
International Journal of Engineering Research in Computer Science and

Engineering (IJERCSE) Vol 2, Issue 9, September 2015

 25

An Efficient Multi keyword Top-K Retrieval

With Historical Scoring Over Encrypted Cloud Data
[1]

Vidhu Edavana ,
[2]

Lallu Anthoor
[1]

P.G. Scholar,
 [2]

Guide,

Department Computer Science and Engineering,

MIT,Anjarakandy ,Kannur, Kerala, India
[1]

vidhu145cs@gmail.com ,
[2]

lalluanthoor@gmail.com

Abstract: Cloud computing is recent commonly used method for data outsourcing through web services. We

propose a concept to search any encrypted document in cloud store based on multiple keywords specified with the

document. Keywords for the document can be of contents from the document, which are selected while uploading that

file to the cloud server. The result retrieved after searching is a list of k files (index file). File selection is based on the

score calculated by using TRSE (Two Round Searchable Encryption) algorithm. The TRSE is a combination of vector

space model and homomorphic encryption technique. Since the homomorphic encryption allows users to do majority

of their work on server side by operation only on cipher text. We can eliminate information leakage and can ensure

data security. In this paper we propose a concept to score these documents more efficiently on the basis of search

history of the document with TRSE scheme. The search history may include the location where the document is being

accessed or the number of access to the document by the same user. Besides this when the owner try to update

document, with the help of hashing we notify the owner to update index file to avoid data inconsistency and ensure

efficiency.

Index Terms- Cloud, data privacy, ranking, similarity relevance, homomorphic encryption, vector space model

I. INTRODUCTION

Cloud computing [4] is widely used method for data

outsourcing over web stores. As the data spread over the

internet we must take care of our data, for this we should

encrypt our data before upload it to cloud space.

Controversies on privacy, however, have been incessantly

presented as outsourcing of sensitive information like e-

mails, health history and personal data is explosively

expanding. Reports of data loss and privacy breaches in

cloud computing systems appear from time to time [2], [3].

Furthermore, in cloud computing, data owners may

share their outsourced data with a number of clients, who

might want to only use the data files, which they are

interested in. The most popular ways to retrieve is the

keyword-based processing. Keyword-based retrieval is a

type of service and widely applied in plain text context, in

which clients download relevant files from a file set based

on some keywords. However, since we store our encrypted

document on cloud, if we want to search any document by

using its content is very difficult. Besides, to improve

efficiency and save on the expense in the cloud paradigm, it

is preferred to get the retrieval result with the most relevant

files that match clients‟ interest instead of all the files,

which indicates that the files should be ranked in the order

of priority by clients interest and only the files with the

highest priority are sent back to clients.

A series of searchable symmetric encryption (SSE)

schemes was implemented to enable search on cipher text.

Traditional SSE schemes [7], [8] enable users to securely

retrieve the cipher text, but these schemes allows only

Boolean keyword search, i.e., whether a keyword exists in a

file or not, here they do not consider the difference of

relevance with the queried keyword of these files in the

result. To improve security without sacrificing efficiency,

schemes presented in [5], [9] show that they support top-k

single keyword retrieval under various scenarios. The

authors of [10], [11] tried to solve the problem of top-k

multi keyword over encrypted cloud data. These schemes,

however, suffer from two problems boolean representation

and how to strike a balance between security and efficiency.

In the former, files are ranked only by the number of

retrieved keywords, which impairs search accuracy. In the

latter, security is implicitly compromised to tradeoff for

efficiency, which is particularly undesirable in security-

oriented applications.

Some approaches have been made by the authors of [1]

to solve the above problem, they introduce the concepts and

to formulate the privacy issue in searchable encryption

schemes, and then correct the security issues by

implementing a TRSE scheme, the majority of computing

International Journal of Engineering Research in Computer Science and

Engineering (IJERCSE) Vol 2, Issue 9, September 2015

 26

work is done on the server while the user takes part in

ranking, which ensures the retrieval process with more

security and practical efficiency. Here also some problem of

efficiency reductions can be found.

