
International Journal of Engineering Research in Computer Science and

Engineering (IJERCSE) Vol 3, Issue 4, April 2016

 All Rights Reserved © 2016 IJERCSE 46

Trustworthy URI: Enhancing the Data’s On the

Web Reliable and Immutable

[1]
 A.Amalesh

 [2]
 D.Rajesh

 [3]
 Sanju Mathew Philip

 [4]
 Mrs.D.Lavanya, M.E

[1][2][3]
UG student,

[4]
 Assistant Professor

Department of CSE, Loyola Institute of Technology, Chennai, India.
[1]

 amalesh95@gmail.com
[2]

 rajeshvoguish@gmail.com
[3]

 mathewsanju82@gmail.com

[4]

lava2it@gmail.com

Abstract — To make digital artifacts (undesired or unintended alteration in data introduced in a digital process by an involved
technique and/or technology) such as datasets, code, texts, and images verifiable and permanent. Digital artifacts that are supposed
to be immutable, there is moreover no commonly accepted method to enforce this immutability. To solve this problem, we propose
trusty URIs containing base 64 encryption values.Base64 encoding can be helpful when fairly lengthy identifying information is
used in an HTTP environment. For example, a database persistence framework might use Base64 encoding to encode a relatively
large unique id (generally 128-bit UUIDs) into a string for use as an HTTP parameter in HTTP forms or HTTP GET URLs. It
makes the contents of the data trustworthy which is sent as a URI to the user and it make sure whether it is trusted or not We show
how trusty URIs can be used for the verification of digital artifacts, in a manner that is independent of the serialization format in
the case of structured data files such as nanopublications .Our goal is to achieve a data security and make the content present is
immutable thereby extending the range of verifiability to the entire reference tree.Even the file with large content it becomes
possible to implement in enhancing data’s on the web and it is fully compatible with existing standards and protocols

Index Terms—Decentralized systems, data publishing, Semantic Web, linked data, resource description framework, nanopublications

I. INTRODUCTION

In many areas and in particular in science,

reproducibility is important. Verifiable, immutable, and

permanent digital artifacts are an important ingredient for

making the results of automated processes reproducible, but

the current Web offers no commonly accepted methods to

ensure these properties. Endeavors such as the Semantic Web

to publish complex knowledge in a machine-interpretable

manner aggravate this problem, as automated algorithms

operating on large amounts of data can be expected to be

even more vulnerable than humans to manipulated or

corrupted content. Without appropriate counter-measures,

malicious actors can sabotage or trick such algorithms by

adding just a few carefully manipulated items to large sets of

input data. To solve this problem, we propose an approach to

make items on the (Semantic) Web verifiable, immutable,

and permanent. This approach includes cryptographic hash

values in Uniform Resource Identifiers (URIs) and adheres to

the core principles of the Web, namely openness and

decentralized architecture. It directly follows that trusty URI

artifacts are immutable, as any change in the content also

changes its URI, thereby making it a new artifact. Again, you

can of course change your artifact and its URI and claim that

it has always been like this. You can get away with that if the

trusty URI has not yet been picked up by third parties, i.e.

linked by other resources. Once this is the case, it cannot be

changed anymore, because all these links will still point to

the old trusty URI and everybody will notice that the new

artifact is a different one.

Third, trusty URI artifacts are permanent if we

assume that there are search engines and Web archives

crawling the artifacts on the Web and caching them. In

this situation, any artifact that is available on the Web

for a sufficiently long time will remain available forever.

If an artifact is no longer available in its original location

(e.g. the one its URI resolves to), one can still retrieve it

from the cache of search engines, Web archives, or

dedicated replication services. The trusty URI guarantees

that it is the artifact you are looking for, even if the

location of the cached artifact is not trustworthy or it was

cached from an untrustworthy source.

II. BACKGROUND

 Data Mining
Data Mining is an analytic process designed to

explore data (usually large amounts of data - typically

business or market related - also known as "big data"

Digital Artifacts

A digital artifact is any undesired or unintended

alteration of data introduced in a digital process by an

involved technique and/or technology.

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE) Vol 3, Issue 4, April 2016

 All Rights Reserved © 2016 IJERCSE 47

Immutable

In object-oriented and functional programming,

an immutable object whose state cannot be modified after it

is created.

URI
 In computing, a Uniform Resource Identifier (URI) is a

string of characters used to identify the name of a resource.

URL

 A URL is a specific type of Uniform Resource

Identifier (URI), although many people use the two terms

 URN

In computing, a Uniform Resource Name (URN) is

the historical name for a Uniform Resource Identifier

(URI) that uses the urn scheme. A URI is

a string of characters used to identify a name of a web

resource. Such identification enables interaction with

representations of the web resource over a network, typically

the World Wide Web, using specific protocols.

 Blank Nodes:

 The support for self-references requires us to

transform the preliminary content of a trusty URI artifact into

its final version, and we can make use of this transformation

to also solve the problem of blank nodes in RDF. A blank

node is basically an identifier that is only used in a local

scope and for which we do not care to specify a concrete

URI. Our approach is to eliminate blank nodes during the

transformation process by converting them into URIs. Blank

nodes can be seen as existentially quantified varia-bles,

which we can turn into constants by Skolemization, i.e., by

introducing URIs that have not been used anywhere before.

