
ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 3, Issue 6, June 2016

 146

Scratchpad

[1]
Vishwesh J

[2]
Neethi M V

[1]
Assistant Professor, Computer Science Department,

GSSS Institute of Engineering & Technology for Women, Mysuru, Karnataka, India -570016
[2]

Student, M.Tech, CCT branch, University of Mysore, Mysore

Abstract - Scratchpad is a high-speed internal memory used for temporary storage of calculations data and other work in progress.

Scratchpad refers to a special high speed memory used to hold small items of data for rapid retrieval and these are employed for

simplification of caching logic. In this paper the scratchpad algorithm is designed to hold a value temporarily and for faster results

LUT is considered. The whole algorithm is designed by considering LUT as a case study

Each time loop continues and the execution of the internal operations are concurrently stored in scratchpad, in this paper

if the sum value is greater than 9 than the value which is stored in 10
th

 position is sent to the variable C, all the values which are

stored in C is again stored in Temp before the value in C is overwritten.

Index Terms—Scratchpad, LUT

I. INTRODUCTION

Scratchpad is a temporary memory which has high

speed for data retrieval. It is a very fast intermediate storage

which often supplements main core memory. Scratch-pad

memories are small but very fast and tightly coupled

memories, typically ranging from 4kB to 1MB in size.

Unlike caches, transfer of data to and from these scratch-pad

memories is under explicit software control.

It is well known that processor speeds are

increasing at a significantly faster rate than external memory

chips. This has led to increasing costs for memory accesses

relative to processor clock rate, a phenomenon sometimes

known as the memory wall. Since most applications exhibit

temporal locality in data access patterns, memory access

overheads can be significantly reduced by storing an

application’s working set in a smaller but much faster on-

chip memory. Many architectures structure this on-chip

memory as a cache, where movement of data between on-

and off-chip memories is under hardware control. Caches

perform very well under most situations, conveniently

hiding the non-uniformity of the memory system from

software, while decreasing average memory access latency.

However, caches suffer from a number of penalties

compared with non-associative memories, such as increased

silicon area and energy requirements, increased access

latency, complex coherency mechanisms for multi-core

systems, and lack of real-time guarantees due to potential

cache misses. These factors have led a number of processor

architectures to provide explicit access to on-chip memory,

in the form of scratch-pad memory.

They can be found in embedded and real-time

processor architectures where they have been found to not

only reduce power and silicon area requirements compared

to an equivalent cache, but also potentially increase run-time

performance. Mutli-core processors, especially

heterogeneous architectures have also begun to incorporate

scratch-pad memories in their designs.

A lookup table (LUT) is an array that replaces

runtime computation with a simpler array indexing

operation. The savings in terms of processing time can be

significant, since retrieving a value from memory is often

faster. The tables may be pre-calculated and stored in static

program storage, calculated as part of a program's

initialization phase, or even stored in hardware in

application-specific platforms. Lookup tables are also used

extensively to validate input values by matching against a

list of valid (or invalid) items in an array.

Scratchpad is a memory array with decoding and

the column circuitry logic. Considering LUT this scratchpad

is designed to hold the values which we obtain in 10
th

position during the calculations. The assumption here is that

scratchpad memory occupies one unit of memory to store

the value with respect to LUT. The scratchpad is used to

store the values which exceeds 9(LUT considered is of size

9*9) to store the temporary values during calculations.

http://en.wikipedia.org/wiki/Array_data_structure

 ISSN (Online) 2394-2320

 International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 3, Issue 6, June 2016

 147

II. LOOKUP TABLE CASE STUDY (LUT)

In computer science, a lookup table is an array that

replaces runtime computation with a simpler array indexing

operation. The savings in terms of processing time can be

significant. The tables may be pre calculated and stored in

static program storage, calculated (or "pre-fetched") as part

of a program's initialization phase (memorization), or even

stored in hardware in application-specific platforms. Lookup

tables are also used extensively to validate input values by

matching against a list of valid (or invalid) items in an array

and, in some programming languages, may include pointer

functions (or offsets to labels) to process the matching input.

