
International Journal of Engineering Research in Computer Science and

Engineering (IJERCSE) Vol 3, Issue 6, June 2016

 66

An Adaptive Scheduling Technique for Efficient

Task Assignments in Hadoop

[1]

Mr. Jitesh J. Patil,
[2]

 Prof. Rahul Jiwane
[1][2]

Department of Computer Engineering Pillai HOC College of Engineering
[1]

jiteshpatil14me@gmail.com,
 [2]

 rahul_jiwane@yahoo.com

Abstract: The Map Reduce framework and its open source implementation in Hadoop is existing as a standard for Bigdata related

processing in industry and academies. When a bunch of jobs are simultaneously submitted together to a Map Reduce cluster,

bunch of jobs will compete for available resources by this the overall system performance may go down, this is because in Map

Reduce cluster different kinds of workload is shared among multiple users. Existing scheduling algorithms which are supported by

Hadoop always cannot guarantee good average response time with different workloads. Therefore it is a challenging ability to

design an effective scheduler which can work with shared Map Reduce cluster. To solve this problem we proposed a new hadoop

scheduler which works on the different workload patterns and reduces overall job response time by using the knowledge of

workload patterns.. The scheduler will reduce the average job response time that are compared with existing Fair and FIFO

Scheduler.

Keywords—Map Reduce, Hadoop, Scheduling, Timsort

I. INTRODUCTION

Map Reduce has emerged as an important paradigm in

many large-scale data processing applications in modern data

centers. The Map Reduce runtime consists of a single master

process and a large number of slave processes. When a Map

Reduce job is submitted to the runtime, it is split into a large

number of Map and Reduce tasks, which are executed by the

slave nodes. The runtime is responsible for dispatching tasks

to slave nodes and ensuring their completion.

 A Map Reduce job usually splits the input data-set

into independent chunks which are processed by the map

tasks in a completely parallel manner. The framework sorts

the outputs of the maps, which are then input to the reduce

tasks. Typically both the input and the output of the job are

stored in a file system. The framework takes care of

scheduling tasks, monitoring them and re-executes the failed

tasks. Typically the compute nodes and the storage nodes are

the same, that is, the Map Reduce framework and the Hadoop

Distributed File System are running on the same set of nodes.

This configuration allows the framework to effectively

schedule tasks on the nodes where data is already present,

resulting in very high aggregate bandwidth across the cluster.

The Map Reduce framework consists of a single master Job

Tracker and one slave Task Tracker per cluster-node. The

master is responsible for scheduling the jobs' component

tasks on the slaves, monitoring them and re-executing the

failed tasks. The slaves execute the tasks as directed by the

master. Minimally, applications specify the input/output

locations and supply map and reduce functions via

implementations of appropriate interfaces and/or abstract-

classes. These, and other job parameters, comprise the job

configuration. The Hadoop job client then submits the job

(jar/executable etc.) and configuration to the JobTracker

which then assumes the responsibility of distributing the

software/configuration to the slaves, scheduling tasks and

monitoring them, providing status and diagnostic information

to the job-client.

However, Hadoop is still a new framework that

needs to be improved in some aspects. Task Scheduling

technology, one of the key technologies of Hadoop platform,

mainly controls the order of task running and the allocation

of computing resources, which is directly related with overall

performance of the Hadoop platform and system resource

utilization.

Default scheduling algorithm that Hadoop platform

provides is FIFO. The advantages of FIFO include simple

idea and easy to be executed, light workload of job

server,.etc. The disadvantages of FIFO lie in ignoring the

different needs by different operations. For example, if a job

analyzing massive data occupies computing resources for a

long time, then subsequent interactive operations may not be

processed timely. Therefore, this situation may lead to long

response time and affect the user’s experience.

