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Abstract: -- Combinatorial Interaction Testing (CIT) is a black-box testing technique which tests the software with all required 

combinations to detect faults. The importance of CIT is to reduce the software testing cost and increasing the effectiveness. In the 

existing literature, there are primarily two tools they are Covering Arrays by Simulated Annealing (CASA) and Advanced 

Combinatorial Interaction Testing System (ACTS). Among them, ACTS is used to build the t-way test sets. It maintains the 

generation of a test set where ‘t’ value ranging from 1 to 6 which allows the user to identify constraints and must be satisfied to be 

legal. It is used to generate covering array faster in which constraints play an important role to increase the efficiency. Constraints 

are limitations which should be satisfied by a set. By this it is easy to find a test suite which increases the fault detection rates. The 

drawback here is if constraints are increased, then it is difficult to apply Combinatorial Testing which is not efficient. So, in the 

proposed work to overcome this drawback and to increase the efficiency certain invalid combinations should be removed from the 

test set. Therefore, the efficiency is increased by decreasing the number of constraints. 

 
 

I. INTRODUCTION 
  

The Combinatorial Testing (CT) is a very 

effective software testing strategy, which is applied to 

the combinatorial design. In CT, more faults are created 

by interactions and the source code access is not 

required. Assume a system having „k‟ parameters where 

all combinations to be covered at least once. In t-way 

Combinatorial Testing, when the test parameters are 

designed correctly, all defects are caused by less than „t‟ 

parameters. To test a test suite its strength depends upon 

the level of interactions. Interactions at higher strengths 

can detect the faults which are not covered by lower 

strengths. To detect the faults earlier CIT makes a set of 

test cases to be prioritised. 

 

ACTS generate a T-way test set up to 6-way 

coverage and the IPOG is the main algorithm for the 

generation of tests which supports features such as 

handling a constraint and generating a mixed strength 

test. ACTS has mainly two modes to generate a test set 

they are scratch and extend. If a test set is built from 

scratch, it is a scratch mode and if an existing test set is 

extended, it is an extend mode. In most systems, 

constraints may occur and the condition is that some 

combinations are invalid. So, ignoring constraints leads 

to invalid test. Invalid combinations should be removed 

from the test set. Assume a system having p1, p2, ...., 

p10 in which a default structure is defined for all 

parameters using strength 2. For instance, create a 

relation having four parameters p2, p4, p5, p7¬ using 

strength 3. If they are adjacent, then the 3-way 

interactions can prevent defects.   

 

ACTS generate an existing test set, but it is 

incomplete for some recently included parameters and 

values or test strength is increased. To save the earlier 

effort in the testing process the existing test set should be 

extended. Based on the user‟s observation, if certain 

parameters are having a higher extent, then additional 

relations can be created. The IPOG strategy is 

generalised from pairwise to multi-way testing. First, as 

practical applications have arbitrary configurations it is 

not necessary to lay restrictions on the system 

configuration. Second, it must compromise with a large 

number of interactions.  

 

II. RELATED WORK 

  

Covering Arrays by Simulated Annealing 

(CASA) is freely available tool to handle constraints 

which are explicitly specified by the user. It is used to 

generate smaller covering arrays and also to avoid 

experimental bias. The Automatic Efficient Test 

Generator (AETG) can complete the partial test cases by 
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filling the values for the missing fields. It is most widely 

used tool for generating a test suite for Combinatorial 

Testing. They construct a set of tests by which each test 

case can generate as many uncovered combinations as 

possible. It is a one-row-at-a-time variation where a 

single row of the array is constructed at each step until it 

covers all T-sets. Combinatorial Test services (CTS) is 

used for mathematical constructions to generate covering 

arrays by which the computations involved use typically 

lightweight and they are immune to any combinatorial 

effect. In some special cases, they are extremely fast and 

can produce optimal test sets. Orthogonal Array Test 

System (OATS) uses orthogonal array for 

PXM/StarMAIC system to generate test cases. The 

generated test cases can detect many errors that had 

never been detected previously. Advanced 

Combinatorial Testing System (ACTS) is used to 

generate test sets that ensure t-way coverage of input 

parameter values which can compute test for 2-way 

through 6-way interactions. It can produce large test 

suites but it is less effective at finding faults quickly. 

Hence, the efficiency is increased by decreasing the 

number of constraints. 

