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Abstract -  Data analysis and machine learning have given the ability to improve customer service, update business processes, 

allocate limited resources more efficiently, and more. At the same time, there are significant (and growing) concerns about 

individual privacy. The solution is data anonymization but it produces information loss. In search of better privacy and accuracy, 

we combined the concept of differential privacy with FP –growth algorithm which is known for its effective frequent utility item set 

mining algorithm and construct a PFP-Growth algorithm. Our proposed work reduce the information loss and computation 

overhead in the mining process making it better compare with other mining process.  

 

Index Terms — Data Privacy, Differential Privacy, Utility Item sets 

 

 

I. INTRODUCTION 

An emerging topic in the field of data mining is 

Utility Mining. The main objective of Utility Mining is to 

identify the item sets with highest utilities, by considering 

profit, quantity, cost or other user preferences. Mining 

High Utility item sets from a transaction database is to 

find item sets that have utility above a user-specified 

threshold. Item set Utility Mining is an extension of 

Frequent Item set mining, which discovers item sets that 

occur frequently. In many real-life applications, high-

utility item sets consist of rare items. Rare item sets 

provide useful information in different decision-making 

domains such as business transactions, medical, security, 

fraudulent transactions and retail communities. 

 

Despite valuable insights the discovery of 

frequent item sets can potentially provide, if the data is 

sensitive (e.g., web browsing history and medical 

records), releasing the discovered frequent item sets might 

pose considerable threats to individual privacy.  

 

Data anonymization is a type of information 

sanitization whose intent is privacy protection. It is the 

process of either encrypting or removing personally 

identifiable information from data sets, so that the people 

whom the data describe remain anonymous. Data 

anonymization enables the transfer of information across 

a boundary, such as between two departments within an 

agency or between two agencies, while reducing the risk 

of unintended disclosure, and in certain environments in a 

manner that enables evaluation and analytics post-

anonymization. In the context of medical data, 

anonymized data refers to data from which the patient 

cannot be identified by the recipient of the information. 

The name, address, and full post code must be removed 

together with any other information which, in conjunction 

with other data held by or disclosed to the recipient, could 

identify the patient. Fig. 1 explain how K-Anonymity is 

applied over patient record for handling data privacy, first 

tabular column hold unpreserved patient record and Fig.2 

holds the preserved data which doesn’t reveals the users 

identification 

 
Fig.1 Un-Preserved Microdata 

 

 

Unlike the anonymization-based privacy models 

(e.g.,k-anonymity and l-diversity), differential privacy 
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offers strong theoretical guarantees on the privacy of 

released data without making assumptions about an 

attacker’s background knowledge. In particular, by adding 

a carefully chosen amount of noise, differential privacy 

assures that the output of a computation is insensitive to 

changes in any individual’s record, and thus restricting 

privacy leaks through the results. Apart from privacy 

issue the main focus in this paper is on mining item sets. 

A variety of algorithms have been proposed for mining 

frequent item sets. The Apriori and FP-growth are the two 

most prominent ones. 

 
Fig.2 Privacy Preserved Micro data 

 

II. RELATED WORKS 

 

Mining Association rules is one of the 

research problems in data mining. Given a set of 

transactions where each transaction is a set of items, 

an association rule is an expression of the form X => 

Y, where X and Y are sets of items. 

 
Fig.3 Association Rule Mining 

Association rule mining (ARM) is a popular 

technique for finding co-occurrences, correlations, and 

frequent patterns, associations among items in a set of 

transactions or a database. The basic Bottleneck of 

association rule mining is Rare Item Problem. Most 

approaches to mining association rules implicitly consider 

the utilities of the item sets to be equal. The utilities of 

item sets may differ. 

 

The traditional ARM approaches consider the 

utility of the items by its presence in the transaction set. 

The frequency of item set is not sufficient to reflect the 

actual utility of an item set. For example, the sales 

manager may not be interested in frequent item sets that 

do not generate significant profit.  

 

Recently, one of the most challenging data 

mining tasks is the mining of high utility item sets 

efficiently. Identification of the item sets with high 

utilities is called as Utility Mining. The utility can be 

measured in terms of cost, profit or other expressions of 

user preferences. For example, a computer system may be 

more profitable than a telephone in terms of profit. R. 