Using the trusty URI with a suffix enumerating the blank

nodes, we can create such URIs guaranteed to have never

been used before (the artifact code being just a place-holder

at first, as above):
http://example.org/r3.RACjKTA5dl23ed7 JIpgPmS0E 0dcU-
XmWIBnGn6Iyk8B-U#_1

http://example.org/r3.RACjKTA5dl23ed7 JIpgPmS0E 0dcU-
XmWIBnGn6Iyk8B-U#_2

This approach solves the problem of blank nodes for
normalization, is completely general (i.e., works on any

ni-URIs:

Our approach is compatible with ni-URIs (see above),

and all trusty URIs can be transformed into ni-URIs,
with or without explicitly specifying an authority:

ni:///sha-256;5AbXdpz5DcaYXCh9l3eI9ruBosi L5XDU
3rxBcBaUO70

ni://example.org/sha-256;5AbXnpz5AcaYX Ch9l3eI9
ruBosiL5XSU3rxBbBaUO70

The fact that the module identifier is lost does not affect

the uniqueness of the hash, but to verify a resource all

available modules have to be tried in the worst case. To

avoid this, we propose to use an optional argument

called module:
ni:///sha-256;5AbXdpz5DcaYXCh7l3eI9ruGosi L5XDU
3rxBbBaUO0?module=RA

III. APPROACH:

 We propose here a modular approach, where

different modules handle different kinds of content on

different con-ceptual levels of abstraction, from byte

level to high-level formalisms. Besides that, the most

interesting features of our approach are self-references,

the handling of blank nodes, and the mapping to ni-

URIs.

General Structure:

Trusty URIs end with a hash value in Base64 notation (a

specific alphanumeric encoding scheme) preceded by a
module identifier. This is an example:

Fig1: URI source process

Architecture:

Fig2: Architecture process[

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE) Vol 3, Issue 4, April 2016

 All Rights Reserved © 2016 IJERCSE 48

IV. MODULES:

 There are currently three modules available: FA,

RA, and RB.

Authentication:

 Authentication is a process in which the credentials

provided are compared to those on file in a database of

authorized users' information on a local operating system or

within an authentication server. In this project authentication

is done to provide more security for the users to have their

own credentials to log in.

Authorization:

 Authorization is the function of specifying access

rights to resources related to information

security and computer security in general and to access

control. In this project admin approves the users who are

registered and provide rights to login to the process.

Cache of the data:

 Cache is in wide use and very stable, but has not

changed in years and is no longer actively developed. The

Cache is designed to assist a developer in persisting data for a

specified period of time. In this project it is used as the

collection of data to store which is used for various

processing.

Encoding:

 Encoding is the process of putting a sequence of

characters (letters, numbers, punctuation, and certain

symbols) into a specialized format for efficient transmission

or storage. The data which is to be published is being

encoded and it is been transformed into encoded values and

stored it in the database.

Decoding:
 Decoding is the opposite process -- the conversion
of an encoded format back into the original sequence of
characters. The converted data is being decoded back only
processing, the Perl implementation makes use of the Trine
package, and the Python implementation uses RDFLib.

4

These implementations provide a number of common

functions for the different modules and formats. Currently,

the following functions are available if the valid user enters

in it otherwise it shows that you do not have permission to

open the file. CheckFile takes a file and validates its hash by

apply-ing the respective module.
ProcessFile takes a file, calculates its hash using mod-ule
FA, and renames it to make it a trusty file.
TransformRdf takes an RDF file and a base URI, and
transforms the file into a trusty file using a module of type

R.Trans form Large Rdf is the same as above but using

temporary files instead of loading the entire content into
memory.

The trusty URI features provided by the presented librar-

ies are also made available via a validation interface for

nanopublications.
6
 This interface, which is shown in Fig. 3,

offers in fact much more than just validation (including

transformation into different formats and publication to

nanopublication servers). Users can load nanopublications

in different ways, including retrieval from URLs or

SPARQL endpoints, and then trusty URIs can be generated

for them directly via the Web interface. Nanopublications

that already have a trusty URI are automatically verified and

users are informed about whether the verification was

successful or not.

Publishing the data:

 Data publishing is the act of making data available

on the Internet, so that they can be accessed, analyzed and

reused by anyone for research or other purposes. The data is

been published where the appropriate level has the

permission to access the file which is determined by admin

V. IMPLEMENTATION:

There are currently three trusty URI implementations in the
form of code libraries in Java, Perl, and Python.

3
 The Java

implementation uses the Sesame library [21] for RDF

Fig. 3. The nanopublication validator interface

integrates features of trusty URIs. Nanopublications
can be loaded from different sources, users can

generate trusty URIs for them (top), and
nanopublications with trusty URIs are automatically

verified (bottom).