 

III. METHODOLOGY 

  

In Combinatorial Testing, the first step is to 

spread all parameter values of t-way combinations with 

strength „t‟ is to discover a set of test  cases. In testing, a 

huge test suite needs more testing cost and a higher 

coverage which extends the possibility of detecting 

failures. An ACTS model generates larger covering 

arrays. It generates the array that will consistently accept 

the test case which has larger number of uncovered t-

tuples. From the model, covering arrays are generated by 

rejecting single-valued parameters. For completeness, 

after generating an array each test case with single-

valued parameters is expanded. During the generation of 

a covering array it will also perform prioritisation. By 

this, the number of test suites will also be reduced. So 

that bugs can be detected earlier. The overall aim is to 

create a 2-dimensional array by covering all t-tuples. 

  

In a direct way, the models of CIT are created 

from test suites which reject the parameters having 

single value. The number of combinations depends upon 

the number of combinations and it consumes more time 

and harder to count the effort between the constraints. In 

the modelling phase, some values which are provided by 

constraints will be rejected from CIT. For example, the 

suitable test cases do not require additional 

combinations. 

  

After the covering array is generated, each of 

the test cases will be prioritised. It completes the 

iteration for test cases in which one test set will be 

retained to cover a large number of uncovered t-tuples 

and each time test suites are generated. Prioritisation can 

be calculated in two ways.   

 

1) Based on prioritisation criteria, the existing test suite 

of CT should be reordered and  

 

2) Considering the importance of combinations the 

ordering of the test should be generated for CT 

 
Figure 1: Procedure for detecting faults 

 

When the total number of uncovered t-tuples is 

maximum all test cases should be gathered and one 

should be picked randomly. An array is added which 

makes changes to cover uncovered t-way interactions. 

For a given test set, a Boolean mapping is considered in 

which mapping is done between test cases and t-tuples. 

Here, first the uncovered t-way interactions should be 

noticed and then recorded. When a test case is newly 

added this mapping should be updated in order to reduce 

the recounting of uncovered t-tuples. In testing, 

according to a standard test, the prioritisation outcome is 

usually a list of test cases in which higher priority test 

cases are performed earlier. After performing 

prioritisation, first the test cases which are important 

should be tested in order to detect faults earlier. 

  

The fault detection capacity is measured by 

each prioritised test suite. Here, the concentration is on 

finding faults by full test suites which not to be caused 
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by single or error value assignments. The test suites 

which are not present need to be tested with any other 

parameters. In failure diagnosis, it is necessary to inquire 

where to locate the failure and then remove it. For 

covering arrays with lowest strength the percentage of 

fault detection is not equal to that of covering arrays with 

higher strength because it contains more test cases. If 

both the time and resources are plentiful, the more faults 

can be detected and covering arrays with higher strength 

are also achieved. In a particular time limit, covering 

arrays having lowest strength will allow valid fault 

detection.  

A. Forbidden tuples method 

The forbidden tuples is an efficient method for 

handling constraints. Faults are caused only by few 

combinations of parameters. Their outcome has a great 

impact on CT. If all faults are caused by combining less 

than „n‟ parameters, then n-way combinatorial testing 

ensures that atmost all faults can be detected. It is used to 

check whether a complete test set is valid or not. 

However, forbidden tuples may be invalid for a partial 

test covering.  

 

Due to more constraints the efficiency is not 

achieved. So, the number of constraints should be 

reduced in order to increase the efficiency. The number 

of constraints can be reduced by removing invalid 

combinations from the t-way test set. During generation 

of a test constraints should be identified by the user 

before they are handled. So, there is one method to 

specify constraints as a set of forbidden tuples. A 

forbidden tuple is a combination of values which must 

not present in any test. Constraints can also be identified 

as a set of logical expressions and it is a condition which 

should be satisfied by every test. Logical expressions are 

briefer when compared to explicit enumeration of 

forbidden tuples.  

 

In constraint handling, a major step is to check 

for a validity i.e., checking whether all the constraints 

are satisfied by a test. This approach can be performed to 

check whether a test contains no forbidden tuples and 

needs to maintain the complete list of all the forbidden 

tuples. During the generation of test, his list should be 

first generated from the specified logic expressions and 

then used to perform validity check. A constraint solver 

is used to perform this check.  

