

International Journal of Engineering Research in Computer Science and

Engineering (IJERCSE) Vol 2, Issue 8, August 2015

 82

Cost Reduction System using Prediction of Cloud

Computing

[1]
Ankita Kotalwar M.E(CSE) Student,

[2]
Dr. Sadhana Chidrawar, Dean’s MPGI College of Engineering Nanded

Abstract- In this paper, we using cloud computing for eliminating traffic redundancy and reducing cost for a benefit of cloud

customers. Here, we introduce the technique as bandwidth prediction through synchronization over user and server. The user’s

bandwidth were predicted by the server and proceed with the acknowledgement process, server of cloud

provide the bandwidth to the end user of which customer needs. From this, cloud providing different bandwidth for different user

which automatically eliminating end-to-end traffic redundancy and cost beneficial for an every customer accessing cloud. So easily

cloud customer obtain their task and pay only for the usage in the cloud.

Key words- Cloud Computing, Bandwidth, Traffic redundancy Elimination

I. INTRODUCTION

Cloud Computing is providing data, storage and resources to

the customer use. Cloud is a large resources which provides

to all over a scale. It task has enriched in this competitive

world. Cloud providing a huge enhancement of data which

are use or beneficial for the customers. Every customers are

enrolled in the Cloud. Cloud has a various services as

Infrastructure as a service [IaaS], Software as a Service

[SaaS] and Platform as a Service [PaaS]. Each services

gives various tools for using in system data. Cloud offer to a

customer an economically pay-per-use method for their

usage. Customers using cloud for their resources and data.

Which are embedded in various techniques. Cloud

customers are using cloud resources repeatedly and occur

traffic due to accessing data, uploading and downloading

file etc. Every user’s accessing file in various place. So

traffic occurring in the cloud server and providing services

to the customers are reduced automatically i.e. the

bandwidth given to the user has reduced and finally the

cloud customer cannot able to access over in Cloud.

Bandwidth provides are slow down due to traffic occur in

server for getting more number for request from the user and

given to the user which bandwidth is suitable for their

process. According to that their bandwidth is predicted and

provides to the cloud customers. This techniques has

reduced the traffic between the users. The customer has pay

their process only for the usage. The easily got pay for their

only resources. For this process the traffic has reduced and

enhanced the service to the cloud customer without any

interrupt. So customer simultaneously use their data and

resources.TRE is used to eliminate the transmission of

redundant content and therefore, to significantly reduce the

network cost. In most common TRE solutions, both the

sender and the receiver ex- amine and compare signatures of

data chunks, parsed according to the data content prior to

their transmission. When redundant chunks are detected, the

sender replaces the transmission of each redundant chunk

with its strong signature [20]. Commercial TRE solutions

are popular at enterprise networks and the deployment of

two or more proprietary protocol, state synchronized

middleboxes at both the intranet entry points of data centres

and branch offices, eliminating repetitive traffic between

them.While proprietary middle-boxes are popular point

solutions within enterprises, they are not as attractive in a

cloud environment. First, cloud providers cannot benefit

from a technology whose goal is to reduce customer

bandwidth bills, and thus are not likely to invest in one.

Therefore, it is commonly agreed that a universal, software-

based, end-to-end TRE is crucial in today’s pervasive

environment [4,1].

1.1 Existing System

In the existing system the receiver based end-to-end TRE

solution is used to eliminate the traffic redundancy by using

predictions for future received chunks. In this solution, each

receiver observes the incoming stream and tries to match its

chunks with a previously received chunk chain or a chunk

chain of a local file. Using the long- term chunks’ meta-data

information kept locally, the receiver sends to the server

predictions that include chunks’ signatures and easy-to-

verify hints of the sender’s future data. The sender first

examines the hint and performs the TRE operation only on a

hint- match. The purpose of this procedure is to avoid the

expensive TRE computation at the sender side in the

International Journal of Engineering Research in Computer Science and

Engineering (IJERCSE) Vol 2, Issue 8, August 2015

 83

absence of traffic redundancy. When redundancy is

detected, the sender then sends to the receiver only the

ACKs to the predictions, instead of sending the data.

