
International Journal of Engineering Research in Computer Science and

Engineering (IJERCSE) Vol 3, Issue 6, June 2016

 27

An Efficient Caching scheme to maintain consistency in

Hybrid P2P system

[1]
Usha Rani J

[2]
Swetha D

 [3]
Rajath A N

[1][2][3]
Assistant professors, Department of Computer science & Engineering

GSSS Institute of Engineering & Technology for Women Karnataka Mysuru -570016
[1]

usharani@gsss.edu.in,
[2]

swetha.d@gsss.edu.in,
[3]

rajathan@gsss.edu.in

Abstract - The paper aims on how efficiently the performance of cache memory can be maintained in disturbed network and also in

P2P networks. A Technique of distributed cache invalidation mechanism (DCIM), it is client-based cache consistency scheme is

implemented on top of a previously existing architecture, namely COACS, here in COACS a special nodes cache the queries and

the addresses of the nodes that store the responses to these queries. DCIM uses a pull-based algorithm that implements adaptive

time to live (TTL), piggybacking, and perfecting, and provides near strong consistency capabilities. Cached data items are assigned

adaptive TTL values that correspond to their update rates at the data source, where items with expired TTL values are grouped in

validation requests to the data source to refresh them, whereas unexpired ones but with high request rates are perfected from the

server.

Keywords — Hybrid, Peer-to-peer systems, structured, unstructured P2P, DCIM, TTL

I. INTRODUCTION

A peer to peer network (p2p) is a distributed

application architecture that partitions tasks between peers.

Peers are both suppliers and consumers of resources, in

contrast to the traditional client-server model in which the

consumption and supply of resources is divided.

The peer joins or leaves the system often; hence,

p2p networks [1] are dynamic in nature. Peer-to-peer

networks can be divided into two categories: structured

peer-to-peer networks where the organization of peers is

through regular topology and unstructured peer-to-peer

networks where the organization of peers is arbitrary.

Hence, neither structured peer-to-peer networks nor

unstructured peer-to-peer networks can provide efficient,

flexible, and robust assistance independently [2].

We propose a hybrid peer-to-peer system for

distributed data sharing which combines the structured and

unstructured peer-to-peer networks. In the proposed hybrid

system, a structured ring-based core network forms the

backbone of the system and multiple unstructured peer to

peer networks are attached to the backbone and

communicate with each other through the backbone. The

core-structured network provides an accurate way to

narrow down the queried data within a certain unstructured

network, while the unstructured networks provide a low

cost mechanism for peers to join or leave the system freely.

We propose a hybrid peer-to-peer networks which

is a combination of structured and unstructured peer-to-

peer networks. These architectures use special node to

provide directory services for regions of the network and

are potentially powerful model for developing large scale

network.

 In this paper, we propose a pull-based algorithm

that implements adaptive TTL, piggybacking, and

perfecting, and provides near strong consistency

guarantees. Cached data items are assigned adaptive TTL

values that correspond to their update rates at the data

source. Expired items as well as non expired ones which

meet certain criteria are grouped in validation requests to

the data source, which in turn sends the cache devices the

actual items that have changed, or invalidates them, based

on their request rates. This approach, which we call

distributed cache invalidation mechanism (DCIM) [12]

works on top of the COACS cooperative caching

architecture.

II. EXISTING SYSTEM

 The cache consistency mechanisms can be grouped

into three main categories: push based, pull based, and

hybrid approaches. Push-based mechanisms are mostly

server-based, where the server informs the caches about

updates, whereas pull-based approaches are client-based,

where the client asks the server to update or validate its

cached data. Finally, in hybrid mechanisms the server

pushes the updates or the clients pull them. We focus on

 International Journal of Engineering Research in Computer Science and

Engineering (IJERCSE) Vol 3, Issue 6, June 2016

 28

peer-to-peer networks for efficient distributed data (file)

sharing among peers.

2.1 push/pull caching approaches

Pull caching is client initiated whereas the push

caching is web server initiated.

