
International Journal of Engineering Research in Computer Science and

Engineering (IJERCSE) Vol 3, Issue 2, February 2016

 73

Abstract- Outsourcing to cloud is now so common due to its enhanced features. Different services can be outsourced and one such

useful service is computation. As with outsourcing, the data owners are always concerned about the data they share with a third

party. Security and privacy of data are the most important concerns of the data owner. In order to protect the data inside the

processor of a third party a framework called the HEROIC framework (Homomorphically EncRypted One Instruction Computer)

was developed. Single instruction architecture and homomorphism made it stronger. In this framework partially homomorphic

scheme was introduced which supported only additive homomorphism. This paper suggests a fully homomorphic scheme which

makes the HEROIC framework more secure and time efficient. The scheme supports both additive and multiplicative

homomorphism.

Index Terms— HEROIC framework, homomorphism, outsourcing, single instruction architecture

I. INTRODUCTION

 Cloud provides an environment that can be

accessed by a person with an authorization. The different

services offered by cloud include paas (platform as a

service), iaas (infrastructure as a service) and saas (software

as a service).the different applications of cloud are

developing due to the low maintenance and up gradation

cost for the cloud user. One such application is outsourcing

computing [1] to cloud. Here the data owner is having

advantage of low memory usage, time and cost efficiency.

These features make the outsourcing spread from small tax

computation to large firms outsourcing bigger coding to

third party. Outsourcing computations to cloud force the

data owner to share the data and program code with the third

party as shown in figure 1. The sharing of data with a third

party brings in the complex face of data security. The data

owners are always aware of possible attacks that manipulate

or hinder the safe sharing of data with the third party.

One could easily choose some strong cryptographic

method to overcome such attacks. The data owner could

possibly make his data securely reach the third party. In

normal cryptographic methods the data before processing

need to go through the decryption process. That is the data,

which the data owner safely send to the third party is

accessible inside the processor in its sensitive form. This

data is vulnerable to large number of attacks. The data may

be vulnerable to different eavesdropping. One such attack is

the Hardware Trojan attack in which the Trojan circuits of

the processor look physically same but the physical

composition of material used is modified. In order to

overcome such processor based attacks the data owner uses

homomorphic encryption scheme [2]. These are public key

cryptosystem schemes which allow manipulation of data in

its encrypted form. The instructions to be executed are also

in the encrypted form. The main drawback of this is that the

current computer architectures (CISC and RISC) are not

meant for data security or privacy rather for performance

and efficiency.

 Fig 1: Outsourcing computation

The lack of architecture supporting encrypted

instruction led to the design of HEROIC framework [3]. In

this the features of homomorphism and single instruction are

being used. The single instruction architecture [4] being

Turing complete [5] gave the solution for understanding the

instructions in its encrypted form. Here in this framework it

used partially homomorphic scheme, Paillier scheme. In this

framework only additive computations can be performed. In

order to perform computations like multiplication n

additions are to be performed. This main drawback is

cleared in this paper by replacing the partially homomorphic

scheme by a fully homomorphic scheme. In this scheme a

somewhat homomorphic scheme is converted into fully

homomorphic scheme [6] using Gentry’s scheme [7]. The

different features of the paper like single instruction and

homomorphic scheme are included in the coming sections.

Section III gives a detailed view of homomorphism and

Section IV brings out the powerfulness and simplicity of

[1]
Sreelekshmi S,

[2]
 Devi Dath

[1]

 PG scholar
[2]

 Assistant Professor

College Of Engineering Perumon, Kerala, India
[1]

sreelekshmis2392@gail.com ,
[2]

 devinirmal05@gmail.com

Fully Homomorphic HEROIC Framework

mailto:sreelekshmis2392@gail.com
mailto:devinirmal05@gmail.com

International Journal of Engineering Research in Computer Science and

Engineering (IJERCSE) Vol 3, Issue 2, February 2016

 74

single instruction architecture. Section V gives the

architecture of the fully homomorphic framework and its

design considerations. The rest of the paper is organized as

Section VI describing the experimental results and finally to

the conclusion and directions to future work.