Fair scheduler is proposed to improve the job

response time by assigning all jobs with a equal share of

resources. But there arises problem with the Fair Scheduler

i.e., Fair scheduler makes scheduling decision without

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE) Vol 3, Issue 6, June 2016

 67

considering different types workload pattern by users. To

address the above issues, we are building up a novel Hadoop

scheduler for tasks assignment in Hadoop , which aims to

enhance the average response time of Hadoop systems. The

scheduler will make use of the history information available

of the current user to make the scheduling decisions. To

improve the performance of job completion we are using

Timsort algorithm during sort and shuffle phase(by default

quick sort is used). In this paper further will see: Section II

discusses about existing core scheduling techniques. Section

III discusses about proposed work, implementation details,

introductory definitions and documentations.

II. LITERATURE SURVEY

A. FIFO scheduler

FIFO is the default Hadoop scheduler. The principle

goal of FIFO scheduler to schedule jobs based on their

priorities in first-come first-out of first serve order. FIFO

stands for first in first out which in it Job Tracker pulls oldest

job first from job queue and it doesn't consider about priority

or size of the job. FIFO scheduler have numerous constraints

for example: poor response times for short jobs compared to

large jobs, Low performance when run different sorts of jobs

and it gives good result just for single kind of job. To address

these issues scheduling algorithms such as Fair and Capacity

was introduced.

B. Fair Scheduler

Fair scheduling is a technique of assigning resources

to jobs such that all jobs get, on average, an equivalent offer

of resources over time. In the event that there is a single job

running, the job uses the entire cluster. When other jobs are

submitted, free task slots are alloted to the new jobs, so that

every job gets generally the same measure of CPU time. It

gives short jobs a chance to finish inside a sensible time

while not starving long jobs. The objective of Fair scheduling

algorithm is to do an equivalent conveyance of compute

resources among the users/jobs in the system. The scheduler

really composes jobs by resource pool, and shares resources

reasonably between these pools. As a matter of course, there

is a different pool for each user. The Fair Scheduler can

restrict the quantity of simultaneous running jobs per user

and per pool. Likewise, it can restrict the quantity of

simultaneous running tasks per pool. The traditional

algorithms have high data transfer and the execution time of

jobs. Tao et al. presented an enhanced FAIR scheduling

algorithm, which considers job characteristics and data

locality, which diminishes both data transfer and the

execution time of jobs. Consequently, Fair scheduling can

cover some constraint of FIFO for example, it can function

well in both small and large clusters and less mind boggling.

Fair scheduling algorithm does not consider the job weight of

each node, which is an important limitation of it.

C. Capacity scheduler

The configuration of capacity scheduling algorithm

is fundamentally the same as fair scheduling. In any case, use

of queues instead of pool. Each queue is allocated to an

organization and resources are isolated among these queues.

Scilicet, Capacity scheduling algorithm places jobs into

various queues in accordance with the conditions, and

designates certain system limit for each queue. On the off

chance that a queue has heavy load, it looks for unallocated

resources, then makes redundant resources allocated equally

to each job . For augmenting resource utilization, it permits

re-allocation of resources of free queue to queues using their

full limit. When jobs arrive in that queue, running tasks are

finished and resources are offered back to original queue. It

additionally permits priority based scheduling of jobs in an

organization queue . The capacity scheduler permits users or

organization to simulate a separate Map Reduce cluster with

FIFO scheduling for each user or organization . By and

large,, capacity scheduling algorithm addresses the FIFO’s

disadvantage such as the low utilization rate of resources.

The most complex among three schedulers is a vital issue in

capacity algorithm. The user needs to know system data and

make queue set and queue select group for the job. In a large

system, it will be one of enormous bottleneck of enhancing

the overall performance of the system.

III. IMPLEMENTATION DETAILS

In this section the overview of the system is discuss with

algorithm.

A. System Overview

The following figure 1 shows the architectural view

of the proposed system.

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE) Vol 3, Issue 6, June 2016

 68

Figure 1: System Architecture Job tracker The

essential function of the job tracker is dealing with the task

trackers, tracking resource accessibility. The Job tracker is a

node which controls the job execution process. Job tracker

performs Map Reduce tasks to particular nodes in the cluster.

Client submits jobs to the Job tracker. At the point when the

work is finished, the Job tracker overhauls its status. Client

applications can approach the Job tracker for information.

Workload Information collector It contains the information

about the jobs which are executed through log file such as

task execution time etc. In our case it would be third party

API which provides live metrics of job and their details.

