is never rejected in a Multiversion scheme [2].

The Multiversion mixed method uses the Timestamp

ordering and Two-phase locking with multiple versions of

data [3]. Each data and its version are labeled with the

timestamps. Multiversion Update transactions follows

rigorous Two-phase locking(2PL) protocol [5]. The

Update transactions hold the read and write locks till the

end of transaction. Read-only transactions can continue to

read the committed version of data, while the transaction

is holding the write lock [11]. Due to quick proper version

return, the reads never need to wait [6]. Since writes don't

overwrite each other and reads can read any version, it

has greater adaptability in controlling the request of reads

and writes [4].

3. NEED OF NEW CONCURRENCY CONTROL

TECHNIQUE

The properties like implementation, correctness and

maintaining consistency for the database locking

mechanism is widely used and accepted. For object-

oriented environments, basic concurrency control

schemes cannot be adopted because of the inherent

complex nature of the objects. Complex objects are not

exploited in promoting concurrency. Also, as the

transactions are of long duration in nature, the prevailing

schemes for concurrency control aren’t equipped to

support them. Due to this, system resources are

underutilized and the throughput is reduced by letting the

transaction to hold the resources for a longer period.

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 4, Issue 10, October 2017

 26

Multi-granularity locking techniques support concurrency

control for the object-oriented environment, but still these

techniques are not up to the desired levels. Proposed

technique works

very efficiently with changing environments and provide

better throughput while working with the complex

objects.

Both the Class transactions and Object transactions deal

with the Concurrency control in OODBMS. The proposed

technique satisfies both schemas and operations along

with the data. The objective of this research is to find an

efficient mechanism which can improve the performance

and can also handle deadlock. To achieve this objective,

the technique should provide all lock types, compatibility

matrix and lock granularity for all types of class

relationships like composition, inheritance, and

association for an object-oriented database system.

4. METHODOLOGY

Transaction generator can create random transactions

which can Read or Update classes and objects.

Transactions are serialized and follow modified

Multiversion two phase locking that means all operations

will get locked and will not be able to release until all

operations will commit or rollback. Other transaction will

get the lock only after the release of previous lock.

Each version of object and class has a unique timestamp.

When the query (read only) wants to read data, it reads

the latest committed versions, therefore read never fails in

this technique.

When a group of blocked processes holding resources,

and waiting to get resources held by another process in

the set, results into a deadlock. By removing the victim,

this technique also handles deadlock.

5. RESULT AND DISCUSSION

Experimental details and analysis of the simulation is

presented in this section. The simulation is

implemented using visual C++ and results are generated

in a standard environment. The transactions are served in

first-in-first-out (FIFO) order and it is generated by the

transaction generator. The Transaction generator produces

the update and read-only transactions. If the lock mode is

compatible with the existing transactions, then the

transaction request is served; and if a

request is found to be incompatible, the transaction will

be blocked. Read-only will read consistent last committed

version.

Four types of testing parameters viz number of commit,

deadlock and abort, are considered for evaluating the

performance of the existing techniques with our proposed

technique.

We have taken 100 transactions, where total number of

transactions in one Run is 10 and total number of Runs is

10, also Total numbers of operations on Object and Class

in transaction vary in each Run.

Figure 1

CONCLUSION

This research is focused to examine the impact of read-

write proportions on the performance of the Concurrency

Control mechanism. For the analysis, the behavior of

performances for different Multiversion Concurrency

Control mechanisms, Simulation modeling has been used.

We briefly review these works and their findings and

argue that more work in this area is required for a good

understanding of the behavior of Concurrency Control

mechanism based on multiversion schemes.

REFERENCES

1. K.P. Eswaran, J.N. Gray, R.A. Lorie, and I.L. Traiger:

“The Notions of Consistency and Predicate Locks in a

Database System”, Communications of the ACM,

November 1976 of Volume 19, Pages 624-633.

2. DANIEL J. ROSENKRANTZ, RICHARD E.

STEARNS, PHILIP M. LEWIS II: “System Level

Concurrency Control for Distributed Database Systems”,

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 4, Issue 10, October 2017

 27

ACM Transactions on Database Systems, Vol. 3, No. 2,

June 1978, Pages 178-198.

3. H.T. KUNG AND JOHN T. ROBINSON: “On

Optimistic Methods for Concurrency Control”, ACM

Transactions on Database Systems, Vol. 6, No. 2, June

1981, Pages 213-226.

4. RICHARD E. STEARNS* AND DANIEL J.

ROSENKRANTZ: “DISTRIBUTED DATABASE

CONCURRENCYC OIITROLS USING BEFORE-

VALUES”, l981 ACM, Pages

74-83.

5. CHRISTOS H. PAPADIMITRIOU, PARIS C.

KANELLAKIS:” ON Concurrency Control by Multiple

Versions”, 1982 ACM Publication.

6. PHILIP A. BERNSTEIN and NATHAN GOODMAN:

“Multiversion Concurrency Control- Theory and

Algorithms”, ACM Transactions on Database Systems,

Vol. 8, No. 4, December 1983, Pages 465-483.

7. HENRY F. KORTH: Locking Primitives in a Database

System, Journal of the Association for Computing

Machinery, Vol 30, No1, January 1983, Pages 55-79.

8. CHRISTOS H. PAPADIMITRIOU: “On Concurrency

Control by Multiple Versions”, ACM Transactions on

Database Systems, Vol. 9, No. 1, March 1984, Pages 89-

99.

9. RONG SUN, GOMER THOMAS: “Performance

Results on Multiversion Timestamp Concurrency Control

with Predeclared Write sets”, 1987 ACM, Pages 177-184.

10. DIVYAKANT AGRAWAL, AMR EL ABBADI, and

AMBUJ K. SINGH: “Consistency and Orderability:

Semantics-Based Correctness Criteria for Databases”,

ACM Transactions on Database Systems, Vol 18, No. 3,

September 1993, Pages 460-486.

11. MIHALIS YANNAKAKIS: “Issues of Correctness In

Database Concurrency Control By Locking”, ACM 1981,

Pages 363-367.

12.SONAL KANUNGO, R.D. MORENA, “Analysis and

Comparison of Concurrency Control Techniques”,

International Journal of Advanced Research in Computer

and Communication Engineering, Vol. 4, Issue 3, March

2015.

13. SONAL KANUNGO, R.D. MORENA, “Comparison

of Concurrency Control and Deadlock Handing in

Different OODBMS”, International Journal of

Engineering Research & Technology, Vol. 5 Issue 05,

May-2016.

