

International Journal of Engineering Research in Computer Science and

Engineering (IJERCSE) Vol 3, Issue 6, June 2016

 89

Differentially Private Frequent Item Set Mining

[1] A.Kamatchi,

[2]
 S. Sheik Faritha Begum,

[3]
 A. Rajesh

[1]
Post Graduate Scholar, Computer Science and Engineering, C.Abdul Hakeem College of Engineering and

Technology,Vellore,
[2]

Research Scholar, Bharath University, Chennai,
[3]

 Professor, C.Abdul Hakeem College of Engineering and Technology,Vellore.

Abstract - Data analysis and machine learning have given the ability to improve customer service, update business processes,

allocate limited resources more efficiently, and more. At the same time, there are significant (and growing) concerns about

individual privacy. The solution is data anonymization but it produces information loss. In search of better privacy and accuracy,

we combined the concept of differential privacy with FP –growth algorithm which is known for its effective frequent utility item set

mining algorithm and construct a PFP-Growth algorithm. Our proposed work reduce the information loss and computation

overhead in the mining process making it better compare with other mining process.

Index Terms — Data Privacy, Differential Privacy, Utility Item sets

I. INTRODUCTION

An emerging topic in the field of data mining is

Utility Mining. The main objective of Utility Mining is to

identify the item sets with highest utilities, by considering

profit, quantity, cost or other user preferences. Mining

High Utility item sets from a transaction database is to

find item sets that have utility above a user-specified

threshold. Item set Utility Mining is an extension of

Frequent Item set mining, which discovers item sets that

occur frequently. In many real-life applications, high-

utility item sets consist of rare items. Rare item sets

provide useful information in different decision-making

domains such as business transactions, medical, security,

fraudulent transactions and retail communities.

Despite valuable insights the discovery of

frequent item sets can potentially provide, if the data is

sensitive (e.g., web browsing history and medical

records), releasing the discovered frequent item sets might

pose considerable threats to individual privacy.

Data anonymization is a type of information

sanitization whose intent is privacy protection. It is the

process of either encrypting or removing personally

identifiable information from data sets, so that the people

whom the data describe remain anonymous. Data

anonymization enables the transfer of information across

a boundary, such as between two departments within an

agency or between two agencies, while reducing the risk

of unintended disclosure, and in certain environments in a

manner that enables evaluation and analytics post-

anonymization. In the context of medical data,

anonymized data refers to data from which the patient

cannot be identified by the recipient of the information.

The name, address, and full post code must be removed

together with any other information which, in conjunction

with other data held by or disclosed to the recipient, could

identify the patient. Fig. 1 explain how K-Anonymity is

applied over patient record for handling data privacy, first

tabular column hold unpreserved patient record and Fig.2

holds the preserved data which doesn’t reveals the users

identification

Fig.1 Un-Preserved Microdata

Unlike the anonymization-based privacy models

(e.g.,k-anonymity and l-diversity), differential privacy

International Journal of Engineering Research in Computer Science and

Engineering (IJERCSE) Vol 3, Issue 6, June 2016

 90

offers strong theoretical guarantees on the privacy of

released data without making assumptions about an

attacker’s background knowledge. In particular, by adding

a carefully chosen amount of noise, differential privacy

assures that the output of a computation is insensitive to

changes in any individual’s record, and thus restricting

privacy leaks through the results. Apart from privacy

issue the main focus in this paper is on mining item sets.

A variety of algorithms have been proposed for mining

frequent item sets. The Apriori and FP-growth are the two

most prominent ones.

Fig.2 Privacy Preserved Micro data

II. RELATED WORKS

Mining Association rules is one of the

research problems in data mining. Given a set of

transactions where each transaction is a set of items,

an association rule is an expression of the form X =>

Y, where X and Y are sets of items.

Fig.3 Association Rule Mining

Association rule mining (ARM) is a popular

technique for finding co-occurrences, correlations, and

frequent patterns, associations among items in a set of

transactions or a database. The basic Bottleneck of

association rule mining is Rare Item Problem. Most

approaches to mining association rules implicitly consider

the utilities of the item sets to be equal. The utilities of

item sets may differ.

The traditional ARM approaches consider the

utility of the items by its presence in the transaction set.

The frequency of item set is not sufficient to reflect the

actual utility of an item set. For example, the sales

manager may not be interested in frequent item sets that

do not generate significant profit.

Recently, one of the most challenging data

mining tasks is the mining of high utility item sets

efficiently. Identification of the item sets with high

utilities is called as Utility Mining. The utility can be

measured in terms of cost, profit or other expressions of

user preferences. For example, a computer system may be

more profitable than a telephone in terms of profit. R.

Agrawal et al in introduced the concept of frequent item

set mining. Frequent item sets are the item sets that occur

frequently in the transaction data set. The goal of

Frequent Item set Mining is to identify all the frequent

item sets in a transaction dataset.