Scheduler It is responsible for scheduling jobs . Task tracker

It takes after the orders of the job tracker and overhauling the

job tracker with its status intermittently. Task tracker run

tasks and send the reports to Job tracker, which keeps a

complete record of each job. Every Task tracker is designed

with a set of slots, it indicates the number of tasks that it can

accept.

B. Algorithm Input :

 Set of Users U = {u1,u2,.......un} where n is the number

of users.

 Jobs submitted by each user jui .

 Available slots S in each queue S = {s1,s2,......,sq}

where q is the number of queues defined.

Output : Jobs scheduled according to their size. 1. All

details of jobs currently available in queue will be extracted

using workload information collector (in our case it would be

third party API which provides live metrics of job and their

details). 2. Jobs will be grouped by user and average size of

each job will be calculated. 3. Based on load on each queue

all jobs are first arranged in descending order by their size

and it will be decided in which queue with how many slots

should be allocated for job completion. 4. To improvise the

performance of Map Reduce task we will employ Timsort

algorithm during sort and shuffle phase to get best

performance from parallel processing. 5. To break tie

between or priority precedence FIFO will be used to decide

which user gets slot first.

C. Experimental Setup

The system can be developed using Hadoop on

Linux platform. The system requires 3 laptops with minimum

8gb RAM, Core 2 Duo processor and Ubuntu 14.04 Desktop

LTS. One laptop operates as a master node(Job Tracker) and

other two as slave 1 and slave 2(Task Trackers).

IV. RESULTS AND DISCUSSION

Table 1 shows the difference between existing and proposed

system.

 In above table, theoretically it has been proved that,

proposed system minimizes the average response time than

existing system.

V. CONCLUSION

Task assignment in Hadoop is an fascinating issue

in light of the fact that efficient task assignment can

altogether decrease runtime, or enhance hardware utilization.

The proposed scheduler will make use of historic information

collected from the job history statistics for current user for

making the scheduling decisions between users. The

scheduler will reduce the average job response time that are

compared with existing Fair and FIFO Scheduler. To

improve the performance of job completion Timsort

algorithm is used during sort and shuffle phase.

Acknowledgment The authors would like to thank

the researchers as well as publishers for making their

resources available and teachers for their guidance. We are

thankful to the authorities of and concern members of “LsPS:

A Job Size-Based Scheduler For Efficient Task Assignments

In Hadoop” for their constant guidelines and support. We are

also thankful to the reviewer for their valuable suggestions.

We also thank the college authorities for providing the

required infrastructure and support. Finally, we would like to

extend a heartfelt gratitude to friends and family members.

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE) Vol 3, Issue 6, June 2016

 69

REFERENCES

[1] Yi Yao, Jianzhe Tai, Bo Sheng, and Ningfang Mi, LsPS:

A Job Size-Based Scheduler for Efficient Task Assignments

in Hadoop, IEEE Transactions on Cloud Computing, no. 1,

pp. 1, PrePrints PrePrints, doi:10.1109/TCC.2014.2338291.

[2]] J. Dean, S. Ghemawat, and G. Inc., Map Reduce:

Simplified data processing on large clusters, in Proc. 6th

Conf. Symp. Operating Syst. Des. Implementation, 2004,

p.10.

[3] M. Zaharia, D. Borthakur, J. S. Sarma, K. Elmeleegy, S.

Shenker, and I. Stoica, Job scheduling for multi-user Map

Reduce clusters, University of California, Berkeley, CA,

USA, Tech. Rep. UCB/ EECS-2009-55 , Apr. 2009.

[4] Y. Chen, A. Ganapathi, R. Griffith, and R. Katz, The case

for evaluating Map Reduce performance using workload

suites, in Proc. IEEE 19th Int. Symp. Model., Anal. Simul.

Comput. Telecommun. Syst., 2011, pp. 390399.

[5] https://hadoop.apache.org/docs/r1.2.1/fair_scheduler.html

[6]

https://hadoop.apache.org/docs/r1.2.1/capacity_scheduler.ht

ml

