
ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 3, Issue 10, October 2016

 13

Energy Efficient Utilization of Resources in Cloud

Computing Systems

[1]

Saurabh Kumar,
[2]

Bharti Vidhury,
[3]

Neha Bhadana

M .Tech Scholar, Department of Computer Science and Engineering,

Dr. A.P.J Abdul Kalam Technical University, Lucknow (U.P),

Abstract: -- Abstract the energy consumption of under-utilized resources, particularly in a cloud environment, accounts for a

substantial amount of the actual energy use. Inherently, a resource allocation strategy that takes into account resource utilization

would lead to better energy efficiency; this, in clouds, extends further with virtualization technologies in that tasks can be easily

consolidated. Task consolidation is an effective method to increase resource utilization and in turn reduces energy consumption.

Recent studies identified that server energy consumption scales linearly with (processor) resource utilization. This encouraging fact

further highlights the significant contribution of task consolidation to the reduction in energy consumption. However, task

consolidation can also lead to the freeing up of resources that can sit idling yet still drawing power. There have been some notable

efforts to reduce idle power draw, typically by putting computer resources into some form of sleep/power-saving mode. In this

paper, we present two energy-conscious task consolidation heuristics, which aim to maximize resource utilization and explicitly

take into account both active and idle energy consumption. Our heuristics assign each task to the resource on which the energy

consumption for executing the task is explicitly or implicitly minimized without the performance degradation of that task. Based on

our experimental results, our heuristics demonstrate their promising energy-saving capability.

Keywords:-- Cloud computing · Energy aware computing · Load balancing · Scheduling

I. INTRODUCTION

 Cloud computing has become a very promising

paradigm for both consumers and providers in various

fields of endeavor, such as science, engineering and

business. A cloud typically consists of multiple resources

possibly distributed and heterogeneous. Although the

notion of a cloud existed in one form or another for some

time now (its roots can be traced back to the mainframe

era [1]), however, recent advances in virtualization

technologies in particular have made it much more

compelling compared to the time when it was first

introduced. The adoption and deployment of clouds has

many attractive benefits, such as scalability and

reliability; however, clouds in essence aim to deliver

more economical solutions to both parties (consumers

and providers). By economical we mean that consumers

only need to pay for what resources they need while

providers can capitalize poorly utilized resources. From

a provider‘s perspective, the maximization of the profit

is a high priority. In this regard, the minimization of

energy consumption plays a crucial role. Moreover,

energy consumption can be much reduced by increasing

resource utilization. Energy usage in large-scale

computer systems like clouds also yields many other

serious issues including carbon emissions and system

reliability.

II MODELS

In this section, we describe the cloud,

application and energy models, and define the task

consolidation problem targeted in this work. The details

of the model presented in this section focus on resource

management characteristics and issues from a cloud

provider‘s perspective.

2.1 Cloud model

The target system used in this work consists of a set R of

r resources/processors that are fully interconnected in the

sense that a route exists between any two individual

resources (Fig. 1). We assume that resources are

homogeneous in terms of their computing capability and

capacity; this can be justified by using virtualization

technologies. Nowadays, as many-core processors and

virtualization tools (e.g., Linux KVM, VMware

Workstation & VMware Fusion, Xen, Parallels Desktop

for Mac, VirtualBox) .

2.2 Application model

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 3, Issue 10, October 2016

 14

 Services offered by cloud providers can be classified

into software as a service (SaaS), platform as a service

(PaaS) and infrastructure as a service (IaaS). Note that,

when instances of these services are running, they can be

regarded as computational tasks or simply tasks. While

IaaS requests are typically tied with predetermined time

frames (e.g., pay-per-hour), requests of SaaS and PaaS

are often not strongly tied with a fixed amount of time

(e.g., pay-per-use). However, it can be possible to have

estimates for service requests for SaaS and PaaS based

on historical data and/or consumer supplied service

information. Service requests in our study arrive in a

Poisson process and the requested processing time

follows exponential distribution. We assume that the

processor/CPU usage (utilization) of each service request

can be identifiable. It is also assumed that disk and

memory use correlates with processor utilization [6].

Hereafter, application, task and service are used

interchangeably.