Hash Generation and Checking on Nanopublications:

 To test our approach and to evaluate its

implementations, we first took a collection of 156,026

nanopublications in TriG for-mat that we had produced

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE) Vol 3, Issue 4, April 2016

 All Rights Reserved © 2016 IJERCSE 49

in previous work [22]. We trans-formed these

nanopublications into the formats N-Quads and TriX

using existing off-the-shelf converters. Then, we trans-

formed these into trusty URI nanopublications using the

Java implementation. To be able to check not only

positive cases (where checking succeeds) but also

negative ones (where checking fails), we made copies of

the resulting files where we changed a random single

byte in each of them (only considering letters and

numbers, and never replac-ing an upper-case letter by its

lower-case version or vice.

TABLE 1

versa, as some keywords are not case-sensitive). The

resulting six sets of 156,026 files each (three formats,

each in two versions: valid and corrupted) were the basis

for our evaluation.

VI. PERFORMANCE TESTS ON

NANOPUBLICATIONS:

 Next, we used the same set of nanopublication
files to test the performance of the different modules for

checking trusty URI artifacts in different formats. There

are two scenarios of how to run such checks: One can
run one after the other, as when a small number of

nanopublications are manually checked, or one can
execute such checks in the form of a batch job in a single
program run, which is the preferred procedure to run a
large number of checks without supervision. The time
required per file is typically much lower in batch mode,

as the runtime environment has to start and finalize only
once. Therefore it makes sense to have a look at both
scenarios.

 Table 1 shows the results of these performance

checks for the normal mode (top) and batch mode

(bottom). These results and the ones presented below

were obtained on a Linux server (Debian) with 16 Intel

Xeon CPUs of 2.27 GHz and 24 GB of

Performance and Results of the Different

Implementations for Checking Trusty URI

Nanopublications in Normal Mode (Top) and Batch

Mode (Bottom) on Valid and Corrupted Files memory.

As expected, the time measurements are much lower in

batch mode, but checking is reasonably fast also in

normal mode. All average values are below 0.8 s (0.03 s

for batch mode). Using Java in batch mode even requires

only 1 ms per file. Apart from the runtimes, the two

modes had no effect on the results.

VII. CONCLUSIONS AND FUTURE WORK:

 In conclusion, I think that the first five minutes of

an interview are important and can be considered as the first

impression that the interviewer gets about you. Because of

that, I think that interviews need to focus on these five

minutes by following the points described above and in my

previous blog posts. If you follow the points I mentioned,

you should end up with a great job interview and hopefully

the job you applied for.The system has reached a steady

state as far as the basicframework is concerned. The system

is operated at a high level of efficiency and its advantage is

quite understood. Also if time and resource constraints are

eliminated, thissystem can be adapted to a full-fledged

Knowledge Portal, wherein apersonalized environment for

each user whoare a part of it can be created.

REFERENCES:

[1] T. Kuhn and M. Dumontier, “Trusty URIs: Verifiable,

immutable, and permanent digital artifacts for linked

data,” in Proc. 11th Extended Semantic Web Conf., 2014,

pp. 395–410.

[2] P. Groth, A. Gibson, and J. Velterop, “The anatomy of

a nano-publication,” Inf. Serv. Use, vol. 30, no. 1, pp. 51–

56, 2010.

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE) Vol 3, Issue 4, April 2016

 All Rights Reserved © 2016 IJERCSE 50

[3] S. Farrell, D. Kutscher, C. Dannewitz, B. Ohlman, A.

Keranen, and P. Hallam-Baker, “Naming things with

hashes,” Internet Engineering Task Force (IETF),

Standards Track RFC 6920, Apr. 2013.

[4] R. Hoekstra, “The MetaLex document server,” in Proc.

10th Int. Conf. The Semantic Web, 2011, pp. 128–143.

[5] M. Altman and G. King, “A proposed standard for the

scholarly citation of quantitative data,” D-lib Mag., vol.

13, no. 3, p. 5, 2007.

[6] M. Bartel, J. Boyer, B. Fox, B. LaMacchia, and E.

Simon, (2008, Jun.). XML signature syntax and

processing. W3C, Recommenda-tion. [Online]. Available:

http://www.w3.org/TR/xmldsig-core/

[7] J. Carroll, “Signing RDF graphs,” in Proc. 2nd Int.

Semantic Web Conf., The Semantic Web, 2003, pp. 369–

384.

[8] E. Hofig€ and I. Schieferdecker, “Hashing of RDF

graphs and a solution to the blank node problem,” in Proc.

10th Int. Workshop Uncertainty Reasoning Semantic

Web, 2014, pp. 55.

[9] M. Bellare, O. Goldreich, and S. Goldwasser,

“Incremental cryp-tography: The case of hashing and

signing,” in Proc. 14th Annu. Int. Cryptol. Conf., Adv.

Cryptol., 1994, pp. 216–233

[10] C. Sayers and A. Karp, “Computing the digest of an

RDF graph,” Mobile and Media Systems Laboratory, HP

Laboratories, Palo Alto, USA, Tech. Rep. HPL-2003-

235(R.1), 2004.

[11] R. Phan and D. Wagner, “Security considerations for

incremental hash functions based on pair block chaining,”

Comput. Security, vol. 25, no. 2, pp. 131–136, 2006