As shown in figure, in push-based data delivery,

the server tracks all proxies that have requested objects. If

web page has been modified, it notifies each proxy and

when the client requests for the file it is served from the

proxy’s cache instead of request going directly to the

server. This improves network utilization.

As shown in figure 2, a proxy explicitly requests

data items from the server [4] when the client requests for

a document. The proxy instead of the request going

directly to the server form the client can service subsequent

requests for the same file by clients. In the pull-based

approach, the proxy is entirely responsible or maintaining

consistency. The proxy maintains data constancy by setting

a TTL on the document cached and this copy is served

until the TTL expires

2.2 advantages of the push approach

1. The push technology can reduce the burden of

acquiring data for tasks in which there is a large

information flow. Push technologies improve efficiency by

downloading information to the users’ system in a

scheduled fashion so it can be rapidly viewed, and thereby

eliminating the risk of the user being served stale data.

2. Pushing alerts to the user (e.g. In the form of e-

mail or the change itself), improves the efficiency of web-

based time-sensitive information distribution (such as stock

quotes or trouble tickets in a technical support system).

3. Automatic downloading of software upgrades

and fixes is a way to deliver software faster, and at the

same time, reduce costs.

4. The push technology enables intelligent information

filtering based on personalized user profiles describing

required information needs.

2.3 push vs pull

In the push approach, the server repetitively

transmits (multicasts) the data to the proxy services. In

such a system, data items are periodically sent from the

server to the proxy service without requiring a specific

request from the clients. In contrast, the pull-based

approach explicitly requests data items by sending

messages to the web server . Pull based access has the

advantage of allowing proxy service to play a more active

role in obtaining the data, rather than relying solely on

push enabled web servers.

III PROPOSED SYSTEM

 We propose a pull-based algorithm, that implements

adaptive TTL, piggybacking, and prefetching, and provides

near strong consistency guarantees. Cached data items are

assigned adaptive TTL values that correspond to their

update rates at the data source. Expired items as well as

non-expired ones which meets certain criteria are grouped

in validation requests to the data source, which in turn

sends the cache devices the actual items that have changed,

or invalidates them, based on their request rates. This

approach, which we call distributed cache invalidation

mechanism (DCIM), works on top of the coacs cooperative

caching architecture.

3.1 advantages of proposed system

 TTL algorithms are popular due to their simplicity,

sufficiently good performance, and flexibility to

assign TTL values to individual data items.

 Also, they are attractive in mobile environments

because of limited device energy and network

bandwidth and frequent device disconnections.

 TTL algorithms are also completely client based and

require minimal server functionality. From this

perspective, TTL-based algorithms are more

practical to deploy and are more scalable.

 This is the first complete client side approach

employing adaptive TTL and achieving superior

availability, delay, and traffic performance.

IV REVIEW OF PREVIOUS PAPER

A. In [3], they introduced a cooperation-based

database caching system for mobile ad hoc networks

(manets). The heart of the system is the nodes that cache

submitted queries. The queries are used as indices to data

 International Journal of Engineering Research in Computer Science and

Engineering (IJERCSE) Vol 3, Issue 6, June 2016

 29

cached in nodes that previously requested them. We

discuss how the system is formed and how requested data

is found if cached, or retrieved from the external database

and then cached. Analysis is performed and expressions

are derived for the different parameters, including upper

and lower bounds for the number of query caching nodes

as well as the average load they experience, generated

network traffic, node bandwidth consumption, and other

performance-related measures. Simulations with the ns-2

software were used to study the performance of the system

in terms of average delay and hit ratio, and to compare it

with the performance of two other caching schemes for

manets, namely cache path and cache data. The results

demonstrate the effectiveness of the proposed system in

terms of achieved hit ratio and low delay.