This paper allow professionals to solve such issues

related to efficiency up to an extent. Here we improve

efficiency by implementing search logs and keep search

history with document. Our contributions can be

summarized as follows:

 [1]We bring the concepts of similarity relevance

and scheme robustness. We, thus, perform the first attempt

to formulate the privacy issue in searchable encryption, and

we show server-side ranking based on order-preserving

encryption (OPE) inevitably violates data privacy.

 [2]We propose a history based scoring to improve

efficiency of ranking of files on the basis of user behavior,

apply TRSE scheme, which fulfills the secure multi

keyword top-k retrieval over encrypted cloud data.

Specifically, for the first time, we employ relevance score to

support multi keyword top-k retrieval. Besides this the

efficiency of index file can be ensured by frequently

updating the index file with every update in the document,

for this any hashing techniques can be used.

 [3]Detailed analysis on security demonstrates the

proposed scheme guarantees high data privacy and

improved efficiency.

II.LITERATURE SURVEY

A.Scenario

Fig1 illustrates a cloud computing system that hosting

data service, in which three different entities are involved:

cloud server, data owner, and data user.

The cloud server is responsible for hosting third-party

data storage and retrieval services. Since data may contain

sensitive information, the cloud servers cannot be fully

entrusted in protecting data. So outsourced files must be

encrypted by the data owner. Any kind of information

leakage that would affect data privacy are regarded as

unacceptable.

Figure 1: Scenario of retrieval of encrypted cloud data.[1]

 The data owner has a collection of n documents

C={𝑑1;𝑑2;… ;𝑑𝑛} to outsource onto the cloud server in

encrypted form and needs the cloud server and want to

provide keyword retrieval service to data to authorized

users. To achieve this, the data owner needs to build a

searchable index I from a collection of l keywords 𝑊 =
{𝑤1;𝑤2;… ;𝑤𝑙}extracted out of C, and then outsources both

the encrypted index I and encrypted files onto the cloud

server.

The data user is authorized to process multi keyword

retrieval over the outsourced data. The computing power on

the user side is limited, so operations on the user side should

be simplified. The authorized data user at first generates a

query 𝑅𝐸𝑄 = 𝑤1
′ ;𝑤1

′ ;… ;𝑤1
′ 𝑤𝑖

′ ∈ 𝑊, 1 ≤ 𝑖 ≤ 𝑠 ≤ 𝑙 .
For privacy consideration, which keywords the data user has

searched must be protected. Thus, the data user encrypts the

keyword and sends it to the cloud server that returns the

relevant files to the data user. Afterward, the data user can

decrypt using corresponding data owners decryption

algorithm and key and hence can use of the files.

B.Two Round Searchable Encryption

TRSE is a new searchable encryption scheme, in which

novel technologies in cryptography and IR are implemented,

including homomorphic encryption and the vector space

model. In this scheme, the data owner encrypts the

searchable index with homomorphic encryption. When the

cloud server receives a query consisting of multi keywords,

it computes the scores from the encrypted index stored on

cloud and then returns the encrypted scores of files to the

data user. Next, the data user decrypts the scores and picks

out the top-k highest scoring filesâ€™ identifiers to request

to the cloud server.

The retrieval takes a two-round communication

between the cloud server and the data user. We, thus, name

the scheme the TRSE scheme, in which ranking is done at

the user side while scoring calculation is done at the server

side

III.PRACTICAL HOMOMORPHIC ENCRYPTION

SCHEME

To reduce the computational overhead on the user side

machine, computing work should be done at the server side,

so we need an encryption methodology to ensure the

operability and security at the same time on server machine.

Homomorphic encryption allows specific types of

computations to be carried out on the corresponding

ciphertext. The result is the ciphertext of the result of the

same operations performed on the plaintext. That is,

homomorphic encryption completes computation of

ciphertext without knowing anything about the plaintext to

produce the correct encrypted result. Although it has such a

fine property, the original fully homomorphic encryption

scheme, which employs ideal lattices over a polynomial ring

[6], is too complex and inefficient for practical utilization.