1.2 Disadvantages of Existing System
It does not provide authenticated users only to access the file

and thus many users can access it, which raises the privacy

issue and also load will be increased. The experimental

results show that only a particular amount of traffic

redundancy only eliminated by using this approach.

II. RELATED WORK

Several TRE techniques have been explored in recent years.

A protocol-independent TRE was proposed in [4]. The

paper describes a packet-level TRE, utilizing the algorithms

presented in [16]. Several commercial TRE solutions

described in [15] and [18], have combined the sender-based

TRE ideas of [4] with the algorithmic and implementation

approach of [20] along with protocol specific optimizations

for middleboxes solutions. In particular, [15] describes how

to get away with three-way handshake between the sender

and the receiver if a full state synchronization is maintained.

[3] and [5] present redundancy-aware routing algorithm.

These papers assume that the routers are equipped with data

caches, and that they search those routes that make a better

use of the cached data. A large-scale study of real-life traffic

redundancy is presented in [11] and [4]. Our paper builds on

the latter’s finding that ―an end to end redundancy

elimination solution, could obtain most of the middle-box’s

bandwidth savings‖, motivating the benefit of low cost

software end-to-end solutions. Wanax [12] is a TRE system

for the developing world where storage and WAN

bandwidth are scarce. It is a software-based middle-box

replacement for the expensive commercial hardware. In this

scheme, the sender middle-box holds back the TCP stream

and sends data signatures to the receiver middle-box. The

receiver checks whether the data is found in its local cache.

Data chunks that are not found in the cache are fetched from

the sender middle-box or a nearby receiver middle-box.

Naturally, such a scheme incurs a three-way- handshake

latency for non-cached data. EndRE [1] is a sender-based

end-to-end TRE for enterprise net- works. It uses a new

chunking scheme that is faster than the commonly- used

Rabin fingerprint, but is restricted to chunks as small as 32-

64 bytes.

Fig1. From stream of Chain

III. THE PACK A LGORITHM

we first describe the basic receiver- driven operation of the

PACK protocol. Several enhancements and optimizations

are introduced. The stream of data received at the PACK

receiver is parsed to a sequence of variable size, content-

based signed chunks similar to [16][20]. The chunks are

then compared to the receiver local storage,termed chunk

store. If a matching chunk is found in the local chunk store,

the receiver retrieves the sequence of subsequent chunks,

referred to as a chain, by traversing the sequence of LRU

chunk pointers that are included in the chunks’ metadata.

Using the constructed chain, the receiver sends a prediction

to the sender for the subsequent data. Part of each chunk’s

prediction, termed a hint, is an easy to compute function

with a small enough false-positive value, such as the value

of the last byte in the predicted data or a byte-wide XOR

checksum of all or selected bytes. The prediction sent to the

receiver includes the range of the predicted data, the hint

and the signature of the chunk. The sender identifies the

predicted range in its buffered data, and verifies the hint for

that range. If the result matches the received hint, it

continues to perform the more computationally intensive

SHA-1 signature operation. Upon a signature match, the

sender sends a confirmation message to the receiver,

enabling it to copy the matched data from its local storage.

A) Receiver Side Chunk Storage

Predictive ACK uses the new continuous chains scheme that

described in Fig. 1, in that every chunk are related to all

other chunks by their recent received way of order. The

Predictive ACK receivers have to keep a chunk storage,

which it’s a very large size cache of chunks and their

metadata. Chunk’s metadata includes the data chunk’s

signature and a single pointer to the successive chunk in the

recent received stream that contain this chunk. Cache and

index technique are employed to efficiently maintain and

retrieve the every stored chunks and its signature and the

chains created by traverse the chunk pointers.