B. In [4], the mobile wireless computing

environment of the future a large number of users equipped

with low powered palmtop machines will query databases

over the wireless communication channels. Palmtop based

units will often be disconnected for prolonged periods of

time due to the battery power saving measures; palmtops

will also frequently relocate between different cells and

connect to different data servers at different times. Caching

of frequently accessed data items will be an important

technique that will reduce contention on the narrow

bandwidth wireless channel. However, cache invalidation

strategies will be severely affected by the disconnection

and mobility of the clients. The server may no longer know

which clients are currently residing under its cell and

which of them are currently on. We propose a taxonomy of

different cache invalidation strategies and study the impact

of client's disconnection times on their performance.

C. In [5],caching frequently accessed data items

on the client side is an effective technique for improving

performance in a mobile environment. Classical cache

invalidation strategies are not suitable for mobile

environments due to frequent disconnections and mobility

of the clients. One attractive cache invalidation technique

is based on invalidation reports (irs). However, the ir-based

cache invalidation solution has two major drawbacks,

which have not been addressed in previous research. First,

there is a long query latency associated with this solution

since a client cannot answer the query until the next ir

interval. Second, when the server updates a hot data item,

all clients have to query the server and get the data from

the server separately, which wastes a large amount of

bandwidth. In this paper, we propose an ir-based cache

invalidation algorithm, which can significantly reduce the

query latency and efficiently utilize the broadcast

bandwidth. Detailed analytical analysis and simulation

experiments are carried out to evaluate the proposed

methodology. Compared to previous ir-based schemes, our

scheme can significantly improve the throughput and

reduce the query latency, the number of uplink request, and

the broadcast bandwidth requirements.

D. In [6], the trend toward wireless

communications and advances in mobile technologies are

increasing consumer demand for ubiquitous access to

internet-based information and services. A 3d framework

provides a basis for designing, analyzing, and evaluating

strategies to address data consistency issues in mobile

wireless environments. A proposed relay-peer-based cache

consistency protocol offers a generic and flexible method

for carrying out cache invalidation.

E. In [7], as the web continues to explode in size,

caching becomes increasingly important. With caching

comes the problem of cache consistency. Conventional

wisdom holds that strong cache consistency is too

expensive for the web, and weak consistency methods,

such as time-to-live (TTL), are most appropriate. This

study compares three consistency approaches: adaptive

TTL, polling-every-time and invalidation, through

analysis, implementation, and trace replay in a simulated

environment. Our analysis shows that weak consistency

methods save network bandwidth mostly at the expense of

returning stale documents to users. Our experiments show

that invalidation generates a comparable amount of

network traffic and server workload to adaptive TTL and

has similar average client response times, while polling-

every-time results in more control messages, higher server

workload, and longer client response times. We show that,

contrary to popular belief, strong cache consistency can be

maintained for the web with liTTLe or no extra cost than

the current weak consistency approaches, and it should be

maintained using an invalidation-based protocol.

V SYSTEM ARCHITECTURE

Fig 3: overview of DCIM basic design.

 the system has three types of nodes :caching

nodes: CNS) that cache previously requested items, query

directories (QDS) that index the cached items by holding

 International Journal of Engineering Research in Computer Science and

Engineering (IJERCSE) Vol 3, Issue 6, June 2016

 30

the queries along with the addresses of the corresponding

CNS, and requesting nodes (RNS) that are ordinary nodes.

Any node, including a QD or a CN, can be a requesting

node, and hence, an RN is not actually a special role, as it

is only used in the context of describing the system. One,

therefore, might view the employed caching system as a

two layered distributed database. The first layer contains

the QDS which map the queries to the caching nodes

which hold the actual items that are responses to these

queries, while the second layer is formed by the CNS.

