
International Journal of Engineering Research in Computer Science and

Engineering (IJERCSE) Vol 3, Issue 4, April 2016

 127

A New Differential Evolutionary Algorithm

[1]

 Aparna Potbhare,
[2]

 Rutuja Deogade
 [3]

Prof. Amit Khaparde

[1][2][3]
 Dept. of Information Technology, Rajiv Gandhi College of Engineering and Research, Nagpur, India.

[1]
aparnapotbhare1994@gmail.com

[2]
 Rutujadeogade10@gmail.com

[3]
 khaparde.amit@gmail.com

Abstract: - Differential evolution (DE) has been proven to be one of the most powerful global numerical optimization algorithms in

the evolutionary algorithm family. The core operator of DE is the differential mutation operator. Generally, the parents in the

mutation operator are randomly chosen from the current population. In nature, good species always contain good information, and

hence, they have more chance to be utilized to guide other species. Inspired by this phenomenon, To improve the efficiency of the

original differential evolution algorithm, a new differential evolution algorithm was proposed. This paper presents a novel

algorithm to accelerate the differential evolution (DE). The proposed opposition-based DE (ODE) employs opposition-based

learning (OBL) for population generation jumping. In this work, opposite numbers have been utilized to improve the convergence

rate of DE.

Keywords- Differential evolution (DE), opposition-based learning (OBL), mutation operator.

I. INTRODUCTION

EVOLUTIONARY algorithms (EAs) are

stochastic search methods that mimic evolutionary processes

encountered in nature. The common conceptual base of

these methods is to evolve a population of candidate

solutions by simulating the main processes involved in the

evolution of genetic material of organism populations, such

as natural selection and biological evolution. EAs can be

characterized as global optimization algorithms.

Their population-based nature allows them to avoid

getting trapped in a local optimum and consequently

provides a great chance to find global optimal solutions.

EAs have been successfully applied to a wide range of

optimization problems, such as image processing, pattern

recognition, scheduling, and engineering design [1], [2]. The

most prominent EAs proposed in the literature are genetic

algorithms [1], evolutionary programming [3], evolution

strategies [4], genetic programming [5], particle swarm

optimization (PSO) [6], and differential evolution [7], [8].In

general, every EA starts by initializing a population of

candidate solutions (individuals). The quality of each

solutions evaluated using a fitness function, which

represents the problem at hand. A selection process is

applied at each iteration of the EA to produce a new set of

solutions (population). The selection process is biased

toward the most promising traits of the current population of

solutions to increase their chances of being included in the

new population. At each iteration (generation), the

individuals are evolved through a predefined set of

operators, like mutation and recombination. This procedure

is repeated until convergence is reached

The best solution found by this procedure is

expected to be a near-optimum solution [2], [9].Mutation

and recombination are the two most frequently used

operators and are referred to as evolutionary operators. The

role of mutation is to modify an individual by small random

changes to generate a new individual [2], [9]. Its main

objective is to increase diversity by introducing new genetic

material into the population, and thus avoid local optima.

There combination (or crossover) operator combines two, or

more, individuals to generate new promising candidate

solutions [2],[9]. The main objective of the recombination

operator is to explore new areas of the search space [2],

[10].

In this paper A new differential evolutionary

algorithm with species and best vector selection has been

proposed. It uses best determination method to determine

the best members in population. Each best member is

considered as a niche in population. The species formation

takes place around these niches. Once the species get

formed then the standard differential evolution algorithm

has been used. If species is not performing well, then the

opposition learning is used. The scale up study of various

parameters is done to get best parameter setting. The

performance of newly proposed algorithm is tested on uni-

modal and multi-modal test functions. It got success in

solving wide range of problems. The results are compared

with standard Differential evolution algorithm (SDE) and

other state-of-art algorithms. The results are encouraging

one.

The rest of this paper is organized as follows.