B) Receiver Side Algorithm

International Journal of Engineering Research in Computer Science and

Engineering (IJERCSE) Vol 2, Issue 8, August 2015

 84

The arrival of a new information, the receiver side system

that respective signature for every

Arrival of data from sender chunk and see the match in its

local (temporary) chunk storage. If the chunk’s match is

founded, the receiver side determines whether it’s a part of a

formerly received chunk chain, using the chunks’ metadata

(data about data) otherwise in affirmative, the receiver send

a prediction to the sender side for the several new expected

chain chunks. It carries a beginning point in the byte stream

that is offset and the identity of several subsequent

chunks.Sender receives a Predictive message from the

receiver side and it tries to compare the received predictions

to its buffered yet to be sent information. For every

prediction, the sender has to determine that corresponding

TCP range of sequence and verifies it. If that hint match, the

sender measures the more computationally intensive Secure

Hash Algorithm- 1 signature for the predicted information

range and match the result to the signature received in the

Predictive message of data. In this case if the hint does not

same, a computationally expansive operation is saved. If the

two Secure Hash Algorith-1 signatures compare, the sender

can safely assume that the receiver’s prediction method is

absolutely correct and, it replace the entire outgoing

buffered data with a Predictive ACK message.

 Receiver Side Algorithm

C) Sender Side Algorithm

Sender Side Algorithm

IV. OPTIMIZATIONS

A) Adaptive Receiver Virtual Window

Predictive ACK enable the receiver side to locally capture

the sender data when a local or temporary copy is available,

thus eliminating the requirement to send this information

through the network. In this term the receiver’s fetching of

that recent local data as the reception of visual data.

B) Cloud Server Acting as a Receiver

In a developing trend, cloud computing storage is getting a

dominant player from backup of store and sharing of data

services to the American National Library and e –mail

services. In this most of these Services, the cloud is used

often the receiver of the data.

C) Hierarchical Approach

Predictive ACK’s receiver side based mode is less amount

of efficient if changes in the information are scattered. In

this scenario, the prediction continuation are frequently

interrupted, In this turn, forces the sender to retransmit to

the raw data transmission until

a new comparison is found at the receiver side and It

reported back to the sender Side.

V. MOTIVATING A RECEIVER-

BASED APPROACH

The objective of this section is twofold: evaluating the

potential data redundancy for several applications that are

International Journal of Engineering Research in Computer Science and

Engineering (IJERCSE) Vol 2, Issue 8, August 2015

 85

likely to reside in a cloud, and to estimate the PACK

performance and

cloud costs of the redundancy elimination process. Our

evaluations are conducted using: 1) video traces captured at

a major ISP; 2) traffic obtained from a popular social

network

service; and 3) genuine data sets of real-life workloads. In

this section, we relate to an average chunk size of 8 kB,

although our algorithm allows each client to use a different

chunk size.

 5.1 Traffic Redundancy

5.1.1 Traffic Traces: We obtained a 24-h recording of

traffic at an ISP’s 10-Gb/s PoP router, using a 2.4-GHz CPU

recording machine with 2 TB storage (4 500 GB 7 200 RPM

disks)

and 1-Gb/s NIC. We filtered YouTube traffic using deep

packet inspection and mirrored traffic associated with

YouTube servers IP addresses to our recording device. Our

measurements show that YouTube traffic accounts for 13%

of the total daily Web traffic volume of this ISP. The

recording of the full YouTube stream would require 3 times

our network and disk write speeds. Therefore, we isolated

1/6 of the obtained YouTube traffic, grouped by the video

identifier (keeping the redundancy level intact) using a

programmed load balancer that examined the upstream

HTTP requests and redirected downstream sessions

according to the video identifier that was found in the

YouTube’s URLs, to a total of 1.55 TB. Note that

YouTube’s video content is not cacheable by standard Web

proxies since its URL contains private single-use tokens

changed with each HTTP request. Moreover, most Web

browsers cannot cache and reuse partial movie downloads

that occur when end-users skip within a movie or switch to

another movie before the previous one ends. Table I

summarizes our findings. We recorded more than 146 K

distinct sessions, in which 37 K users request over 39 K

distinct movies. Average movie size is 15 MB, while the

Fig. 2. ISP’s YouTube traffic over 24 h, and PACK

redundancy elimination ratio with this data.

