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Abstract: -- Abstract the energy consumption of under-utilized resources, particularly in a cloud environment, accounts for a 

substantial amount of the actual energy use. Inherently, a resource allocation strategy that takes into account resource utilization 

would lead to better energy efficiency; this, in clouds, extends further with virtualization technologies in that tasks can be easily 

consolidated. Task consolidation is an effective method to increase resource utilization and in turn reduces energy consumption. 

Recent studies identified that server energy consumption scales linearly with (processor) resource utilization. This encouraging fact 

further highlights the significant contribution of task consolidation to the reduction in energy consumption. However, task 

consolidation can also lead to the freeing up of resources that can sit idling yet still drawing power. There have been some notable 

efforts to reduce idle power draw, typically by putting computer resources into some form of sleep/power-saving mode. In this 

paper, we present two energy-conscious task consolidation heuristics, which aim to maximize resource utilization and explicitly 

take into account both active and idle energy consumption. Our heuristics assign each task to the resource on which the energy 

consumption for executing the task is explicitly or implicitly minimized without the performance degradation of that task. Based on 

our experimental results, our heuristics demonstrate their promising energy-saving capability.  
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I. INTRODUCTION 

 

 Cloud computing has become a very promising 

paradigm for both consumers and providers in various 

fields of endeavor, such as science, engineering and 

business. A cloud typically consists of multiple resources 

possibly distributed and heterogeneous. Although the 

notion of a cloud existed in one form or another for some 

time now (its roots can be traced back to the mainframe 

era [1]), however, recent advances in virtualization 

technologies in particular have made it much more 

compelling compared to the time when it was first 

introduced. The adoption and deployment of clouds has 

many attractive benefits, such as scalability and 

reliability; however, clouds in essence aim to deliver 

more economical solutions to both parties (consumers 

and providers). By economical we mean that consumers 

only need to pay for what resources they need while 

providers can capitalize poorly utilized resources. From 

a provider‘s perspective, the maximization of the profit 

is a high priority. In this regard, the minimization of 

energy consumption plays a crucial role. Moreover, 

energy consumption can be much reduced by increasing 

resource utilization. Energy usage in large-scale 

computer systems like clouds also yields many other 

serious issues including carbon emissions and system 

reliability. 

 

II MODELS 

 

In this section, we describe the cloud, 

application and energy models, and define the task 

consolidation problem targeted in this work. The details 

of the model presented in this section focus on resource 

management characteristics and issues from a cloud 

provider‘s perspective.  

 

2.1 Cloud model 

The target system used in this work consists of a set R of 

r resources/processors that are fully interconnected in the 

sense that a route exists between any two individual 

resources (Fig. 1). We assume that resources are 

homogeneous in terms of their computing capability and 

capacity; this can be justified by using virtualization 

technologies. Nowadays, as many-core processors and 

virtualization tools (e.g., Linux KVM, VMware 

Workstation & VMware Fusion, Xen, Parallels Desktop 

for Mac, VirtualBox) . 

 

2.2 Application model 
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 Services offered by cloud providers can be classified 

into software as a service (SaaS), platform as a service 

(PaaS) and infrastructure as a service (IaaS). Note that, 

when instances of these services are running, they can be 

regarded as computational tasks or simply tasks. While 

IaaS requests are typically tied with predetermined time 

frames (e.g., pay-per-hour), requests of SaaS and PaaS 

are often not strongly tied with a fixed amount of time 

(e.g., pay-per-use). However, it can be possible to have 

estimates for service requests for SaaS and PaaS based 

on historical data and/or consumer supplied service 

information. Service requests in our study arrive in a 

Poisson process and the requested processing time 

follows exponential distribution. We assume that the 

processor/CPU usage (utilization) of each service request 

can be identifiable. It is also assumed that disk and 

memory use correlates with processor utilization [6]. 

Hereafter, application, task and service are used 

interchangeably.  

 

2.3 Energy model  

Our energy model is devised on the basis that processor 

utilization has a linear relationship with energy 

consumption. In other words, for a particular task, the 

information on its processing time and processor 

utilization is sufficient to measure the Energy efficient 

utilization of resources in cloud computing systems 

energy consumption for that task. For a resource ri at any 

given time, the utilization Ui is defined as Ui =n j=1 ui,j 

(1) where n is the number of tasks running at that time 

and ui,j is the resource usage of a task tj . The energy 

consumption Ei of a resource ri at any given time is 

defined as Ei = (pmax − pmin) × Ui + pmin (2) where 

pmax is the power consumption at the peak load (or 

100% utilization) and pmin is the minimum power 

consumption in the active mode (or as low as 1% 

utilization). In this study, we assume that resources in 

the target system are incorporated with an effective 

power-saving mechanism (e.g., [8]) for idle time slots; 

this results in the difference in energy consumption of 

resources between active and idle states being 

significant. Specifically, the energy consumption of an 

idle resource at any given time is set to 10% of pmin. 

Since the overhead to turn off and back on takes a 

nonnegligible amount of time, this option for idle 

resources is not considered in our 

 

2.4 Task consolidation problem  

The task consolidation (also known as server/workload 

consolidation) problem in this study is the process of 

assigning a set N of n tasks (service requests or simply 

services) to a set R of r cloud resources—without 

violating time constraints—aiming to maximize resource 

utilization, ultimately to minimize energy consumption. 

Here, time constraints directly relate to resource usage 

associated with tasks; that is, the resource allocated to a 

particular task must sufficiently provide the resource 

usage of that task. For example, a task with its resource 

usage requirement of 60% cannot be assigned to a 

resource for which the resource utilization at the time of 

that task‘s arrival is 50%. 