Section II describes the original differential evolution

mailto:aparnapotbhare1994@gmail.com
mailto:Rutujadeogade10@gmail.com
mailto:khaparde.amit@gmail.com

International Journal of Engineering Research in Computer Science and

Engineering (IJERCSE) Vol 3, Issue 4, April 2016

 128

algorithm. In Section III, describe the opposition based

learning. Section IV illustrates the methodology.

II. CLASSICAL DE FAMILY OF ALGORITHMS

DE is a simple real parameter optimization

algorithm. It works through a simple cycle of stages of

mutation, crossover, and selection, as described in the

following.

2.1 Initialization of the Parameter Vectors

DE searches for a global optimum point in a D-D

real parameter space_D. It begins with a randomly initiated

population of Np D-D real-valued parameter vectors. Each

vector, also known as genome/chromosome, forms a

candidate solution to the multidimensional optimization

problem. We shall denote subsequent generations in DE by

G = 0, 1, . . .,Gmax. Since the parameter vectors are likely to

be changed over different generations, we may adopt the

following notation for representing the ith vector of the

population at the current generation:

_Xi,G= [x1,i,G, x2,i,G, x3,i,G, , xD,i,G]. (1)

For each parameter of the problem, there may be a

certain range within which the value of the parameter should

be restricted, often because parameters are related to

physical components or measures that have natural bounds

(for example, if one parameter is a length or mass, it cannot

be negative). The initial population (at G = 0) should cover

this range as much as possible by uniformly randomizing

individuals within the search space constrained by the

prescribed minimum and maximum bounds.

_Xmin ={x1,min, x2,min, . . . , xD,min}

_Xmax ={x1,max, x2,max, . . . , xD,max}.

Hence, we may initialize the jth component of the ith vector

as

xj,i,0 = xj,min + randi,j[0, 1] · (xj,max− xj,min) (2)

where randi,j[0, 1] is a uniformly distributed random

number lying between 0 and 1 (actually 0 ≤ randi,j[0, 1] ≤

1) and is instantiated independently for each component of

the ith vector.

2.2 Mutation with Difference Vectors

After initialization, DE creates a donor vector _Vi,

Gcorresponding to each population member or target vector

_Xi,Gin the current generation through mutation. The five

most frequently referred mutation strategies are listed in the

following:

“DE/rand/1” :

_Vi,G= _Xri1,G + F ·(_Xri2,G− _Xri3,G) (3a)

“DE/best/1” :

_Vi,G= _Xbest,G+ F ·(_Xri1,G− _Xri2,G) (3b)

“DE/current-to-best/1” :

_Vi,G= _Xi,G+ F · (_Xbest,G− _Xi,G)+

F ·(_Xri1,G− _Xri2,G) (3c)

“DE/best/2” :

_Vi,G= _Xbest,G+ F ·(_Xri1,G− _Xri2,G)+

F ·(_Xri3,G− _Xri4,G) (3d)

“DE/rand/2” :

_Vi,G= _Xri1,G + F ·(_Xri2,G− _Xri3G)+

F ·(_Xri4,G−_Xri5G). (3e)

The indices ri1, ri2, ri3, ri4, and ri5 are mutually exclusive

integers randomly chosen from the range [1,Np], and all are

different from the index i. These indices are randomly

generated anew for each donor vector. The scaling factor F

is a positive control parameter for scaling the difference

vectors. _Xbest,Gis the best individual vector with the best

fitness (i.e., lowest objective function value for a

minimization problem) in the population at generation G. In

(3c), _Xi,Gis known as the target vector, and _Vi,Gis known

as the donor vector. The general convention used for naming

the various mutation strategies is DE/x/y/z, where DE stands

for differential evolution, xrepresents a string denoting the

vector to be perturbed, and y is the number of difference

vectors considered for the perturbation ofx. z stands for the

type of crossover being used (exp: exponential and bin:

binomial). The following section discusses the crossover

step in DE.