Average session size is 12 MB, with the difference

stemming from end-user skips and interrupts. When the data

is sliced into 8-kB chunks, PACK brings a traffic savings of

up to 30%, assuming the end-users start with an empty

cache, which is a worst-case scenario. Fig.2 presents the

YouTube traffic and the redundancy obtained by PACK

over the entire period, with the redundancy sampled every

10 min and averaged. This end-to-end redundancy arises

solely from self-similarity in the traffic created by end-

users. We further analyzed these cases and found that end-

users very often download the same movie or parts of it

repeatedly. The latter is mainly an intersession redundancy

produced by end-users that skip forward and backward in a

movie and producing several (partially) overlapping

downloads. Such skips occurred at 15% of the sessions and

mostly in long movies (over 50 MB). Since we assume the

cache is empty at the beginning, it takes a while for the

chunk cache to fill up and enter a steady state. In the steady

state, around 30% of the traffic is identified as redundant

and removed. We explain the length of the warm-up time by

the fact that YouTube allows browsers to cache movies for 4

h, which results in some replays that do not produce

downloads at all.

5.1.2 Static Dataset: We acquired the following static

datasets:

Linux source—different Linux kernel versions: all the 40

2.0.x tar files of the kernel source code that sum up to 1 GB;

Email—a single-user Gmail account with 1140 e-mail

messages over a year that sum up to 1.09 GB. The 40 Linux

source versions were released over a period of 2 years. All

tar files in the original release order, from 2.0.1 to 2.0.40,

were downloaded to a download directory, mapped by

PACK, to measure the amount of redundancy in the resulted

traffic. Fig. 3(a) shows the redundancy in each of the

downloaded versions. Altogether, the Linux source files

show 83.1% redundancy, which accounts to 830 MB. To

obtain an estimate of the redundancy in e-mail traffic, we

operated an IMAP client that fully synchronized the remote

Gmail account with a new local folder. Fig. 3(b) shows the

redundancy in each month, according to the e-mail

message’s issue date. The total measured traffic redundancy

was 31.6%, which is roughly 350 MB. We found this

redundancy to arise from large attachments that are sent by

multiple sources, e-mail correspondence with similar

documents in development process, and replies with large

quoted text. This result is a conservative estimate of the

amount of redundancy in cloud e-mail traffic because in

practice some messages are read and downloaded multiple

times. For example, a Gmail user that reads the same

attachment for 10 times, directly from the Web browser,

generates 90% redundant traffic. Our experiments show that

in order to derive an efficient PACK redundancy

elimination, the chunk-level redundancy needs to be applied

along long chains. To quantify this phenomenon,

we explored the distribution of redundant chains in the

Linux and Email datasets. Fig. 3(a) presents the resulted

International Journal of Engineering Research in Computer Science and

Engineering (IJERCSE) Vol 2, Issue 8, August 2015

 86

redundant data chain length distribution. In Linux, 54% of

the chunks are found in chains, and in Email about

88%.Moreover, redundant chunks are more probable to

reside in long chains. These findings sustain our conclusion

that once redundancy is discovered in a single chunk, it is

likely to continue in subsequent chunks. Furthermore, our

evaluations show that in videos and large files with a small

amount of changes, redundant chunks are likely to reside in

very long chains that are efficiently handledby a receiver-

based TRE.

Fig. 3. Traffic volume and detected redundancy. (a) Linux

source: 40 different

Linux kernel versions. (b) Email: 1-year Gmail account by

month

VI. PREDICTION OPERATION

The chunks area unit predicting within the receiver, upon

the arrival of recent knowledge the receiver computes the

various signature for every chunk and appears for a match in

its native chunk store. If the chunk’s signature is found, the

receiver determines whether or not it's a vicinity of a once

received chain, victimisation the chunks’ information. If

affirmative, the receiver sends a prediction to the sender for

many next expected chain chunks. Upon a thriving

prediction, the sender responds with a PRED-ACK

confirmation message. Once the PRED-ACK message is

received and processed, the receiver copies the

corresponding knowledge from the chunk store to its

transmission control protocol input buffers, inserting it per

the corresponding sequence numbers. At now, the receiver

sends a traditional transmission control protocol ACK with

ensuing expected transmission control protocol sequence

variety.

