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Abstract: - Differential evolution (DE) has been proven to be one of the most powerful global numerical optimization algorithms in 

the evolutionary algorithm family. The core operator of DE is the differential mutation operator. Generally, the parents in the 

mutation operator are randomly chosen from the current population. In nature, good species always contain good information, and 

hence, they have more chance to be utilized to guide other species. Inspired by this phenomenon, To improve the efficiency of the 

original differential evolution algorithm, a new differential evolution algorithm was proposed. This paper presents a novel 

algorithm to accelerate the differential evolution (DE).  The proposed opposition-based DE (ODE) employs opposition-based 

learning (OBL) for population generation jumping.  In this work, opposite numbers have been utilized to improve the convergence 

rate of DE.  
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I. INTRODUCTION 

 

EVOLUTIONARY algorithms (EAs) are 

stochastic search methods that mimic evolutionary processes 

encountered in nature. The common conceptual base of 

these methods is to evolve a population of candidate 

solutions by simulating the main processes involved in the 

evolution of genetic material of organism populations, such 

as natural selection and biological evolution. EAs can be 

characterized as global optimization algorithms. 

 

Their population-based nature allows them to avoid 

getting trapped in a local optimum and consequently 

provides a great chance to find global optimal solutions. 

EAs have been successfully applied to a wide range of 

optimization problems, such as image processing, pattern 

recognition, scheduling, and engineering design [1], [2]. The 

most prominent EAs proposed in the literature are genetic 

algorithms [1], evolutionary programming [3], evolution 

strategies [4], genetic programming [5], particle swarm 

optimization (PSO) [6], and differential evolution [7], [8].In 

general, every EA starts by initializing a population of 

candidate solutions (individuals). The quality of each 

solutions evaluated using a fitness function, which 

represents the problem at hand. A selection process is 

applied at each iteration of the EA to produce a new set of 

solutions (population). The selection process is biased 

toward the most promising traits of the current population of 

solutions to increase their chances of being included in the 

new population. At each iteration (generation), the 

individuals are evolved through a predefined set of 

operators, like mutation and recombination. This procedure 

is repeated until convergence is reached  

 

The best solution found by this procedure is 

expected to be a near-optimum solution [2], [9].Mutation 

and recombination are the two most frequently used 

operators and are referred to as evolutionary operators. The 

role of mutation is to modify an individual by small random 

changes to generate a new individual [2], [9]. Its main 

objective is to increase diversity by introducing new genetic 

material into the population, and thus avoid local optima. 

There combination (or crossover) operator combines two, or 

more, individuals to generate new promising candidate 

solutions [2],[9]. The main objective of the recombination 

operator is to explore new areas of the search space [2], 

[10]. 

 

In this paper A new differential evolutionary 

algorithm with species and best vector selection has been 

proposed. It uses best determination method to determine 

the best members in population. Each best member is 

considered as a niche in population. The species formation 

takes place around these niches. Once the species get 

formed then the standard differential evolution algorithm 

has been used. If species is not performing well, then the 

opposition learning is used. The scale up study of various 

parameters is done to get best parameter setting. The 

performance of newly proposed algorithm is tested on uni-

modal and multi-modal test functions. It got success in 

solving wide range of problems. The results are compared 

with standard Differential evolution algorithm (SDE) and 

other state-of-art algorithms. The results are encouraging 

one. 

 

The rest of this paper is organized as follows. 

Section II describes the original differential evolution 
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algorithm. In Section III, describe the opposition based 

learning. Section IV illustrates the methodology. 

 

 

II. CLASSICAL DE FAMILY OF ALGORITHMS 
 

DE is a simple real parameter optimization 

algorithm. It works through a simple cycle of stages of 

mutation, crossover, and selection, as described in the 

following. 

 

2.1  Initialization of the Parameter Vectors 

 

DE searches for a global optimum point in a D-D 

real parameter  space_D. It begins with a randomly initiated 

population of  Np D-D real-valued parameter vectors. Each 

vector, also known as genome/chromosome, forms a 

candidate solution to the multidimensional optimization 

problem. We shall denote subsequent generations in DE by 

G = 0, 1, . . .,Gmax. Since the parameter vectors are likely to 

be changed over different generations, we may adopt the 

following notation for representing the ith vector of the 

population at the current generation: 

 

_Xi,G= [x1,i,G, x2,i,G, x3,i,G, . . . . . . , xD,i,G].       (1) 

 

For each parameter of the problem, there may be a 

certain range within which the value of the parameter should 

be restricted, often because parameters are related to 

physical components or measures that have natural bounds 

(for example, if one parameter is a length or mass, it cannot 

be negative).  The initial population (at G = 0) should cover 

this range as much as possible by uniformly randomizing 

individuals within the search space constrained by the 

prescribed minimum and maximum bounds. 