2.3 Energy model

Our energy model is devised on the basis that processor

utilization has a linear relationship with energy

consumption. In other words, for a particular task, the

information on its processing time and processor

utilization is sufficient to measure the Energy efficient

utilization of resources in cloud computing systems

energy consumption for that task. For a resource ri at any

given time, the utilization Ui is defined as Ui =n j=1 ui,j

(1) where n is the number of tasks running at that time

and ui,j is the resource usage of a task tj . The energy

consumption Ei of a resource ri at any given time is

defined as Ei = (pmax − pmin) × Ui + pmin (2) where

pmax is the power consumption at the peak load (or

100% utilization) and pmin is the minimum power

consumption in the active mode (or as low as 1%

utilization). In this study, we assume that resources in

the target system are incorporated with an effective

power-saving mechanism (e.g., [8]) for idle time slots;

this results in the difference in energy consumption of

resources between active and idle states being

significant. Specifically, the energy consumption of an

idle resource at any given time is set to 10% of pmin.

Since the overhead to turn off and back on takes a

nonnegligible amount of time, this option for idle

resources is not considered in our

2.4 Task consolidation problem

The task consolidation (also known as server/workload

consolidation) problem in this study is the process of

assigning a set N of n tasks (service requests or simply

services) to a set R of r cloud resources—without

violating time constraints—aiming to maximize resource

utilization, ultimately to minimize energy consumption.

Here, time constraints directly relate to resource usage

associated with tasks; that is, the resource allocated to a

particular task must sufficiently provide the resource

usage of that task. For example, a task with its resource

usage requirement of 60% cannot be assigned to a

resource for which the resource utilization at the time of

that task‘s arrival is 50%.

III RELATED WORK

As cloud and green computing paradigms are

closely related and they are gaining their momentum, the

energy efficiency of clouds has become one of most

crucial research issues. Advancements in hardware

technologies [10], such as low–power CPUs, solid state

drives, and energy–efficient computer monitors have

helped relieve this energy issue to a certain degree. In

the meantime, there also have been a considerable

amount of research conducted using software

approaches, such as scheduling and resource allocation

[11–17] and task consolidation [18–21]. The scheduling

and resource allocation approach is primarily enabled

using slack reclamation with the support of dynamic

voltage/frequency scaling (DVFS; more specifically

‗processor undervolting‘) [22] incorporated into many

recent commodity Y.C. Lee, A.Y. Zomaya processors.

This technique temporarily decreases voltage supply

level at the expense of lowering processing speed. Slack

reclamation is made possible primarily by recent DVFS-

enabled processors and the parallel nature of the

deployed tasks. For example, when the execution of a

task is dependent on two predecessor tasks and these two

tasks have different completion times, the predecessor

task with an earlier completion time can afford

additional run–time (slack); this slack can then be

exploited using undervolting for energy saving. Since

most DVFS-based energy-aware scheduling and

resource allocation techniques are static (offline)

algorithms with an assumption of tight coupling between

tasks and resources (i.e., local tasks and dedicated

resources),

IV TASK CONSOLIDATION ALGORITHM

Consolidation is an effective means to manage

resources particularly in clouds both in the short and

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 3, Issue 10, October 2016

 15

long terms. In the short term case, volume flux on

incoming tasks can be ―energy-efficiently‖ dealt with by

reducing the number of active resources, and putting

redundant resources into a power-saving mode or even

turning off some idle resources systematically. In the

long term case, cloud infrastructure providers can better

model/provision power and resources; this alleviates the

burden of excessive operational costs due to over

provisioning. The focus in this paper on the short term

case, even though task consolidation results our

algorithms deliver can be used as an estimator in the

long term provisioning case. In this section, we present

two energy-conscious task consolidation algorithms,

ECTC and MaxUtil. They are in fact described side by

side since they share several common features with the

main difference being whether energy consumption is

taken into account explicitly or implicitly. In other

words, MaxUtil makes task consolidation decisions

based on resource utilization, which is a key indicator for

energy

4.1 Algorithm description

 Both ECTC and MaxUtil follow similar steps

(Fig. 2) with the main difference being their cost

functions. In a nutshell, for a given task, two heuristics

check every resource and identify the most energy-

efficient resource for that task. The evaluation of the

most energy-efficient resource is dependent on the used

heuristic, or more specifically the cost function

employed by the heuristic. The cost function of ECTC

computes the actual energy consumption of the current

task subtracting the minimum energy consumption

(pmin)—required to run a task—if there are other tasks

running in parallel with that task. That is, the energy

consumption of the overlapping time period among those

tasks and the current task is explicitly taken into account.