2.3 Crossover

Through crossover, the donor vector mixes its

components with the target vector _Xi,Gunder this operation

to form the trial vector _Ui,G= [u1,i,G, u2,i,G, u3,i,G, . . . ,

uD,i,G]. The DE family of algorithms uses mainly two kinds

of crossover methods—exponential (or two-point modulo)

and binomial (or uniform) [2]. We only elaborate here the

binomial crossover as the proposed DE variant uses this

scheme. Binomial crossover is performed on each of the D

variables whenever a randomly generated number between 0

and 1 is less than or equal to the Cr value. In this case, the

International Journal of Engineering Research in Computer Science and

Engineering (IJERCSE) Vol 3, Issue 4, April 2016

 129

number of parameters inherited from the donor has a

(nearly) binomial distribution. The scheme may be outlined

as

uj,i,G={vj,i,G, if (randi,j[0, 1]≤Cr or j=1rand) xj,i,G,

otherwise (4)

where, as before, randi,j[0, 1] is a uniformly distributed

random number, which is called anew for each jth

component of the ith parameter vector. jrand∈[1, 2, . . .,D]

is a randomly chosen index, which ensures that _Ui,Ggets at

least one component from _Vi,G. It is instantiated once for

each vector per generation.

2.4 Selection

Selection determines whether the target or the trial vector

survives to the next generation, i.e.,

atG = G+ 1. The selection operation is described as

_Xi,G+1 = _Ui,G, If f(_Ui,G) ≤ f(_Xi,G) = _Xi,G, if

f(_Ui,G) > f(_Xi,G) (5)

wheref(_X) is the objective function to be minimized.

Therefore, if the new trial vector yields an equal or lower

value of the objective function, it replaces the corresponding

target vector in the next generation; otherwise, the target is

retained in the population.

The original DE algorithm (DE/rand/1/bin) is illustrated

in Algorithm 1.

Algorithm 1 Algorithmic scheme for the original

Differential Evolution algorithm (DE/rand/1/bin)

Set the generation counter g = 0

/* Initialize the population of NP individuals: Pg=

{x1g, x2g, . . . , xNPg}, with xig= {xi1,g, xi2,g, . . . , xiD,g}

for i =1, 2, . . . , NP uniformly in the optimization search

hyperrectangle[L,U].*/

fori = 1 to NP do

forj = 1 to D do

xi0,j= Lj+ randj(0, 1) ·(Uj−Lj)

end for

Evaluate individual xi0

end for

whiletermination criteria are not satisfied do

Set the generation counter g = g + 1

fori = 1 to NP do

/* Mutation step */

Select uniformly random integers r1, r2, r3 ∈Sr=

{1, 2, . . . , NP} \ {i}

/* For each target vector xiggenerate the

correspondingmutant vector vigusing (3) */

forj = 1 to D do

vij,g= xr1j,g + F(xr2j,g−xr3j,g)

end for

/* Crossover step: For each target vector xiggenerate

the corresponding trial vector uigthrough the

BinomialCrossover scheme.*/

jrand= a uniformly distributed random integer ∈

{1, 2, . . . , D}

forj = 1 to D do

uig,j={ vig,j, if (randi,j(0, 1) _ CR or j = jrand),

xig,j, otherwise,

end for

/* Selection step */

iff (uig) < f(xig) then

xig+1 = uig

iff (uig) < f(xbestg) then

xbestg= uigand f (xbestg) = f (uig)

end if

else

xig+1 = xig

end if

end for

end while

III. OPPOSITION BASED LEARNING

Opposition-based learning was first introduced by

Tizhoosh [Tizhoosh, 2005a] and later applied to

Reinforcement Learning [Tizhoosh, 2005b] [Tizhoosh,

2006], Differential Evolution [Rahnamayan, 2006a]

[Rahnamayan, 2006b] [Rahnamayan, 2008] and Particle

Swarm Optimization [Han, 2007] [Omran, 2009] [Wang,

2007] [Wu, 2008]. Opposition-based learning is based on

the concept of opposite points and opposite numbers. If x is

a real number in the range [a, b], i.e. x Є [a, b] then the

opposite number x’ of x is defined as x’ = a + b – x. For

example if a = -5 and b = 5, then the opposite of x = -2 will

be x’ = 2. When working with n dimensional vectors, the

definition of opposite numbers can be analogously extended

to opposite point in n dimensions. If X(x1, x2, … ,xn) is an

n dimensional vector, where xi Є [ai, bi] and i = 1, 2, … , n;

then the opposite point of X is X’(x1’,

x2’, …,xn’) where xi’ = ai+ bi – xi.