II. RELATED WORKS

Different schemes where proposed to protect data

inside the processor like Fletcher [8] proposed a block

cipher for encryption outputs of CPU. It slows down the

system by 12 to 13.5 times. Another such scheme was

suggested by Suh [9] which proposes a tamper resistant

processor. This scheme had a drawback of high overhead.

These schemes are vulnerable to side channel attacks. The

most recent development in this field is the HEROIC

(Homomorphically Encrypted One Instruction Computer)

framework. This scheme uses single instruction architecture

and homomorphic features to secure outsourced data. The

main drawback of this system is the use for partially

homomorphic scheme which reduces the efficiency of the

system.

III. HOMOMORPHISM

In order to protect data, the different schemes can

be used to encrypt. This conversion of data into a form

unknown is called cipher text. The encryption can be either

symmetric or asymmetric. In symmetric encryption same

key same key is shared by both sender and receiver. It is a

faster system and it requires sharing a single key in a secure

way. In case of asymmetric encryption it uses two different

keys instead of one key. It is slower compared to the

symmetric scheme. Homomorphism is a type of asymmetric

encryption.

The homomorphic encryption [10] allows

meaningful manipulation of data in encrypted data without

revealing the actual plain data. The homomorphism

encryption scheme consists of four algorithms.

Key Gen ()

 The security parameter as the input and two keys

(sk, pk) are obtained as output where sk is the

secret key and pk is the public key

Encrypt (pk, π)

 The public key (pk) and plaintext (π) are the inputs

to the algorithm and output is the cipher text (ψ)

Decrypt (sk, ψ)

 The private key (sk) and cipher text (ψ) are the

inputs to the algorithm and output is the plaintext

(π)

Evaluate (pk, C, ψ)

 The public key (pk), a circuit C with t inputs and a

set of cipher texts and plaintext (ψ1, ψ2…. ψt) are

the inputs to the algorithm and output is the cipher

text (ψ)

The different types of homomorphic algorithm

include partial homomorphism, somewhat

homomorphism and fully homomorphism as show in

figure 2. Partially homomorphic scheme support either

additive or multiplicative homomorphism. In case of

somewhat homomorphism limited number of additions

and multiplication before decryption fails. Depth of

decryption is limited in case of somewhat

homomorphism. A scheme is fully homomorphic if it

correctly evaluates all circuits and the decryption circuit

is bounded to some fixed polynomial.

Fig. 2 Types of homomorphism

 The fully homomorphic scheme is generated from

a somewhat homomorphic scheme by using Gentry’s

transformation. It is a simple mechanism which merely

supports only addition and multiplication over integers. The

somewhat homomorphic algorithm has four algorithms for

key generation, encryption, evaluation and decryption. The

algorithm can be defined as

Key Gen ()

 The security parameter as the input and two keys

(sk, pk) are obtained as output where sk is the secret

key and pk is the public key

 sk a random odd n bit number

 p= (2Z+1) ∩ [2
n-1

,2
n
)

 q0,….,qt = Z ∩ [0,2
ζ
 /sk]

 choose r0, … rt = Z ∩ [-2
γ
,2

γ
]

 X0=q0+p+2r0

 Xi=[qip+2ri]

 pk ={x0,…..xt)

Encrypt (pk, mЄ{0,1})

 r random set chosen from S subset of {1,2…, t} and

get cipher text as output

Decrypt

International Journal of Engineering Research in Computer Science and

Engineering (IJERCSE) Vol 3, Issue 2, February 2016

 75

 m’=[[c]p]2

 m’= (c mod 2) [c/p] mod 2

Evaluate (pk, C, c1…ct)

 The public key (pk), a circuit C with t inputs and a

set of cipher texts and plaintext (ψ1, ψ2…. ψt) are the

inputs to the algorithm and output is the cipher text

(ψ)

Squashing the decryption circuit can be done by

adding extra information to public key. The information can

be used to post process cipher text. For a somewhat

homomorphic scheme to be converted to fully homomorphic

it should be bootstrappable. Let ε be a homomorphic scheme

with security parameter and Cε () is a set of circuits with

respect to which it is correct. ε is bootstrappable if Dε () is

subset of Cε ()for every .