Fortunately, as a result of employing the vector space model

International Journal of Engineering Research in Computer Science and

Engineering (IJERCSE) Vol 2, Issue 9, September 2015

 27

to top-k retrieval[1], only addition and multiplication

operations performed on integers are needed to produce the

relevance scores from the encrypted searchable index.

Therefore, we can reduce the original homomorphism in a

full form to a simplified form that only supports integer

operations, which more efficiency than the full form does.

IV.IMPROVING EFFICIENCY

A.Historical Scoring

 As per the concept specified in [1] top-k ranking is

performed on the basis of index file,here we propose a

concept through which we store search history of documents

in the server search history includes count for accessing the

document by the same user and the location where the

document accessed previously with location based access

count.

B. Relevance

When a user searches documents using some keywords

and if he accessed a document from top-k document list,the

probability to search the same document using the same

keyword is high, so we can provide high score to this

document.Similarly accessing document from a location

with some keywords have also high probability.

C.Implementation

For implementing Historical Scoring, initialization is as

specified in [1].then some changes where made in retrieval

phase.While retrieving the content we need to store the

search history with the server, for that we must findout

client location. The client location and client account are

linked with a document id and kept it with server.

 During next retrieval onwards this stored values are

also compared with values computed from requested

keywords and score may be calculated.

D.Enable Efficient Updation

The main challege of [1] occures while implement it in

to practical cloud. When a data update like adding or

deleting file lead issues. So to protect cloud system from

this issue, this paper propose a method, by which if a data

owner made any change on his data, this will show a

warning based on any of the hashing techniques.When user

try to delete a file it will be deleted only after changing

index file content corresponding to that file.Similar in case

of insertin and modification on a file.

V.IMPLEMENTATION

The frame work for implement this concept includes 3

phases:

Initialization : This phase includes the initialization

phase specified in [1].

Updation : The updation phase includes

UpdateFile(H; F; Fid), DeleteFile(H,F) algorithms.

Retrieval : The retrieval Phase include

TrapdoorGen[1], ScoreCalculate and Rank[1], with in

this Score calculate is quite different from [1].

A.Updation

Updation includes two types.The following are the

algorithms for those process.

B.Update An Existing File

An update process which modifies the existing file

content must change index file also for this first check

whether the file modified or not. If file is being modified

then warn data owner to modify index file also.

In UpdateFile(H,F,Fid): H is a hashset for all files in the

cloud storage for a specific data owner. And F is modified

file which we want to store by replacing the existing one,

Fid is the file id corresponding to the existing file value.

Algorithm 1 UpdateFile(H; F; Fid)

1: Find Hashvalue as H:= Hash(F).

2: for all H1 in H do

3: if H1 = H then

4: print „No modification found for the file‟;

5: return.

6: else if H1 = H[Fid] then

7: loop

8: notify to change the Index file for File with idFid.

9: end loop(wait for changing the Indexfile)

10: Update the store with modified file F.

11: return.

12: end if

13: end for

C.Delete An Existing File

This is another way to modify a document in cloud

storage.Here a file is going to delete, before deleting that

file, we must remove contents in the index file which

corresponds to the file.

In DeleteFile(H,F) : H is a hashset for all files in the

cloud storage for a specific data owner.and F is thefile

which we want to delete from cloud server.

International Journal of Engineering Research in Computer Science and

Engineering (IJERCSE) Vol 2, Issue 9, September 2015

 28

Algorithm 2 DeleteFile(H, F)

1: Find Hashvalue as H:= Hash(F).

2: for all H1 in H do

3: if H= H1 then

4: loop

5: notify to change the Index file for corresponding

file.

6: end loop(wait for changing the Indexfile)

7: Delete F from the Store. return

8: end if

9: end for

D.Retrieval

Algorithm 3 ScoreCalculate

1: calculate score using algorithm specified in [1].