The cost function tends to discriminate the task being

executed alone. The value fi,j of a task tj on a resource ri

obtained using the cost function of ECTC is defined as:

fi,j = (p × uj + pmin) × τ0 − (p × uj + pmin) × τ1 + p ×

uj × τ2

4.2 Performance analysis and discussion

As incorporated into our energy model, energy

consumption is directly proportional to resource

utilization. At a glimpse, for any two task-resource

matches, the one with a higher utilization may be

selected. However, since the determination of the right

match is not entirely dependent on the current task,

ECTC makes its decisions based rather on the (sole)

energy consumption of that task. In Fig. 3a, task 3 (t3)

arrives at time 14 after tasks 0, 1 and 2, and it is assigned

onto resource 1 (r1) based on energy consumption (40

with pmax and pmin of 30 and 20, respectively), even

though the utilization of resource 0 (r0) is higher (64%,

but energy consumption is 80) if t3 is assigned on r0. On

the other hand, there are cases in which matches with

higher utilization in fact (lead to) consume less energy

(Fig. 4b). MaxUtil assigns t3 onto r0 and this leads to a

better match for t4 compared with ECTC (Fig. 3b).

These contrary situations are often exhibited due to the

dynamic nature of clouds—the decision for a given

newly arrived task is made based on the current state of

task-resource bindings, and thus the decision is only a

local optimum. The superiority of performance of our

heuristics can be hardly determined since the quality of

their task consolidation decisions in any given period of

time may differ with characteristics of subsequent tasks

after that period.

V CONCLUSION

Task consolidation particularly in clouds has

become an important approach to streamline resource

usage and in turn improve energy efficiency. Based on

the fact that resource utilization directly relates to energy

consumption, we have successfully modeled their

relationship and developed two energy-conscious task

consolidation heuristics. The cost functions incorporated

into these heuristics effectively capture energy-saving

possibilities and their capability has been verified by our

evaluation study. The results in this study should not

have only a direct impact on the reduction of electricity

bills of cloud infrastructure providers, but also imply

possible savings (with better resource provisioning) in

other operational costs (e.g., rent for floor space). Of

course, the reduction in the carbon footprint of clouds is

another important spinoff. Acknowledgements Professor

Zomaya‘s work is supported by an Australian Research

Grant DP1097110.

REFERENCES

1. Parkhill D (1966) The challenge of the computer

utility. Addison-Wesley Educational, Reading

2. Koomey JG (2007) Estimating total power

consumption by servers in the U.S. and the world.

Lawrence Berkeley National Laboratory, Stanford

University

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 3, Issue 10, October 2016

 16

3. Koch G (2005) Discovering multi-core: Extending the

benefits of Moore‘s law. Technology@Intel Magazine,

(http://www.intel.com/technology/magazine/computing/

multi-core-0705.pdf)

4. Barroso L, Holzle U (2007) The case for energy-

proportional computing. IEEE Comput

5. Bohrer P, Elnozahy E, Keller T, Kistler M, Lefurgy C,

Rajamony R (2002) The case for power management in

web servers. Power Aware Comput 261–289

6. Fan X, Weber X-D, Barroso LA (2007) Power

provisioning for a warehouse-sized computer. In: Proc

34th annual international symposium on computer

architecture (ISCA ‘07), 2007, pp 13–23

7. Lefurgy C, Wang X, Ware M (2007) Server-level

power control. In: Proc IEEE international conference on

autonomic computing, Jan 2007

8. Meisner D, Gold BT, Wenisch TF (2009) PowerNap:

eliminating server idle power. In: Proc 14th international

conference on architectural support for programming

languages and operating systems (ASPLOS ‘09), 2009,

pp 205–216

9. Microsoft Inc (2009) Explore the features:

performance. http://www.microsoft.com/windows/

windows-vista/features/performance.aspx

10. Venkatachalam V, Franz M (2005) Power reduction

techniques for microprocessor systems. ACM Comput

Surv 37(3):195–237

11. Lee YC, Zomaya AY (2009) Minimizing energy

consumption for precedence-constrained applications

using dynamic voltage scaling. In: Proc the international

symposium on cluster computing and the grid (CCGRID

‘09), 2009, pp 92–99

12. Kim KH, Buyya R, Kim J (2007)

http://www.intel.com/technology/magazine/computing/multi-core-0705.pdf
http://www.intel.com/technology/magazine/computing/multi-core-0705.pdf