In somewhat homomorphic scheme the number of

computations is limited due to the increased noise

component in the cipher text. Increased noise term makes it

intolerable as it makes it difficult to get the correct

decrypted output. The depth of circuit or degree of

polynomial defines the number of operations that can be

performed correctly. To reduce the noise, instead of

evaluating cipher text and secret key as in normal

computation Gentry did the same homomorphically on the

encryption of those bits. Thus the obtained result is not

plaintext but a cipher text for the required plaintext as

shown in figure 3. This process is called cipher text refresh

procedure as it lowers the noise component of the actual

cipher text.

Fig. 3 Cipher texts refresh procedure

In order to make the scheme fully homomorphic it

should be bootstrappable for which the depth of circuits that

can be evaluated in cipher text should exceed that of

decryption polynomial. For attaining such a situation Gentry

used a sparse subset of values on addition gives the secret

keys rather than the original secret key. This procedure is

known as squashing decryption.

IV. SINGLE INSTRUCTION MECHANISM

In HEROIC Framework the instructions are in the

encrypted form. The existing architectures like RISC and

CISC does not support the processing of encrypted

instructions. These architectures were designed for

performance and efficiency, security was never a design

option. These architectures bring down the security of

sensitive data as they may lead to eavesdrop. One of such

Trojan attack is the use of hardware Trojans [11] inside the

processor. This type of Trojan was developed by

modification of the material’s physical composition. Like

these virtually undetectable Trojans large number of attacks

are possible, which are of great threat to the sensitive data of

the data owner.

The need for different op codes is ruled out by the

use of single instruction architecture. The OISC (One

Instruction Set Computer) supports computations in the

encrypted domain. Single instruction architectures should be

Turing Complete so as to use it for computational

application. The idea of Turing Complete is that it should be

capable of recognizing any algorithm. The rules [12] that

define Turing Completeness are sequence rule, selection

rule and rule. The sequence rule defines the flow of the

control through instructions. The selection rule brings in the

idea of decision making, whether control should move to

next instruction or jump to another set of instructions.

Repetition rule helps in flow of control without a decision

making stage.

 The four basic computer instructions used to follow

the above mentioned rules are LOAD, STORE, INCrement

and GOTO. One instruction set computer supports only one

instruction. Micro operations of a single instruction can be

performed using the four instructions. These properties

make Single Instruction Architecture and alternative of

RISC. A wide variety of OISC variants are available.

Addleq, subleq, pleg are some commonly used variants.

The Subleq micro operation is a set of instruction

given as

Mem[B]=Mem[B]−Mem[A]

if Mem[B]<= 0then goto C

else goto next instruction

International Journal of Engineering Research in Computer Science and

Engineering (IJERCSE) Vol 3, Issue 2, February 2016

 76

 The memory value of B is subtracted from A and

based on the output the next instruction to be executed is

decided. If value is less or equal to zero the next instruction

stored in C is to be executed otherwise the succeeding

instruction is to be executed. The flow of control in subleq

instruction set is shown in Fig 4

Fig.4 Single instruction architecture flow chart

V. FRAMEWORK

The instruction and data that are to be used or send

to the third party for outsourcing are to be encrypted. For

securing the data and program even inside the processor it is

homomorphically encrypted. First of all the instruction of

the program code are converted to single instruction format.

The subleq complier is used for this purpose. It helps to

generate a set of three address values. The same program is

then encrypted with fully homomorphic scheme and these

two codes that single instruction are send to the third party.

The required data with same encryption is send to the third

party for outsourced computations. On receiving both

instruction and data the third party starts computation. Since

the computer architectures like CISC and RISC does not

support encrypted instruction format, single instruction code

generated. From the beginning of single instruction code

each line of three values are taken and performs Mem[B] =

Mem[B] - Mem[A] and if the value is less than or equal to

zero then the next instruction in memory location C is to be

executed. Otherwise the next instruction is to be executed

next. This helps in finding the correct flow of instructions

even if it has loops or goto statements.