Before the advent of computers, lookup tables of

values were used by people to speed up hand calculations of

complex functions, such as in trigonometry, logarithms, and

statistical density functions

Early in the history of computers, input/output

operations were particularly slow – even in comparison to

processor speeds of the time. It made sense to reduce

expensive read operations by a form of manual caching by

creating either static lookup tables (embedded in the

program) or dynamic pre-fetched arrays to contain only the

most commonly occurring data items. Despite the

introduction of system wide caching that now automates this

process, application level lookup tables can still improve

performance for data items that rarely, if ever, change.

This is known as a linear search or brute-force

search, each element being checked for equality in turn and

the associated value, if any, used as a result of the search.

This is often the slowest search method unless frequently

occurring values occur early in the list. For a one

dimensional array or linked list, the lookup is usually to

determine whether or not there is a match with an 'input'

data value.

Storage caches (including disk caches for files or

processor caches for either code or data) work also like a

lookup table. The table is built with very fast memory

instead of being stored on slower external memory, and

maintains two pieces of data for a sub range of bits

composing an external memory (or disk) address (notably

the lowest bits of any possible external address).

The LUT which we have considered in this paper is

represented as shown below.

Lookup Table (LUT)

 1 2 3 4 5 6 7 8 9
1 1 2 3 4 5 6 7 8 9
2 4 6 8 10 12 14 16 18

3 9 12 15 18 21 24 27

4 `16 20 24 28 32 36
5 25 30 35 40 45
6 36 42 48 54
7 49 56 63
8 64 72
9 81

Table 1 Lookup Table

LUT from the memory address to read or write, then

the other piece contains the cached value for this address

one piece (the tag) contains the value of the remaining bits

of the address; if these bits match with. The other piece

maintains the data associated to that address.

A single (fast) lookup is performed to read the tag in

the lookup table at the index specified by the lowest bits of

the desired external storage address, and to determine if the

memory address is hit by the cache. When a hit is found, no

access to external memory is needed (except for write

operations, where the cached value may need to be updated

asynchronously to the slower memory after some time, or if

the position in the cache must be replaced to cache another

address).

In this table best case is used to find out minimum

numbers i.e. <10 numbers. it used take at least 1-9 numbers.

These case only one times the execution takes place

.because it checks only one times the conditions and comes

out of the loop.

In worst case it maximum 9x9 i.e. up to last values.

They used to check 45 position still the required value is

found.

III. ALGORITHM

In this paper LUT is referred as case study to perform

the calculations to store the values in temporary buff .The

algorithm for scratchpad based on the concept of LUT is

designed as follows

 ISSN (Online) 2394-2320

 International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 3, Issue 6, June 2016

 148

1. Algorithm: design scratchpad (LUT case study)

2. Sum ()

3. {

4. Int sum;

5. Int c=0;

6. While (sum>=10)

7. Sum=sum-10;

8. C=c+1;

9.}

10. Temp[i] =c;

Listing 1 Algorithm for Scratchpad

 The algorithm works as follows, each time it

checks the conditions based on the LUT the positions to be

identified & get the values if the values exceeds the

condition it perform specified calculations until loop ends.

In this algorithm we have initialized sum to 0,and here C

stands for carry during calculation if carry occurs i.e., the

value in the 10
th

 position is stored in the variable C and it is

also initialized to 0, Here it first checks for the condition

whether the sum which is obtained is greater than 9, if it is

greater than it goes into the loop than checks for the

condition if it is satisfied than it enters the loop than

executes the statement sum=sum-10,after each execution of

this statement the value of c is incremented this executes

until the condition is dissatisfied and finally the value which

is stored in C is sent to TEMP which holds all the values of

C. In this way the scratchpad is designed.

 The loop will be executed n+1 times because in

best-case it executed only one time when conditions fails

that will not executed. In every calculations (add, mul, sub,

div) the conditions the loop executed as number of times

until get the result. When the re∑∑quires sum>10 according

to LUT table then it goes to be next stage of operations i.e.

sum=sum-10, this condition continues the execution until

the last value will be found. It may get the carry and it adds

up with the next one. It continues sane execution until the

final result. This algorithm calculates the sum &internal

operations are stored in temporary buff called scratchpad.

The algorithm flow can be explained by taking an

example

1. Taking 2 arrays for addition

A[i] =838

B[i] =445

2. The array of numbers are added and stores the result in

sum array

Sum[i] =A[i] +B[i]

Sum[i] =8+5=13

Sum[i] =13

If the sum not exceeds >10 keep that as

sum. 3. Each iteration the for loop check the

condition i.e.