Sequence Diagram

Client
Server

Request

 Normal

 Response

 Query

Mobile_Host3

 Mobile_Host1 Mobile_Host2

 Query_Response

 Update Nearest Neighbours

 Update Nearest Neighbour

Update Nearest Port

Figure 4.shows the set of activities of between client and

server using pull based approach

VI. MODULES

 TTL Adaptation Module

 Server Operations

 CN Processing Module

 QD Operations Module

1. TTL Adaptation Module:

 The CN in DCIM has a partial view about the

update pattern of each item at the server with the help of

piggybacking mechanism [10]. It stores the last update

time of each item from the last validation request, and uses

this information to predict the next update time. However,

the CNs has constraints in terms of processing, storage

capabilities, and power and obviously, sophisticated

prediction schemes are slow and inadequate to use as they

are mobile devices. We use a running average to estimate

the inter update interval, using timestamps of the items

from the server’s responses to issued validation requests.

The CN can then calculate its own estimation for the inter

update interval at the server, and utilizes it to calculate the

TTL of the data item [9] [11].

2. Server Operations:

 As this approach is client-based, the processing at

the server is minimal. When the server receives a CURP

message from the CN, it checks if all items have been

changed by comparing their last modified times with those

included in the request. Items that have not changed are

considered valid, and their ids are included in the SVRP

response to the CN. On the other hand, items that have

changed are treated in two ways: Expired items (those

having the expiry bit set in the CN validation request) as

well as nonexpired ones but having the prefetch bit set are

updated by sending SUDP packets (which contain the

actual data items and the associated timestamps) to the

originating CNs. As to the items whose expiry and prefetch

bits are not set (i.e., will not be requested soon), the server

informs the CN about them using an SVRP message.

3. CN Processing Module:

 The CNs stores the cached queries along with

their responses plus their IDs, and the addresses of the QDs

indexing them. They are distributed in the network and

cache a limited number of items, which makes monitoring

their expiry an easy task. A CN maintains two tables to

manage the consistency of the cache: the Cache

Information Table whose data is common to all queries

whose responses are locally cached and the Query

Information Table that stores query-specific data.

4. QD Operations Module:

In contrast to the CNs that become caching nodes

when they first request non-cached data, QDs are elected

based on their resource capabilities, as described. A

procedure is included that explains how the number of

QDs in the system is bounded by two limits. The lower

bound corresponds to having enough QDs, such that an

additional (elected) QD will not yield an appreciable

reduction in average QD load. The upper bound, on the

other hand, corresponds to a delay threshold, since

traversing a larger number of QDs will lead to higher

response times. Between these limits, the number of QDs

can change dynamically depending on how much of the

QD storage capacity is used. In the simulations performed

in this work, the number of QDs averaged.

5. Handling CN and QD Disconnections:

It is fair to assume that CNs and QDs will go

offline from time to time either temporarily or

permanently. In either case, DCIM should react efficiently

to keep the system running: it does not attempt to

proactively account for CN or QD disconnections, but

rather, it reacts to these events by relying on the QDs to

detect when CNs go offline. In case of a query hit, the QD

will always try to forward the data request to the CN, and

consequently any routing protocol will return a route error

if no route can be established to the CN. This will indicate

 International Journal of Engineering Research in Computer Science and

Engineering (IJERCSE) Vol 3, Issue 6, June 2016

 31

that the CN is not reachable or equivalently disconnected.

In such a case, the QD instructs the RN to request the item

from the external data source as it would do in a case of a

data miss. As a result, the RN would become a CN for this

item in particular, and the QD will mark this entry as

invalid. All the QDs behave similarly for each request they

receive for items cached in offline CNs. When a CN

rejoins the network, it broadcasts a HELLO message as

any new node joining the network would do.

VII. CONCLUSION

We presented a client-based cache consistency

scheme for MANETs that relies on estimating the inter

update intervals of data items to set their expiry time. It

makes use of piggybacking and prefetching to increase the

accuracy of its estimation to reduce both traffic and query

delays. We compared this approach to two pull-based

approaches (fixed TTL and client polling) and to two

server-based approaches (SSUM and UIR). This showed

that DCIM provides a better overall performance than the

other client based schemes and comparable performance to

SSUM. For future work, we will explore three directions to

extend DCIM. First, we will investigate more sophisticated

TTL algorithms to replace the running average formula.