 

_Xmin ={x1,min, x2,min, . . . , xD,min} 

 

_Xmax ={x1,max, x2,max, . . . , xD,max}. 

 

Hence, we may initialize the jth component of the ith vector 

as 

xj,i,0 = xj,min + randi,j[0, 1] · (xj,max− xj,min)       (2) 

 

where randi,j[0, 1] is a uniformly distributed random 

number  lying between 0 and 1 (actually 0 ≤ randi,j[0, 1] ≤ 

1) and  is instantiated  independently for each component of 

the ith vector. 

 

 

 

 

2.2 Mutation with Difference Vectors 

After initialization, DE creates a donor vector _Vi, 

Gcorresponding to each population member or target vector 

_Xi,Gin the current generation through mutation. The five 

most frequently referred mutation strategies are listed in the 

following: 

 

“DE/rand/1” : 

_Vi,G= _Xri1,G + F ·(_Xri2,G− _Xri3,G)       (3a) 

 

“DE/best/1” : 

_Vi,G= _Xbest,G+ F ·(_Xri1,G− _Xri2,G)    (3b) 

 

“DE/current-to-best/1” : 

_Vi,G= _Xi,G+ F · (_Xbest,G− _Xi,G)+ 

F ·(_Xri1,G− _Xri2,G)            (3c) 

 

“DE/best/2” : 

_Vi,G= _Xbest,G+ F ·(_Xri1,G− _Xri2,G)+ 

F ·(_Xri3,G− _Xri4,G)             (3d) 

 

“DE/rand/2” : 

_Vi,G= _Xri1,G + F ·(_Xri2,G− _Xri3G)+ 

F ·(_Xri4,G−_Xri5G).       (3e) 

 

The indices ri1, ri2, ri3, ri4, and ri5 are mutually exclusive 

integers randomly chosen from the range [1,Np], and all are 

different from the index i. These indices are randomly 

generated anew for each donor vector. The scaling factor F 

is a positive control parameter for scaling the difference 

vectors. _Xbest,Gis the best individual vector with the best 

fitness (i.e., lowest objective function value for a 

minimization problem) in the population at generation G. In 

(3c), _Xi,Gis known as the target vector, and _Vi,Gis known 

as the donor vector. The general convention used for naming 

the various mutation strategies is DE/x/y/z, where DE stands 

for differential evolution, xrepresents a string denoting the 

vector to be perturbed, and y is the number of difference 

vectors considered for the perturbation ofx. z stands for the 

type of crossover being used (exp: exponential and bin: 

binomial). The following section discusses the crossover 

step in DE. 

 

2.3 Crossover 

 

Through crossover, the donor vector mixes its 

components with the target vector _Xi,Gunder this operation 

to form the trial vector _Ui,G= [u1,i,G, u2,i,G, u3,i,G, . . . , 

uD,i,G]. The DE family of algorithms uses mainly two kinds 

of crossover methods—exponential (or two-point modulo) 

and binomial (or uniform) [2]. We only elaborate here the 

binomial crossover as the proposed DE variant uses this 

scheme. Binomial crossover is performed on each of the D 

variables whenever a randomly generated number between 0 

and 1 is less than or equal to the Cr value. In this case, the 
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number of parameters inherited from the donor has a 

(nearly) binomial distribution. The scheme may be outlined 

as 

 

uj,i,G={vj,i,G, if (randi,j[0, 1]≤Cr or j=1rand)   xj,i,G, 

otherwise                                        (4) 

 

where, as before, randi,j[0, 1] is a uniformly distributed 

random number, which is called anew for each jth 

component of  the ith parameter vector. jrand∈[1, 2, . . .,D] 

is a randomly chosen index, which ensures that _Ui,Ggets at 

least one component from _Vi,G. It is instantiated once for 

each vector per generation. 