2: if History exists then

3: compare scored documents as values with historical

value.

4: update score based on historical value.

5: update historical data.

6: else

7: create history file.

8: end if

While retrieving the document we first calculate the

score and based on the score client rank the k files to

download based on the rank, server prepare those k files to

downloadable.In existing system scores are calculated using

index file and homomorphic encryption techniques only.

Besides that in this paper I introduce a new method that

allow userspecific and location specific score calculation

and through which for different users, different order of files

are available.The filtering process is done on the basis of

historical data.Historical data is a document which contains

the details of previous search history for each and every

document.The search history consists of location from

where the document was accessed and the user who

accessed the data and how many times did he access the

document.

Here this process enables more efficiently than existing

since user specific and location specific iteration is possible.

VI.CONCLUSION

In this paper,we try to solve issues present in [1].As per

discussion by J.Yu. and et.al.they propose [1] and is a way

to retrieve ecrypted document from cloud data using

multiple keys.Through this paper we make concept of [1]

more efficient. For this we use historical values of every

access to score the document.Beside this index files for

server document can be corrected with updation like

modify, add, delete document from the store.As considering

probablistic method we can say this paper is more efficent

than existing.

REFERENCES

[1] J. Yu, P. Lu, Y. Zhu, G. Xue, and M. Li, “Towards

secure multi-keyword top-k retrieval over encrypted cloud

data,” IEEE Transactionson Dependable and Secure

Computing, vol. 10, no. 4, pp. 239-250, 2013.

[2] M. Arrington, “Gmail Disaster: Reports of Mass Email

Deletions,”

http://www.techcrunch.com/2006/12/28/gmaildisasterreport

s-of-mass-email-deletions/,Dec. 2006.

[3] Amazon.com,“Amazon s3 Availability Event: July 20,

2008,”http://status.aws.amazon.com/s3-20080720.html,

2008.

[4] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A.

Konwinski, G. Lee, D. Patterson, A. Rabkin, and M.

Zaharia, “ A View of Cloud Computing,” Comm. ACM, vol.

53, no. 4, pp. 50-58, 2010.

[5]S. Zerr, D. Olmedilla, W. Nejdl, and W. Siberski,

“Zerber+r: Top-k Retrieval from a Confidential Index,”

Proc. 12th Intl Conf. Extending Database Technology:

Advances in Database Technology (EDBT), 2009

[6] C. Gentry, “Fully Homomorphic Encryption Using Ideal

Lattices,” Proc. 41st Ann. ACM Symp. Theory of computing

(STOC), pp. 169-178, 2009.

[7] D. Song, D. Wagner, and A. Perrig, “Practical

Techniques for Searches on Encrypted Data,” Proc. IEEE

Symp. Security and Privacy, 2000.

[8] D. Boneh, G. Crescenzo, R. Ostrovsky, and G. Persiano,

“Public-Key Encryption with Keyword Search,” Proc. Intl

Conf. Theory and Applications of Cryptographic Techniques

(Eurocrypt), 2004.

[9] A. Swaminathan, Y. Mao, G.-M. Su, H. Gou, A.L.

Varna, S. He, M.Wu, and D.W. Oard,”Confidentiality-

Preserving Rank-OrderedSearch,” Proc. Workshop Storage

Security and Survivability, 2007.

[10] N. Cao, C. Wang, M. Li, K. Ren, and W. Lou,“Privacy-

Preserving Multikeyword Ranked Search over Encrypted

Cloud Data,” Proc. IEEE INFOCOM, 2011.

[11] H. Hu, J. Xu, C. Ren, and B. Choi,“Processing Private

Queries over Untrusted Data Cloud through Privacy

International Journal of Engineering Research in Computer Science and

Engineering (IJERCSE) Vol 2, Issue 9, September 2015

 29

Homomorphism,” Proc. IEEE 27th Intl Conf. Data Eng.

(ICDE), 2011.