 

III RELATED WORK 

 

As cloud and green computing paradigms are 

closely related and they are gaining their momentum, the 

energy efficiency of clouds has become one of most 

crucial research issues. Advancements in hardware 

technologies [10], such as low–power CPUs, solid state 

drives, and energy–efficient computer monitors have 

helped relieve this energy issue to a certain degree. In 

the meantime, there also have been a considerable 

amount of research conducted using software 

approaches, such as scheduling and resource allocation 

[11–17] and task consolidation [18–21]. The scheduling 

and resource allocation approach is primarily enabled 

using slack reclamation with the support of dynamic 

voltage/frequency scaling (DVFS; more specifically 

‗processor undervolting‘) [22] incorporated into many 

recent commodity Y.C. Lee, A.Y. Zomaya processors. 

This technique temporarily decreases voltage supply 

level at the expense of lowering processing speed. Slack 

reclamation is made possible primarily by recent DVFS-

enabled processors and the parallel nature of the 

deployed tasks. For example, when the execution of a 

task is dependent on two predecessor tasks and these two 

tasks have different completion times, the predecessor 

task with an earlier completion time can afford 

additional run–time (slack); this slack can then be 

exploited using undervolting for energy saving. Since 

most DVFS-based energy-aware scheduling and 

resource allocation techniques are static (offline) 

algorithms with an assumption of tight coupling between 

tasks and resources (i.e., local tasks and dedicated 

resources),  

 

IV TASK CONSOLIDATION ALGORITHM 

 

Consolidation is an effective means to manage 

resources particularly in clouds both in the short and 
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long terms. In the short term case, volume flux on 

incoming tasks can be ―energy-efficiently‖ dealt with by 

reducing the number of active resources, and putting 

redundant resources into a power-saving mode or even 

turning off some idle resources systematically. In the 

long term case, cloud infrastructure providers can better 

model/provision power and resources; this alleviates the 

burden of excessive operational costs due to over 

provisioning. The focus in this paper on the short term 

case, even though task consolidation results our 

algorithms deliver can be used as an estimator in the 

long term provisioning case. In this section, we present 

two energy-conscious task consolidation algorithms, 

ECTC and MaxUtil. They are in fact described side by 

side since they share several common features with the 

main difference being whether energy consumption is 

taken into account explicitly or implicitly. In other 

words, MaxUtil makes task consolidation decisions 

based on resource utilization, which is a key indicator for 

energy 

 

4.1 Algorithm description 

 Both ECTC and MaxUtil follow similar steps 

(Fig. 2) with the main difference being their cost 

functions. In a nutshell, for a given task, two heuristics 

check every resource and identify the most energy-

efficient resource for that task. The evaluation of the 

most energy-efficient resource is dependent on the used 

heuristic, or more specifically the cost function 

employed by the heuristic. The cost function of ECTC 

computes the actual energy consumption of the current 

task subtracting the minimum energy consumption 

(pmin)—required to run a task—if there are other tasks 

running in parallel with that task. That is, the energy 

consumption of the overlapping time period among those 

tasks and the current task is explicitly taken into account. 

The cost function tends to discriminate the task being 

executed alone. The value fi,j of a task tj on a resource ri 

obtained using the cost function of ECTC is defined as: 

fi,j = (p × uj + pmin) × τ0  − (p × uj + pmin) × τ1 + p × 

uj × τ2   

 

4.2 Performance analysis and discussion  

As incorporated into our energy model, energy 

consumption is directly proportional to resource 

utilization. At a glimpse, for any two task-resource 

matches, the one with a higher utilization may be 

selected. However, since the determination of the right 

match is not entirely dependent on the current task, 

ECTC makes its decisions based rather on the (sole) 

energy consumption of that task. In Fig. 3a, task 3 (t3) 

arrives at time 14 after tasks 0, 1 and 2, and it is assigned 

onto resource 1 (r1) based on energy consumption (40 

with pmax and pmin of 30 and 20, respectively), even 

though the utilization of resource 0 (r0) is higher (64%, 

but energy consumption is 80) if t3 is assigned on r0. On 

the other hand, there are cases in which matches with 

higher utilization in fact (lead to) consume less energy 

(Fig. 4b). MaxUtil assigns t3 onto r0 and this leads to a 

better match for t4 compared with ECTC (Fig. 3b). 

These contrary situations are often exhibited due to the 

dynamic nature of clouds—the decision for a given 

newly arrived task is made based on the current state of 

task-resource bindings, and thus the decision is only a 

local optimum. The superiority of performance of our 

heuristics can be hardly determined since the quality of 

their task consolidation decisions in any given period of 

time may differ with characteristics of subsequent tasks 

after that period. 

 

V CONCLUSION 

 

Task consolidation particularly in clouds has 

become an important approach to streamline resource 

usage and in turn improve energy efficiency. Based on 

the fact that resource utilization directly relates to energy 

consumption, we have successfully modeled their 

relationship and developed two energy-conscious task 

consolidation heuristics. The cost functions incorporated 

into these heuristics effectively capture energy-saving 

possibilities and their capability has been verified by our 

evaluation study. The results in this study should not 

have only a direct impact on the reduction of electricity 

bills of cloud infrastructure providers, but also imply 

possible savings (with better resource provisioning) in 

other operational costs (e.g., rent for floor space). Of 

course, the reduction in the carbon footprint of clouds is 

another important spinoff. Acknowledgements Professor 

Zomaya‘s work is supported by an Australian Research 

Grant DP1097110. 
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