 

2.4 Selection 

 

Selection determines whether the target or the trial vector 

survives to the next generation, i.e., 

 

atG = G+ 1. The selection operation is described as 

 

_Xi,G+1 = _Ui,G, If f(_Ui,G) ≤ f(_Xi,G) = _Xi,G, if 

f(_Ui,G) > f(_Xi,G) (5) 

wheref(_X ) is the objective function to be minimized. 

Therefore, if the new trial vector yields an equal or lower 

value of the objective function, it replaces the corresponding 

target vector in the next generation; otherwise, the target is 

retained in the population. 

 

The original DE algorithm (DE/rand/1/bin) is illustrated 

in Algorithm 1. 

 

 

 

Algorithm 1 Algorithmic scheme for the original 

Differential Evolution algorithm (DE/rand/1/bin) 

 

Set the generation counter g = 0 

/* Initialize the population of NP individuals: Pg= 

{x1g, x2g, . . . , xNPg}, with xig= {xi1,g, xi2,g, . . . , xiD,g} 

for i =1, 2, . . . , NP uniformly in the optimization search  

hyperrectangle[L,U].*/ 

fori = 1 to NP do 

forj = 1 to D do 

xi0,j= Lj+ randj(0, 1) ·(Uj−Lj) 

end for 

Evaluate individual xi0 

end for 

whiletermination criteria are not satisfied do 

Set the generation counter g = g + 1 

fori = 1 to NP do 

/* Mutation step */ 

Select uniformly random integers r1, r2, r3 ∈Sr= 

{1, 2, . . . , NP} \ {i} 

/* For each target vector xiggenerate the 

correspondingmutant vector vigusing (3) */ 

forj = 1 to D do 

vij,g= xr1j,g + F(xr2j,g−xr3j,g) 

end for 

/* Crossover step: For each target vector xiggenerate 

the corresponding trial vector uigthrough the 

BinomialCrossover scheme.*/ 

jrand= a uniformly distributed random integer ∈ 

{1, 2, . . . , D} 

forj = 1 to D do 

uig,j={ vig,j, if (randi,j(0, 1) _ CR or j = jrand), 

xig,j, otherwise, 

end for 

/* Selection step */ 

iff (uig) < f(xig) then 

xig+1 = uig 

iff (uig) < f(xbestg) then 

xbestg= uigand f (xbestg) = f (uig) 

end if 

else 

xig+1 = xig 

end if 

end for 

end while 

 

III. OPPOSITION BASED LEARNING 
 

Opposition-based learning was first introduced by 

Tizhoosh [Tizhoosh, 2005a] and later applied to 

Reinforcement Learning [Tizhoosh, 2005b] [Tizhoosh, 

2006], Differential Evolution [Rahnamayan, 2006a] 

[Rahnamayan, 2006b] [Rahnamayan, 2008] and Particle 

Swarm Optimization [Han, 2007] [Omran, 2009] [Wang, 

2007] [Wu, 2008]. Opposition-based learning is based on 

the concept of opposite points and opposite numbers. If x is 

a real number in the range [a, b], i.e. x Є [a, b] then the 

opposite number x’ of x is defined as x’ = a + b – x. For 

example if a = -5 and b = 5, then the opposite of x = -2 will 

be x’ = 2. When working with n dimensional vectors, the 

definition of opposite numbers can be analogously extended 

to opposite point in n dimensions. If X(x1, x2, … ,xn) is an 

n dimensional vector, where xi Є [ai, bi] and i = 1, 2, … , n; 

then the opposite point of X is X’(x1’, 

x2’, …,xn’) where xi’ = ai+ bi – xi. 

 

The basic idea of opposition-based learning is that 

50% of the time the current solution is further away from 

the optimum than its opposite solution. By considering both 

and retaining the fitter of the two we may improve our 

chances of finding the optimum quickly. This process can be 

incorporated in the initialization stage as well as during the 

evolution of the swarm (called generation jumping). 
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IV. METHODOLOGY 

 
 

V. CONCLUSION 

 

With the increasing complexity of real world 

optimization problems, demand for robust, fast, and accurate 

optimizers is on the rise among researchers from various 

fields. DE emerged as a simple and efficient scheme for 

global optimization over continuous spaces. 
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