The basic idea of opposition-based learning is that

50% of the time the current solution is further away from

the optimum than its opposite solution. By considering both

and retaining the fitter of the two we may improve our

chances of finding the optimum quickly. This process can be

incorporated in the initialization stage as well as during the

evolution of the swarm (called generation jumping).

International Journal of Engineering Research in Computer Science and

Engineering (IJERCSE) Vol 3, Issue 4, April 2016

 130

IV. METHODOLOGY

V. CONCLUSION

With the increasing complexity of real world

optimization problems, demand for robust, fast, and accurate

optimizers is on the rise among researchers from various

fields. DE emerged as a simple and efficient scheme for

global optimization over continuous spaces.

ACKNOWLEDGMENT

We are extremely thankful to our guide Prof. Amit

R. Khaparde under whom our project took the shape of

reality from mere idea. We are thankful to our guide for

enlightening us with his precious guidance and constant

encouragement. We thank our guide for providing us with

ample support and valuable time. We are indebted to our

guide who constantly provided a stimulus to reach our goals.

We are grateful to Prof. M. M. Goswami, HOD

Information Technology, RGCER, for his kind co-operation

and timely help.

We express our gratitude towards Dr. A. V. Bapat,

Principal RGCER, for his never ending support and

motivation.

Lastly we would like to thank all those who were

directly or indirectly related to our project and extended

their support to make the project successful.

REFERENCES

[1] D. Goldberg, Genetic Algorithms in Search,

Optimization, and Machine Learning. Reading, MA:

Addison-Wesley, 1989.

[2] T. B¨ack, D. B. Fogel, and Z. Michalewicz, Eds.,

Handbook of Evolutionary Computation. Oxford, U.K.:

Oxford University Press, 1997.

[3] L. J. Fogel, A. J. Owens, and M. J. Walsh, Artificial

intelligence Through Simulated Evolution. New York:

Wiley, 1966.

[4] H.-G. Beyer and H.-P.Schwefel, “Evolution strategies: A

comprehensive introduction,” Natural Comput., vol. 1, no.

1, pp. 3–52, May 2002.

[5] J. R. Koza, Genetic Programming: On the Programming

of Computers by Means of Natural Selection. Cambridge,

MA: MIT Press, 1992.

[6] J. Kennedy and R. C. Eberhart, “Particle swarm

optimization,” in Proc. IEEE Int. Conf. Neural Netw., vol.

IV. 1995, pp. 1942–1948.

[7] R. Storn and K. Price, “Differential evolution: A simple

and efficient adaptive scheme for global optimization over

continuous spaces,” J. Global Optimization, vol. 11, no. 4,

pp. 341–359, Dec. 1997.

[8] R. Storn and K. Price, “Differential evolution: A simple

and efficient adaptive scheme for global optimization over

continuous spaces,” Int. Comput.Sci. Instit., Berkeley, CA,

Tech. Rep. TR-95-012, 1995 [Online]. Available:

ftp://ftp.icsi.berkeley.edu

[9] Z. Michalewicz, Genetic Algorithms + Data Structures

= Evolution Programs, 3rd ed. Berlin, Germany: Springer-

Verlag, 1996.

[10] A. A. Salman, “Linkage crossover operator for genetic

algorithms,” Ph.D. dissertation, Dept. Electric.Eng.

Comput.Sci., Syracuse Univ.,Syracuse, NY, 1999.

SDE in
Species 1

SDE in
Species 2

SDE in
Species N

SDE in
Species 3

 Species 1 Species 2 Species M Species 3

Start

Generate the initial population

Use Best detection method to detect best individual

Generate the species around best individual

Use opposition based learning for non performing species

If stopping criteria
satisfy

YES

NO

NO

Species 1 Species 2 Species N Species 3

EXIT