Agrawal et al in introduced the concept of frequent item 

set mining. Frequent item sets are the item sets that occur 

frequently in the transaction data set. The goal of 

Frequent Item set Mining is to identify all the frequent 

item sets in a transaction dataset. 

 

A. Apriori Algorithm 

Apriori is an algorithm for frequent item set 

mining and association rule learning over transactional 

databases. It proceeds by identifying the frequent 

individual items in the database and extending them to 

larger and larger item sets as long as those item sets 

appear sufficiently often in the database. The frequent 

item sets determined by Apriori can be used to determine 

association rules which highlight general trends in the 

database: this has applications in domains such as market 

basket analysis. Apriori uses breadth-first search and a 

Hash tree structure to count candidate item sets 

efficiently. It generates candidate item sets of length k 

from item sets of length k-1. Then it prunes the candidates 

which have an infrequent sub pattern. According to the 

downward closure lemma, the candidate set contains all 

frequent k-length item sets. After that, it scans the 

transaction database to determine frequent item sets 

among the candidates. 

 

The FP-Growth Algorithm, proposed by Han, is an 

efficient and scalable method for mining the complete set 

of frequent patterns by pattern fragment growth, using an 

extended prefix-tree structure for storing compressed and 

crucial information about frequent patterns named 

frequent-pattern tree (FP-tree). In his study, Han proved 

that his method outperforms other popular methods for 

mining frequent patterns, e.g. the Apriori Algorithm and 

the Tree Projection. In some later works it was proved 

that FP-Growth has better performance than other 

methods, including Eclat and Relim. The popularity and 
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efficiency of FP-Growth Algorithm contributes with 

many studies that propose variations to improve his 

performance. The FP-Growth Algorithm is an alternative 

way to find frequent item sets without using candidate 

generations, thus improving performance. For so much it 

uses a divide-and-conquer strategy. The core of this 

method is the usage of a special data structure named 

frequent-pattern tree (FP-tree), which retains the item set 

association information. 

 
Fig.4 Architecture Diagram 

 

III. PROPOSED WORK 

 

Our proposed system uses the FP-Growth a 

partitioning-based, depth-first search algorithm for mining 

frequent utility item sets. FP-growth depends on two data 

structures, namely header table and FP-tree. For the 

header table, it is used to store items and their supports. 

For the FP-tree, each branch represents an item set and 

each node has a counter. In the header table, each item 

also contains the head of a list which links all the same 

items in the FP-tree. In addition we present our private FP 

-Growth (PFP-growth) algorithm, which consists of a 

preprocessing phase and a mining phase. In the 

preprocessing phase, we transform the database to limit 

the length of transactions. The preprocessing phase is 

irrelevant to user specified thresholds and needs to be 

performed only once for a given database.  

 

We also propose three key methods to address 

the challenges in designing a differentially private FIM 

algorithm based on the FP-growth algorithm. to limit the 

length of transactions without introducing much 

information loss, we propose our smart splitting method. 

Moreover, to offset the information loss caused by 

transaction splitting, a run-time estimation method is used 

to estimate the actual support of item sets in the mining 

process. Furthermore, to lower the amount of added noise, 

we develop a dynamic reduction method which 

dynamically reduces the sensitivity of support 

computations by decreasing the upper bound on the 

number of support computations. In the rest of this 

section, we discuss the details of the methods. 

 

A. FP-Growth 

The FP-Growth Algorithm is an alternative way 

to find frequent item sets without using candidate 

generations, thus improving performance. For so much it 

uses a divide-and-conquer strategy. The core of this 

method is the usage of a special data structure named 

frequent-pattern tree (FP-tree), which retains the item set 

association information which is shown in fig.5. The FP-

Growth reduces the search costs looking for short patterns 

recursively and then concatenating them in the long 

frequent patterns, offering good selectivity.  