A. Apriori Algorithm

Apriori is an algorithm for frequent item set

mining and association rule learning over transactional

databases. It proceeds by identifying the frequent

individual items in the database and extending them to

larger and larger item sets as long as those item sets

appear sufficiently often in the database. The frequent

item sets determined by Apriori can be used to determine

association rules which highlight general trends in the

database: this has applications in domains such as market

basket analysis. Apriori uses breadth-first search and a

Hash tree structure to count candidate item sets

efficiently. It generates candidate item sets of length k

from item sets of length k-1. Then it prunes the candidates

which have an infrequent sub pattern. According to the

downward closure lemma, the candidate set contains all

frequent k-length item sets. After that, it scans the

transaction database to determine frequent item sets

among the candidates.

The FP-Growth Algorithm, proposed by Han, is an

efficient and scalable method for mining the complete set

of frequent patterns by pattern fragment growth, using an

extended prefix-tree structure for storing compressed and

crucial information about frequent patterns named

frequent-pattern tree (FP-tree). In his study, Han proved

that his method outperforms other popular methods for

mining frequent patterns, e.g. the Apriori Algorithm and

the Tree Projection. In some later works it was proved

that FP-Growth has better performance than other

methods, including Eclat and Relim. The popularity and

International Journal of Engineering Research in Computer Science and

Engineering (IJERCSE) Vol 3, Issue 6, June 2016

 91

efficiency of FP-Growth Algorithm contributes with

many studies that propose variations to improve his

performance. The FP-Growth Algorithm is an alternative

way to find frequent item sets without using candidate

generations, thus improving performance. For so much it

uses a divide-and-conquer strategy. The core of this

method is the usage of a special data structure named

frequent-pattern tree (FP-tree), which retains the item set

association information.

Fig.4 Architecture Diagram

III. PROPOSED WORK

Our proposed system uses the FP-Growth a

partitioning-based, depth-first search algorithm for mining

frequent utility item sets. FP-growth depends on two data

structures, namely header table and FP-tree. For the

header table, it is used to store items and their supports.

For the FP-tree, each branch represents an item set and

each node has a counter. In the header table, each item

also contains the head of a list which links all the same

items in the FP-tree. In addition we present our private FP

-Growth (PFP-growth) algorithm, which consists of a

preprocessing phase and a mining phase. In the

preprocessing phase, we transform the database to limit

the length of transactions. The preprocessing phase is

irrelevant to user specified thresholds and needs to be

performed only once for a given database.

We also propose three key methods to address

the challenges in designing a differentially private FIM

algorithm based on the FP-growth algorithm. to limit the

length of transactions without introducing much

information loss, we propose our smart splitting method.

Moreover, to offset the information loss caused by

transaction splitting, a run-time estimation method is used

to estimate the actual support of item sets in the mining

process. Furthermore, to lower the amount of added noise,

we develop a dynamic reduction method which

dynamically reduces the sensitivity of support

computations by decreasing the upper bound on the

number of support computations. In the rest of this

section, we discuss the details of the methods.

A. FP-Growth

The FP-Growth Algorithm is an alternative way

to find frequent item sets without using candidate

generations, thus improving performance. For so much it

uses a divide-and-conquer strategy. The core of this

method is the usage of a special data structure named

frequent-pattern tree (FP-tree), which retains the item set

association information which is shown in fig.5. The FP-

Growth reduces the search costs looking for short patterns

recursively and then concatenating them in the long

frequent patterns, offering good selectivity.

Fig.5 Header Table and FP-Tree

The frequent-pattern tree (FP-tree) is a compact

structure that stores quantitative information about

frequent patterns in a database. Han defines the FP-tree as

the tree structure defined follows. Initially one root

labeled as “null” with a set of item-prefix subtrees as

children, and a frequent-item-header table (presented in

the left side of Fig. 5), then each node in the item-prefix

subtree consists of three fields: first Item-name: registers

which item is represented by the node; second is Count:

the number of transactions represented by the portion of

the path reaching the node; third is Node-link: links to the

next node in the FP-tree carrying the same item-name, or

null if there is none. Each entry in the frequent-item-

header table consists of two fields: first is Item-name: as

the same to the node and second is Head of node-link: a

pointer to the first node in the FP-tree carrying the item-

name. Additionally the frequent-item-header table can

have the count support for an item. the Fig. 4 show an

example of a FP-tree. The simple working process is

show in the Fig. 6 below.