6.1 Authentication

Consumer want to access their account means they have to

sign in first with providing their personal user id and

password. If users’ given authentication will be valid means

the user use their account. In this module mandatory and

validation controls should be used.

6.2 Consumer Acknowledgement

In this module, acknowledgement process will be processed

by cloud provider side. The predicted range ofconsumers’

bandwidth has to be confirmed by consumer side. So

predicted value has to be send to consumer and they will

acknowledge for that means the costing will be calculate for

consumer based on bandwidth.

Fig4 Consumer Acknowledge

VII. IMPLEMENTATION

 we present PACK implementation, its performance

analysis, and the projected server costs derived from the

implementation experiments. Our implementation contains

over 25 000 lines of C and Java code. It runs on Linux with

Netfilter Queue [24]. At the server side, we use an Intel

Core 2 Duo 3 GHz, 2 GB of RAM, and a WD1600AAJS

SATA drive desktop. The clients laptop machines are based

on an Intel Core 2 Duo 2.8 GHz, 3.5 GB of

RAM, and a WD2500BJKT SATA drive. Our

implementation enables the transparent use of the TRE at

both the server and the client. PACK receiver–sender

protocol is embedded in the TCP Options field for low

overhead and compatibility with legacy systems along the

path.

International Journal of Engineering Research in Computer Science and

Engineering (IJERCSE) Vol 2, Issue 8, August 2015

 87

PACK chunking algorithm

1. Mask 0x00008A3110583080 {48 bytes window; 8

KB chunks}

2. {has to be 64 bits}

3. for all byte stream do

4. shift left longval by 1 bit { ; drop msb}

5. bitwise-xor byte

6. if processed at least 48 bytes and (longval bitwise-and

mask) then

7. found an anchor

Fig5. Overview of PACK Implementation

we have to present the Predictive ACK hierarchal mode of

operation. PACK computes the data dispersion value using

an exponential smoothing function

 D←Dα+(1-α)M
Where α is a smoothing factor. The value is set to 0 when a

chain break is detected, and 255 otherwise.

Pack Messages Format

In our implementation, we tend to use 2 presently unused

TCP possibility codes,The first one is Associate in Nursing

sanctionative possibility PACK permissible sent in an

exceedingly SYN phase to point that the PACK possibility

will be used when the connection is established. the opposite

one could be a PACK message that will be sent over a

longtime association once permission has been granted by

each parties. In our implementation, the client uses an

average chunk size of 8 kB. We found this size to achieve

high TRE hit-ratio in the evaluated datasets, while adding

only negligible overheads of 0.1% in metadata storage and

0.15% in predictions bandwidth. For the experiments held in

this section, we generated datasets: IMAP e-mails, HTTP

videos, and files downloaded over FTP. The workload was

then loaded to the server and consumed by the clients. We

sampled the machines’ status every second to measure real

and virtual traffic volumes and CPU utilization.

Server Operational Cost

 We measured the server performance and cost as a function

of the data redundancy level in order to capture the effect of

the TRAFFIC REDUNDANCY ELIMINATION

mechanisms in real environment. To isolate the TRAFFIC

REDUNDANCY ELIMINATION operational cost, we

measured the server’s traffic volume and CPU utilization at

maximal throughput without operating a TRAFFIC

REDUNDANCY ELIMINATION. We then used these

numbers as a reference cost, based on present Amazon EC2

pricing. The server operational cost is com-posed of both the

network traffic volume and the CPU utilization, as derived

from the EC2 pricing.

