
ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 3, Issue 10, October 2016

 85

“Advanced Combinatorial Interaction Testing

System by Increasing Efficiency and Producing

More Deterministic Results”

MD. Karishma,

M.Tech in Software Engineering,

Department of CSE,

JNTUA College of eEngineering, Ananthapuramu

Abstract: -- Combinatorial Interaction Testing (CIT) is a black-box testing technique which tests the software with all required

combinations to detect faults. The importance of CIT is to reduce the software testing cost and increasing the effectiveness. In the

existing literature, there are primarily two tools they are Covering Arrays by Simulated Annealing (CASA) and Advanced

Combinatorial Interaction Testing System (ACTS). Among them, ACTS is used to build the t-way test sets. It maintains the

generation of a test set where ‘t’ value ranging from 1 to 6 which allows the user to identify constraints and must be satisfied to be

legal. It is used to generate covering array faster in which constraints play an important role to increase the efficiency. Constraints

are limitations which should be satisfied by a set. By this it is easy to find a test suite which increases the fault detection rates. The

drawback here is if constraints are increased, then it is difficult to apply Combinatorial Testing which is not efficient. So, in the

proposed work to overcome this drawback and to increase the efficiency certain invalid combinations should be removed from the

test set. Therefore, the efficiency is increased by decreasing the number of constraints.

I. INTRODUCTION

The Combinatorial Testing (CT) is a very

effective software testing strategy, which is applied to

the combinatorial design. In CT, more faults are created

by interactions and the source code access is not

required. Assume a system having „k‟ parameters where

all combinations to be covered at least once. In t-way

Combinatorial Testing, when the test parameters are

designed correctly, all defects are caused by less than „t‟

parameters. To test a test suite its strength depends upon

the level of interactions. Interactions at higher strengths

can detect the faults which are not covered by lower

strengths. To detect the faults earlier CIT makes a set of

test cases to be prioritised.

ACTS generate a T-way test set up to 6-way

coverage and the IPOG is the main algorithm for the

generation of tests which supports features such as

handling a constraint and generating a mixed strength

test. ACTS has mainly two modes to generate a test set

they are scratch and extend. If a test set is built from

scratch, it is a scratch mode and if an existing test set is

extended, it is an extend mode. In most systems,

constraints may occur and the condition is that some

combinations are invalid. So, ignoring constraints leads

to invalid test. Invalid combinations should be removed

from the test set. Assume a system having p1, p2,,

p10 in which a default structure is defined for all

parameters using strength 2. For instance, create a

relation having four parameters p2, p4, p5, p7¬ using

strength 3. If they are adjacent, then the 3-way

interactions can prevent defects.

ACTS generate an existing test set, but it is

incomplete for some recently included parameters and

values or test strength is increased. To save the earlier

effort in the testing process the existing test set should be

extended. Based on the user‟s observation, if certain

parameters are having a higher extent, then additional

relations can be created. The IPOG strategy is

generalised from pairwise to multi-way testing. First, as

practical applications have arbitrary configurations it is

not necessary to lay restrictions on the system

configuration. Second, it must compromise with a large

number of interactions.

II. RELATED WORK

Covering Arrays by Simulated Annealing

(CASA) is freely available tool to handle constraints

which are explicitly specified by the user. It is used to

generate smaller covering arrays and also to avoid

experimental bias. The Automatic Efficient Test

Generator (AETG) can complete the partial test cases by

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 3, Issue 10, October 2016

 86

filling the values for the missing fields. It is most widely

used tool for generating a test suite for Combinatorial

Testing. They construct a set of tests by which each test

case can generate as many uncovered combinations as

possible. It is a one-row-at-a-time variation where a

single row of the array is constructed at each step until it

covers all T-sets. Combinatorial Test services (CTS) is

used for mathematical constructions to generate covering

arrays by which the computations involved use typically

lightweight and they are immune to any combinatorial

effect. In some special cases, they are extremely fast and

can produce optimal test sets. Orthogonal Array Test

System (OATS) uses orthogonal array for

PXM/StarMAIC system to generate test cases. The

generated test cases can detect many errors that had

never been detected previously. Advanced

Combinatorial Testing System (ACTS) is used to

generate test sets that ensure t-way coverage of input

parameter values which can compute test for 2-way

through 6-way interactions. It can produce large test

suites but it is less effective at finding faults quickly.

Hence, the efficiency is increased by decreasing the

number of constraints.

III. METHODOLOGY

In Combinatorial Testing, the first step is to

spread all parameter values of t-way combinations with

strength „t‟ is to discover a set of test cases. In testing, a

huge test suite needs more testing cost and a higher

coverage which extends the possibility of detecting

failures. An ACTS model generates larger covering

arrays. It generates the array that will consistently accept

the test case which has larger number of uncovered t-

tuples. From the model, covering arrays are generated by

rejecting single-valued parameters. For completeness,

after generating an array each test case with single-

valued parameters is expanded. During the generation of

a covering array it will also perform prioritisation. By

this, the number of test suites will also be reduced. So

that bugs can be detected earlier. The overall aim is to

create a 2-dimensional array by covering all t-tuples.