While

(sum[i]>=10)

While (13>=10)

yes Then

Subtract the s um[i] =sum[i]-

10 Temp[i] =13-10=3

Return 1 for next iteration

Then sum[i] =3 loop

continues

4. Next c=c+1 for next position. Loop continues

execution until n-1 iterations.

IV.ANALYSIS OF ALGORITHM

The analysis of algorithm is the determination of

the amount of resources (such as time and storage)

necessary to execute them. Most algorithms are designed to

work with inputs of arbitrary length. Usually, the efficiency

or running time of an algorithm is stated as a function

relating the input length to the number of steps (time

complexity) or storage locations (space

complexity).Algorithm analysis is an important part of a

broader computational complexity theory, which provides

theoretical estimates for the resources needed by any

algorithm which solves a given computational problem.

Exact (not asymptotic) measures of efficiency can

sometimes be computed but they usually require certain

assumptions concerning the particular implementation of the

algorithm, called model of computation.

The algorithm of the scratchpad is analysed based

on the time efficiency, based on the efficiency we can

analyse whether the algorithm is efficient or not if its takes

minimum time than the algorithm is efficient. In order to

analyse the algorithm usually two algorithms are considered

and those two are compared with time and space efficiencies

which take the minimum time and space it is considered as

efficient.

 ISSN (Online) 2394-2320

 International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 3, Issue 6, June 2016

 149

The time constraint of the scratchpad algorithm is

found in the following way.

Algorithm Time Frequency

While(sum>=10) 1 n+1

Sum=sum-10; 2 n

C=c+1; 2 n

Table 2 Time Constraint

Tα1*(n+1) +2n+2n
Tα5n+1

Time complexity of the entire algorithm is

given by O(max{n})=O(n)
The time which we have computed is called as detailed

computing time.

a. Analysis of Best-case and Worst-case Efficiencies

According to the prior analysis the efficiency of

the algorithm with respect to time is calculated it can be

represented by using graph by taking various values for n.

The time efficiency obtained is 5n+1 this has to

be analysed through various values to know the best case

worst case and the average case of the algorithm designed

it is based on the concept of LUT.

The best case of the algorithm is n=1 for T αΏ

(5n+1) its uses minimum time,

The worst case of the algorithm is for the value of

n=16 i.e., T αO (5n+1) which requires more time hence it

uses more resources and

Average case of the designed algorithm is when

n=6 i.e., T α Θ (5n+1).the efficiency of all the cases is

plotted using the graph.

Figure 1 Graph of best average and worst case of prior

values

The best case of the algorithm is for the value n=1

f (n) α Ώ(1)

And the worst-case is

f (n) α O(n)

 According to the posterior analysis the best and

worst cases are measured by

 If the first comparison itself of the program gives

output saving all other comparisons time then it will be the

best case

f (n) α Ώ(1)

 Worst-case of the algorithm gives an upper bound

on the resources required by the algorithm. The worst-case

is given by

 f (n) =1. i=0∑ n-1

After solving this we obtain f (n) α O (n). It is represented

by graph as shown below

Figure 2 Efficiency graph for posterior result

 ISSN (Online) 2394-2320

 International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 3, Issue 6, June 2016

 150

For both prior and posterior analysis the results are same

i.e.,

f (n) α O (n).

V.CONCLUSION

 In this paper we have proposed the scratchpad to

hold the values temporarily here we have built the

scratchpad algorithm by considering LUT case study. The

LUT which we have considered is of size 9*9 and whenever

the value more than 9 occurs than the scratchpad is used to

hold the value which is in 10
th

 position. This scratchpad

holds the temporary value for different calculations like

addition, subtraction, multiplication and division operations

and thus time constraint can be minimized.

REFERENCES

[1] Joe Sventek, Poler Dickman, Roes Mcllory. “Efficient

Dynamic Heap Allocation of Scratchpad Memory in

Embeded systems.” University of Glasgow,UK

[2] Anany Levitin.”Introduction to the Design and

Analysis of Algorithms,” University of Villanova,

2003.

[3] Angel Dominguez, Rajeev Barua, Sumesh

Udaykumaran. “Heap Data Allocation to Scratchpad

Memory in Embeded Systems.”