 

B.  IPOG-C algorithm 

For a constraint solver an IPOG-C algorithm is 

used which modifies an existing combinatorial test 

generation algorithm called IPOG [7] to handle 

constraints and tries to reduce the number of constraints 

of the constraint solver. In some cases such a constraint 

cannot be removed but this algorithm tries to solve this 

problem as much as possible.  

 

This algorithm includes the following three 

optimizations:  

1) A t-way test set must cover all the valid t-way 

combinations. A t-way combination is valid if a test is 

covered by at least once. Checking the validity of each t-

way combination can be expensive and contains a large 

number of t-way combinations. So, if a test is found 

valid, then all the combinations correspond to this test 

will be valid, and those need not to be checked 

explicitly.  

 

2) When a validity check is performed, some constraints 

may not be valid and those need not to be checked. We 

use a notion called constraint relation graph to identify 

groups of constraints that are related to each other, which 

are then used to identify relevant constraints in a validity 

check. It builds a test set incrementally, i.e., covering 

one parameter at a time. This incremental approach is 

leveraged to further reduce the number of invalid 

constraints. 

 

3) Therefore, the number of invalid combinations will be 

reduced to the constraint solver by saving previous 

results.  

 

For this purpose the IPOG-C algorithm is 

implemented in a combinatorial test generation tool 

called ACTS.  To handle constraints IPOG algorithm is 

modified which is now known as IPOG-C algorithm to 

handle constraints. If no constraints are specified, the 

modified algorithm will generate the same test set as the 

original IPOG algorithm does.  

 

IPOG-C algorithm makes sure that (1) all the 

valid t-way tests are covered and (2) all the generated 

tests are valid. First a validity check is performed on 

each t-way combination to identify all the valid t-way 

combinations that need to be covered. Then the invalid 

combinations will be rejected by which the number of 

constraints will also be reduced.   
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1) For each valid combination of values first, add a test 

for the first„t‟ parameters and then for „t+1‟ parameters 

until it covers the t-way test set to the test set. 

 

2) For each test in the test set choose a valid combination 

that covers a large number of combination of values. 

 

3) Remove the test sets that have invalid combinations 

 

4)  For each combination in a set check whether it has 

been covered by the previous test sets 

 

5) If it already exists then that combination can be 

removed. 

 

6) Hence the resultant test set does not contain invalid 

combinations 

 

 

 

 

IV. RESULTS 

 

Practically an experiment is conducted by 

considering an organisation having projects and 

members to execute those projects. By taking these 

parameters a covering array is generated to accept which 

has large number of uncovered t-tuples. During the 

generation of a covering array it will also perform 

prioritisation the number of test suites will be reduced. 

Therefore, a 2-dimensional array is generated by 

covering all t-tuples. 

  

After generating covering arrays, a priority is 

assigned for each test case like 1, 2, 3, 4 and priorities 

can be named as warning, severe. Thus, the faults can be 

detected earlier and if the test cases are invalid, then 

those will be deleted from the test set. Then the faults 

which are pending and resolved can be displayed in the 

report. 

 

The graph represents the results between the 

existing and proposed system. The efficiency is based on 

the number of bugs that have been detected. In the 

existing system, both tools are used but ACTS is less 

effective at finding faults earlier. So, in the proposed 

system the efficiency is increased. Therefore, the 

efficiency of the system is achieved and in a graph the 

proposed results are shown. 

 

 
 

Figure 2: Result showing increased efficiency by 

detecting faults earlier in the proposed system 

 

V. CONCLUSIONS AND FUTURE WORK 

 

In this paper, a generalized forbidden tuple-

based constraint handling method is performed for 

combinatorial test generation. It is based on the notion of 

minimizing combinations which in turn reduces the 

number of constraints. A complete test is valid if and 

only if it does not contain invalid combinations. The 

experimental results show that the enhanced constraint 

handling method is performed better by detecting the 

faults earlier. 

 

Furthermore, if the number of forbidden tuples 

is large, then it is difficult for the user to enumerate 

them. This approach can be continued in the following 

two directions. First, the performance of this method can 

be still improved. Second, more experiments can be 

conducted to evalualte this performance. It can be further 

investigated by solving the problems like how to 

measure the complexity of a constraint and how to 

generate constraints of different complexity levels. 
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