In a direct way, the models of CIT are created

from test suites which reject the parameters having

single value. The number of combinations depends upon

the number of combinations and it consumes more time

and harder to count the effort between the constraints. In

the modelling phase, some values which are provided by

constraints will be rejected from CIT. For example, the

suitable test cases do not require additional

combinations.

After the covering array is generated, each of

the test cases will be prioritised. It completes the

iteration for test cases in which one test set will be

retained to cover a large number of uncovered t-tuples

and each time test suites are generated. Prioritisation can

be calculated in two ways.

1) Based on prioritisation criteria, the existing test suite

of CT should be reordered and

2) Considering the importance of combinations the

ordering of the test should be generated for CT

Figure 1: Procedure for detecting faults

When the total number of uncovered t-tuples is

maximum all test cases should be gathered and one

should be picked randomly. An array is added which

makes changes to cover uncovered t-way interactions.

For a given test set, a Boolean mapping is considered in

which mapping is done between test cases and t-tuples.

Here, first the uncovered t-way interactions should be

noticed and then recorded. When a test case is newly

added this mapping should be updated in order to reduce

the recounting of uncovered t-tuples. In testing,

according to a standard test, the prioritisation outcome is

usually a list of test cases in which higher priority test

cases are performed earlier. After performing

prioritisation, first the test cases which are important

should be tested in order to detect faults earlier.

The fault detection capacity is measured by

each prioritised test suite. Here, the concentration is on

finding faults by full test suites which not to be caused

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 3, Issue 10, October 2016

 87

by single or error value assignments. The test suites

which are not present need to be tested with any other

parameters. In failure diagnosis, it is necessary to inquire

where to locate the failure and then remove it. For

covering arrays with lowest strength the percentage of

fault detection is not equal to that of covering arrays with

higher strength because it contains more test cases. If

both the time and resources are plentiful, the more faults

can be detected and covering arrays with higher strength

are also achieved. In a particular time limit, covering

arrays having lowest strength will allow valid fault

detection.

A. Forbidden tuples method

The forbidden tuples is an efficient method for

handling constraints. Faults are caused only by few

combinations of parameters. Their outcome has a great

impact on CT. If all faults are caused by combining less

than „n‟ parameters, then n-way combinatorial testing

ensures that atmost all faults can be detected. It is used to

check whether a complete test set is valid or not.

However, forbidden tuples may be invalid for a partial

test covering.

Due to more constraints the efficiency is not

achieved. So, the number of constraints should be

reduced in order to increase the efficiency. The number

of constraints can be reduced by removing invalid

combinations from the t-way test set. During generation

of a test constraints should be identified by the user

before they are handled. So, there is one method to

specify constraints as a set of forbidden tuples. A

forbidden tuple is a combination of values which must

not present in any test. Constraints can also be identified

as a set of logical expressions and it is a condition which

should be satisfied by every test. Logical expressions are

briefer when compared to explicit enumeration of

forbidden tuples.

In constraint handling, a major step is to check

for a validity i.e., checking whether all the constraints

are satisfied by a test. This approach can be performed to

check whether a test contains no forbidden tuples and

needs to maintain the complete list of all the forbidden

tuples. During the generation of test, his list should be

first generated from the specified logic expressions and

then used to perform validity check. A constraint solver

is used to perform this check.

B. IPOG-C algorithm

For a constraint solver an IPOG-C algorithm is

used which modifies an existing combinatorial test

generation algorithm called IPOG [7] to handle

constraints and tries to reduce the number of constraints

of the constraint solver. In some cases such a constraint

cannot be removed but this algorithm tries to solve this

problem as much as possible.

This algorithm includes the following three

optimizations:

1) A t-way test set must cover all the valid t-way

combinations. A t-way combination is valid if a test is

covered by at least once. Checking the validity of each t-

way combination can be expensive and contains a large

number of t-way combinations. So, if a test is found

valid, then all the combinations correspond to this test

will be valid, and those need not to be checked

explicitly.

2) When a validity check is performed, some constraints

may not be valid and those need not to be checked. We

use a notion called constraint relation graph to identify

groups of constraints that are related to each other, which

are then used to identify relevant constraints in a validity

check. It builds a test set incrementally, i.e., covering

one parameter at a time. This incremental approach is

leveraged to further reduce the number of invalid

constraints.

3) Therefore, the number of invalid combinations will be

reduced to the constraint solver by saving previous

results.

For this purpose the IPOG-C algorithm is

implemented in a combinatorial test generation tool

called ACTS. To handle constraints IPOG algorithm is

modified which is now known as IPOG-C algorithm to

handle constraints. If no constraints are specified, the

modified algorithm will generate the same test set as the

original IPOG algorithm does.

IPOG-C algorithm makes sure that (1) all the

valid t-way tests are covered and (2) all the generated

tests are valid. First a validity check is performed on

each t-way combination to identify all the valid t-way

combinations that need to be covered. Then the invalid

combinations will be rejected by which the number of

constraints will also be reduced.