Second, we will extend our preliminary work in to develop

a complete replica allocation. Third, DCIM assumes that

all nodes are well behaved, as issues related to security

were not considered. However, given the possibility of

network intrusions, we will explore integrating appropriate

security measures into the system functions. These

functions include the QD election procedure, QD traversal,

QD and CN information integrity, and TTL monitoring and

calculation. The first three can be mitigated through

encryption and trust schemes

REFERENCES

 [1] Min Yang, Yuanyuan Yang., “An Efficient Hybrid

Peer-to-Peer System for Distributed Data Sharing “ IEEE

transaction on Computers, Vol. 59, no.9, September 2010.

[2] E. Cohen, S. Shenker,” Replication strategies in

unstructured peerto-

peer network’s”, in: Proc. of ACM SIGCOMM, 2002

 [3] H. Artail, H. Safa, K. Mershad, Z. Abou-Atme, and N.

Sulieman, “COACS: A Cooperative and Adaptive Caching

System for MANETS,” IEEE Trans. Mobile Computing,

vol. 7, no. 8, pp. 961- 977, Aug. 2008.

[4] D. Barbara and T. Imielinski, “Sleepers and

Workaholics: Caching Strategies for Mobile

Environments,” Proc. ACM SIGMOD, pp. 1- 12, May

1994.

[5] G. Cao, “A Scalable Low-Latency Cache Invalidation

Strategy for Mobile Environments,” IEEE Trans.

Knowledge and Data Eng., vol. 15, no. 5, pp. 1251-1265,

Sept./Oct. 2003.

 [6] J. Cao, Y. Zhang, G. Cao, and X. Li, “Data

Consistency for Cooperative Caching in Mobile

Environments,” Computer, vol. 40, no. 4, pp. 60-66, 2007.

[7] P. Cao and C. Liu, “Maintaining Strong Cache

Consistency in the World-Wide Web,” IEEE Trans.

Computers, vol. 47, no. 4, pp. 445- 457, Apr. 1998.

[8] Y. Huang, J. Cao, Z. Wang, B. Jin, and Y. Feng,

“Achieving Flexible Cache Consistency for Pervasive

Internet Access,” Proc. IEEE Fifth Ann. Int’l Conf.

Pervasive Computing and Comm., pp. 239- 250, 2007.

[9] J. Jung, A.W. Berger, and H. Balakrishnan, “Modeling

TTL-Based Internet Caches,” Proc. IEEE INFOCOM, Mar.

2003.

[10] B. Krishnamurthy and C. Wills, “Study of Piggyback

Cache Validation for Proxy Caches in the World Wide

Web,” Proc. USENIX Symp. Internet Technologies and

Systems, Dec. 1997.

[11] J. Lee, K. Whang, B. Lee, and J. Chang, “An Update-

Risk Based Approach to TTL Estimation in Web

Caching,” Proc. Third Int’l Conf. Web Information

Systems Eng. (WISE ’02), pp. 21-29, 2002.

[12] K.S. Khurana, S. Gupta, and P. Srimani, “A Scheme

to Manage Cache Consistency in a Distributed Mobile

Wireless Environment,” IEEE Trans. Parallel and

Distributed Systems, vol. 12, no. 7, pp. 686-700, 2001.

 [13] X. Tang, J. Xu, and W-C. Lee, “Analysis of TTL-

Based Consistency in Unstructured Peer-to-Peer

Networks,” IEEE Trans. Parallel and Distributed Systems,

vol. 19, no. 12, pp. 1683-1694, Dec. 2008.

 [14] Y. Sit, F. Lau, and C-L. Wang, “On the Cooperation

of Web Clients and Proxy Caches,” Proc. 11th Int’l Conf.

Parallel and Distributed Systems, pp. 264- 270, July 2005.

[15] U.A. Ninan, M. Raunak, P. Shenoy, and K.

Ramamritham, “Maintaining Mutual Consistency for

Cached Web Objects,” Proc. 21st Int’l Conf. Distributed

Computing Systems, p. 371, 2001.