International Journal of Engineering Research in Computer Science and

Engineering (IJERCSE) Vol 3, Issue 6, June 2016

 92

Fig.6 FP-Growth

B. Smart Splitting

To improve the utility-privacy tradeoff, we argue

that long transactions should be split rather than

truncated. That is, we transform the database by dividing

long transactions into multiple subsets each of which

meets the maximal length constraint. When we divide a

long transaction, we assign a weight to each generated

subset. The weight of a subset indicates the change to the

support of an item set when adding (removing) this subset

into (from) the database. It can be considered as a

multiplier. Due to the weighted splitting operation, each

subset of the divided transactions only preserves

incomplete frequency information. To offset such

information loss, we propose a run-time estimation

method

C. Run-Time Estimation

Despite the potential advantages, transaction

splitting might cause information loss. To offset the

information loss caused by transaction splitting we use

run-time estimation. The method consists of two steps:

based on the noisy support of an item set in the

transformed database, 1) we first estimate its actual

support in the transformed database, and 2) then we

further compute its actual support in the original database.

For each item set, we estimate its “average” support to

determine whether it is frequent. We also estimate its

“maximal” support to decide whether to use it to generate

candidate frequent item sets.

D. Dynamic Reduction

For FP-growth, it is a depth-first search

algorithm. We cannot obtain the exact number of support

computations in Qi until the mining process is finished. A

potential approach is to modify FP-growth to enforce

frequent item sets of the same length to be generated

simultaneously, such that we can use frequent (i-1)-item

sets to obtain the exact number of support computations

in Qi. This approach, however, will lead to exponential

memory use. Instead, we propose our lightweight

dynamic reduction method. As the method is performed

in the mining process, we should ensure the method

would not incur much computational overhead. Our main

idea is to leverage the downward closure property (i.e.,

the supersets of an infrequent item set are infrequent), and

dynamically reduce the sensitivity of support

computations by decreasing the upper bound on the

number of support computations.

A simple data structure up-array is used to

register the upper bounds on the number of support

computations. We initialize up-array to the number of all

possible i-item sets. we construct the conditional pattern

base of item set Based on the header table, we can see the

set of items which might appear in the conditional pattern

base. For each item in set, we first compute its noisy

support in conditional pattern base. Then, based on the

obtained noisy support, by using our run-time estimation

method, we estimate the “maximal” support of item set. If

the estimated “maximal” support is smaller than the

threshold, we regard item as infrequent items in

conditional pattern base. Next, we decrease the upper

bounds based on the infrequent items found in conditional

pattern base.

IV. CONCLUSION

In this paper we propose our private FP-growth

algorithm, for mining frequent utility item sets in privacy

preserved manner. Our process consists of a

preprocessing phase and a mining phase. In the

preprocessing phase, to better improve the utility-privacy

tradeoff, we devise a smart splitting method to transform

the database. In the mining phase, a run-time estimation

International Journal of Engineering Research in Computer Science and

Engineering (IJERCSE) Vol 3, Issue 6, June 2016

 93

method is proposed to offset the information loss incurred

by transaction splitting. Moreover, by leveraging the

downward closure property, we put forward a dynamic

reduction method to dynamically reduce the amount of

noise added to guarantee privacy during the mining

process.

REFERENCE

[1] L. Sweeney, “k-anonymity: A model for protecting

privacy,”Int. J. Uncertainity Fuzziness Knowl.-Base

Syst., vol. 10, no. 5, pp. 557–570, 2002.

[2] C. Zeng, J. F. Naughton, and J.-Y. Cai, “On

differentially private frequent item set mining,” Proc.

VLDB Endowment, vol. 6, no. 1, pp. 25–36, 2012.

[3] J. Vaidya and C. Clifton, “Privacy preserving

association rule mining in vertically partitioned data,”

in Proc. 8th ACM SIGKDD Int. Conf. Knowl.

Discovery Data Mining, pp. 639–644, 2002.

[4] M. Kantarcioglu and C. Clifton, “Privacy-preserving

distributed mining of association rules on horizontally

partitioned data,” IEEE Trans. Knowl. Data Eng., vol.

16, no. 9, pp. 1026–1037, Sep. 2004.

[5] R. Bhaskar, S. Laxman, A. Smith, and A. Thakurta,

“Discovering frequent patterns in sensitive data,” in

Proc. 16th ACM SIGKDD Int. Conf. Knowl.

Discovery Data Mining, pp. 503–512, 2010.

[6] N. Li, W. Qardaji, D. Su, and J. Cao, “Privbasis:

Frequent item set mining with differential

privacy,”Proc. VLDB Endowment, vol. 5, no. 11, pp.

1340–1351, 2012.

[7] F. McSherry and K. Talwar, “Mechanism design via

differential privacy,” inProc. 48th Annu. IEEE Symp.

Found. Comput. Sci., pp. 94–103, 2007.

[8] C. Dwork, F. McSherry, K. Nissim, and A. Smith,

“Calibrating noise to sensitivity in private data

analysis,” inProc. 3rd Conf. Theory Cryptography, pp.

265–284, 2006.

[9] X. Zhang, X. Meng, and R. Chen, “Differentially

private setvalued data release against incremental

updates,” inProc. 18th Int. Conf Database Syst. Adv.

Appl., pp. 392–406, 2013.