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 3, Issue 10, October 2016

 88

1) For each valid combination of values first, add a test

for the first„t‟ parameters and then for „t+1‟ parameters

until it covers the t-way test set to the test set.

2) For each test in the test set choose a valid combination

that covers a large number of combination of values.

3) Remove the test sets that have invalid combinations

4) For each combination in a set check whether it has

been covered by the previous test sets

5) If it already exists then that combination can be

removed.

6) Hence the resultant test set does not contain invalid

combinations

IV. RESULTS

Practically an experiment is conducted by

considering an organisation having projects and

members to execute those projects. By taking these

parameters a covering array is generated to accept which

has large number of uncovered t-tuples. During the

generation of a covering array it will also perform

prioritisation the number of test suites will be reduced.

Therefore, a 2-dimensional array is generated by

covering all t-tuples.

After generating covering arrays, a priority is

assigned for each test case like 1, 2, 3, 4 and priorities

can be named as warning, severe. Thus, the faults can be

detected earlier and if the test cases are invalid, then

those will be deleted from the test set. Then the faults

which are pending and resolved can be displayed in the

report.

The graph represents the results between the

existing and proposed system. The efficiency is based on

the number of bugs that have been detected. In the

existing system, both tools are used but ACTS is less

effective at finding faults earlier. So, in the proposed

system the efficiency is increased. Therefore, the

efficiency of the system is achieved and in a graph the

proposed results are shown.

Figure 2: Result showing increased efficiency by

detecting faults earlier in the proposed system

V. CONCLUSIONS AND FUTURE WORK

In this paper, a generalized forbidden tuple-

based constraint handling method is performed for

combinatorial test generation. It is based on the notion of

minimizing combinations which in turn reduces the

number of constraints. A complete test is valid if and

only if it does not contain invalid combinations. The

experimental results show that the enhanced constraint

handling method is performed better by detecting the

faults earlier.

Furthermore, if the number of forbidden tuples

is large, then it is difficult for the user to enumerate

them. This approach can be continued in the following

two directions. First, the performance of this method can

be still improved. Second, more experiments can be

conducted to evalualte this performance. It can be further

investigated by solving the problems like how to

measure the complexity of a constraint and how to

generate constraints of different complexity levels.

VI. REFERENCES

[1] Justyna Petke, Myra B. Cohen, Mark Harman,

and Shin Yoo, “Practical Combinatorial Interaction

Testing: Empirical Findings on Efficiency and Early

Fault Detection,” IEEE Trans. Softw. Eng., vol. 41, no.

9, Sep. 2015.

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 3, Issue 10, October 2016

 89

[2] J. Petke, M. B. Cohen, M. Harman, and S. Yoo,

“Efficiency and early fault detection with lower and

higher strength combinatorial interaction testing,” in

Proc. Eur. Softw. Eng. Conf. ACM SIGSOFT Symp.

Found. Softw. Eng., Saint Petersburg, Russian

Federation, Aug. 2013, pp. 26– 36.

[3] C. Nie and H. Leung, “A survey of

combinatorial testing,” ACM Comput. Surv., vol. 43, no.

2, pp. 11:1–11:29, 2011.

[4] Y. Lei, R. Kacker, D. R. Kuhn, V. Okun, and J.

Lawrence, “IPOG/ IPOG-D: Efficient test generation for

multi-way combinatorial testing,” Softw. Test.,

Verification Reliab., vol. 18, no. 3, pp. 125–148, 2008.

[5] D. M. Cohen, S. R. Dalal, M. L. Fredman, and

G. C. Patton, “The AETG system: An approach to

testing based on combinatorial design,” IEEE Trans.

Softw. Eng., vol. 23, no. 7, pp. 437–444, Jul. 1997.

[6] R. C. Bryce and C. J. Colbourn, “Test

prioritization for pairwise interaction coverage,” ACM

SIGSOFT Softw. Eng. Notes, vol. 30, no. 4, pp. 1–7,

2005.

[7] M. B. Cohen, C. J. Colbourn, P. B. Gibbons,

and W. B. Mugridge, “Constructing test suites for

interaction testing,” in Proc. Int. Conf. Softw. Eng., May

2003, pp. 38–48.

[8] D. Kuhn, R. Kacker, and Y. Lei, “Automated

combinatorial test methods: Beyond pairwise testing,”

Crosstalk, J. Defense Softw. Eng., vol. 21, no. 6, pp. 22–

26, 2008.

[9] T. Nanba, T. Tsuchiya, and T. Kikuno, “Using

satisfiability solving for pairwise testing in the presence

of constraints,” Inst. Electron., Inform. Commun. Eng.

Trans., vol. 95-A, no. 9, pp. 1501–1505, 2012.

[10] S. Manchester, N. Samant, R. Bryce, S.

Sampath, D. R. Kuhn, and R. Kacker, “Applying higher

strength combinatorial criteria to test prioritization: A

case study,” J. Combinatorial Math. Combinatorial

Comput., vol. 86, pp. 51–72, Aug. 2013.