Fig. 5 Third Party

Figure 5 and 6 shows the working of third party

and data owner respectively. One special case of

computation is the addition of two negative numbers.

Consider an example of two negative numbers -20 and -1. In

order to perform addition we take two’s complement of each

number that is, (2
16

-20) and (2
16

-1). The expected result is

(2
16

-21) and the result obtained will be (2
17

-21). To get

correct result an inverse modular multiplicative module is

implemented. The different design considerations that are

satisfied by the normal HEROIC framework are also

satisfied by this modified HEROIC framework. It provides a

more efficient computation than the existing one.

International Journal of Engineering Research in Computer Science and

Engineering (IJERCSE) Vol 3, Issue 2, February 2016

 77

Fig. 6 Data owner

VI. EXPERIMENTAL RESULT

 The comparison between existing HEROIC

framework and the new fully homomorphic framework is

done in this section.

Features
HEROIC

framework

Fully

homomorphic

framework

Scheme Paillier Scheme
Somewhat to fully

homomorphism

Speed Slow Faster

Supporting

computation
Only addition

Both addition and

multiplication

Table 1: Showing comparison with existing and suggested

systems.

A test for comparing the different execution time

between existing and suggested systems can be found as

follows. The fully homomorphic scheme is more efficient

than the partially homomorphic scheme. The multiplication

of two numbers based on the number of digits is taken as

test program and the result is obtained as shown in graph

below. The figure 7 shows the time efficiency of ne

algorithm compared to the existing one.

Fig.7 Graph showing execution time of different algorithms in

y axis and data size in terms of number of digits in x axis.

VII. CONCLUSION

The data security and privacy concerns of data

owner in outsourcing are reduced by this HEROIC

framework with fully homomorphism. A somewhat

homomorphic scheme is converted to the fully

homomorphic scheme using Gentry’s scheme. Fully

homomorphism supporting both additive and multiplicative

homomorphism improves the time efficiency of the existing

system. The single instruction architecture used helps in

understanding the existing encrypted instruction without

decrypting them.

The future work can be concentrated on further

improving the efficiency and security of the system.

Modifications in architecture and exploiting parallelism can

be other areas of attractions which could reduce overhead.

REFERENCES

[1] Wikipedia,https://en.wikipedia.org/wiki/Outsourcing

computing

[2] C. Fontaine and F. Galand, ”A survey of homomorphic

encryption for nonspecialists,” EURASIP Journal on

Information Security, vol. 2007, no. 1, pp. 26-35, 2007.

[3] Nektarios Georgios Tsoutsos, Michail Maniatakos

”HEROIC: Homomorphically EncRypted One

International Journal of Engineering Research in Computer Science and

Engineering (IJERCSE) Vol 3, Issue 2, February 2016

 78

Instruction Computer”

2014

[4] O. Mazonka and A. Kolodin,”A simple multi-processor

computer based on subleq,” arXiv preprint

arXiv:1106.2593, 2011

 [5] A. Teller,”Turing completeness in the language of

genetic programming with indexed memory,” in Proc.

1st IEEE Conf. Evol. Comput., Orlando, FL, USA,

1994, pp. 136-141.

[6] Marten van Dijk, Craig Gentry, Shai Halevi, Vinod

Vaikuntanathan, (2009), “Fully Homomorphic

Encryption over the Integers”, IACR Cryptology ePrint

Archive

[7] Craig Gentry, (2009). A fully homomorphic encryption

scheme. PhD thesis, Stanford University.

[8] C. W. Fletcher, M. van Dijk, and S. Devadas, “A

secure processor architecture for encrypted computation

on untrusted programs,” in Proc. ACM Workshop Scal.

Trust. Comput., Raleigh, NC, USA, 2012, pp. 3–8.

[9] [Online]. Available:

https://github.com/mikeivanov/paillier [48] G. E. Suh, D.

Clarke, B. Gassend, M. van Dijk, and S.

https://github.com/mikeivanov/paillier