 

 
Fig.5 Header Table and FP-Tree 

 

The frequent-pattern tree (FP-tree) is a compact 

structure that stores quantitative information about 

frequent patterns in a database. Han defines the FP-tree as 

the tree structure defined follows. Initially one root 

labeled as “null” with a set of item-prefix subtrees as 

children, and a frequent-item-header table (presented in 

the left side of Fig. 5), then each node in the item-prefix 

subtree consists of three fields: first Item-name: registers 

which item is represented by the node; second is  Count: 

the number of transactions represented by the portion of 

the path reaching the node; third is Node-link: links to the 

next node in the FP-tree carrying the same item-name, or 

null if there is none. Each entry in the frequent-item-

header table consists of two fields: first is Item-name: as 

the same to the node and second is Head of node-link: a 

pointer to the first node in the FP-tree carrying the item-

name. Additionally the frequent-item-header table can 

have the count support for an item. the Fig. 4 show an 

example of a FP-tree. The simple working process is 

show in the Fig. 6 below. 
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Fig.6 FP-Growth 

 

B. Smart Splitting 

To improve the utility-privacy tradeoff, we argue 

that long transactions should be split rather than 

truncated. That is, we transform the database by dividing 

long transactions into multiple subsets each of which 

meets the maximal length constraint. When we divide a 

long transaction, we assign a weight to each generated 

subset. The weight of a subset indicates the change to the 

support of an item set when adding (removing) this subset 

into (from) the database. It can be considered as a 

multiplier. Due to the weighted splitting operation, each 

subset of the divided transactions only preserves 

incomplete frequency information. To offset such 

information loss, we propose a run-time estimation 

method 

 

C. Run-Time Estimation 

Despite the potential advantages, transaction 

splitting might cause information loss. To offset the 

information loss caused by transaction splitting we use 

run-time estimation. The method consists of two steps: 

based on the noisy support of an item set in the 

transformed database, 1) we first estimate its actual 

support in the transformed database, and 2) then we 

further compute its actual support in the original database. 

For each item set, we estimate its “average” support to 

determine whether it is frequent. We also estimate its 

“maximal” support to decide whether to use it to generate 

candidate frequent item sets. 

 

D.  Dynamic Reduction 

For FP-growth, it is a depth-first search 

algorithm. We cannot obtain the exact number of support 

computations in Qi until the mining process is finished. A 

potential approach is to modify FP-growth to enforce 

frequent item sets of the same length to be generated 

simultaneously, such that we can use frequent (i-1)-item 

sets to obtain the exact number of support computations 

in Qi. This approach, however, will lead to exponential 

memory use. Instead, we propose our lightweight 

dynamic reduction method. As the method is performed 

in the mining process, we should ensure the method 

would not incur much computational overhead. Our main 

idea is to leverage the downward closure property (i.e., 

the supersets of an infrequent item set are infrequent), and 

dynamically reduce the sensitivity of support 

computations by decreasing the upper bound on the 

number of support computations. 

 

A simple data structure up-array is used to 

register the upper bounds on the number of support 

computations. We initialize up-array to the number of all 

possible i-item sets. we construct the conditional pattern 

base of item set Based on the header table, we can see the 

set of items which might appear in the conditional pattern 

base. For each item in set, we first compute its noisy 

support in conditional pattern base. Then, based on the 

obtained noisy support, by using our run-time estimation 

method, we estimate the “maximal” support of item set. If 

the estimated “maximal” support is smaller than the 

threshold, we regard item as infrequent items in 

conditional pattern base. Next, we decrease the upper 

bounds based on the infrequent items found in conditional 

pattern base. 

 

 

 

 

IV. CONCLUSION 

 

In this paper we propose our private FP-growth 

algorithm, for mining frequent utility item sets in privacy 

preserved manner. Our process consists of a 

preprocessing phase and a mining phase. In the 

preprocessing phase, to better improve the utility-privacy 

tradeoff, we devise a smart splitting method to transform 

the database. In the mining phase, a run-time estimation 



 

International Journal of Engineering Research in Computer Science and 

Engineering (IJERCSE) Vol 3, Issue 6, June 2016 

  

                                                                  93 

 

method is proposed to offset the information loss incurred 

by transaction splitting. Moreover, by leveraging the 

downward closure property, we put forward a dynamic 

reduction method to dynamically reduce the amount of 

noise added to guarantee privacy during the mining 

process. 
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