CONCLUSION

The cloud environment redefines the TRE system

requirements, making proprietary middle-box solutions

inadequate. Consequently, there is a rising need for a TRE

solution that reduces the cloud’s operational cost while

accounting for application latencies, user mobility, and

cloud elasticity. In this paper, we have presented PACK, a

receiver-based, cloud-friendly, end-to-end TRE that is based

on novel speculative principles that reduce latency and

cloud operational cost. PACK does not require the server to

continuously maintain clients’ status, thus enabling cloud

elasticity and user mobility while preserving long-term

redundancy. Moreover, PACK is capable of eliminating

redundancy based on content arriving to the client from

multiple servers without applying a three-way handshake.

Our evaluation using a wide collection of content types

shows that PACK meets The expected design goals and has

clear advantages over sender-based TRE, especially when

the cloud computation cost and buffering requirements are

important. Moreover, PACK imposes additional effort on

the sender only when redundancy is exploited, thus reducing

the cloud overall cost.

FUTURE WORK

Two interesting future extensions can provide additional

benefits. First, our implementation maintains chains by

keeping for any packet only the last observed sub-sequent

packet in an LRU fashion. An interesting extension to this

work is the statistical study of chains of packets that would

enable multiple possibilities in both the packet order and the

corresponding predictions. The system may also allow

making more than one prediction at a time, and it is enough

that one of them will be correct for successful traffic

elimination. A second promising direction is the mode of

operation optimization of the hybrid sender–receiver

approach based on shared decisions de-rived from receiver’s

power or server’s cost changes.

REFERENCES
[1] E. Zohar, I. Cidon, and O. Mokryn, ―The power of

prediction: Cloud bandwidth and cost

reduction,‖ in Proc. SIGCOMM, 2011, pp. 86–97.

[2] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph,R.Katz,

A. Konwinski, G. Lee, D.

Patterson, A. Rabkin, I. Stoica, and M. Zaharia, ―A view of

cloud computing,‖ Commun.

ACM, vol. 53, no. 4, pp. 50–58, 2010.

International Journal of Engineering Research in Computer Science and

Engineering (IJERCSE) Vol 2, Issue 8, August 2015

 88

[3] U. Manber, ―Finding similar files in a large file

system,‖in Proc. USENIX Winter Tech.

Conf., 1994, pp. 1–10.

[4] N. T. Spring and D. Wetherall, ―A protocol-independent

technique for eliminating

redundant network traffic,‖ in Proc. SIGCOMM, 2000,

vol.30, pp. 87–95.

[5] A. Muthitacharoen, B. Chen, and D. Mazières, ―A low-

bandwidth network file system,‖

in Proc. SOSP, 2001, pp.174-187.

[6] E. Lev-Ran, I. Cidon, and I. Z. Ben-Shaul, ―Method and

apparatus for reducing network

traffic over low bandwidth links,‖ US Patent 7636767, Nov.

2009.

[7] S.Mccanne andM. Demmer, ―Content-based

segmentation scheme for data

compression in storage and transmission including

hierarchical segment representation,‖

US Patent 6828925, Dec. 2004.

[8] R. Williams, ―Method for partitioning a block of data

into sub blocks and for storing

and communicating such subblocks,‖ US Patent 5990810,

Nov. 1999.

[9] Juniper Networks, Sunnyvale, CA, USA, ―Application

acceleration,‖ 1996

[Online]. Available: http://www.juniper.net/us/en/products-

services/applicationacceleration/

[10] Blue Coat Systems, Sunnyvale, CA, USA, ―MACH5,‖

1996[Online].Available:

 [11] Expand Networks, Riverbed Technology, San

Francisco, CA, USA, ―Application

acceleration and WAN optimization,‖ 1998 [Online].

Available:

http://www.expand.com/technology/application-

acceleration.aspx

[12] F5, Seattle,WA, USA, ―WAN optimization,‖ 1996

[Online]. vailable: http://www.

f5.com / solutions / acceleration /wan - optimization/

[13] A. Flint, ―The next workplace revolution,‖ Nov. 2012

[Online]. Available:

http://m.theatlanticcities.com/jobs-and-

economy/2012/11/nextworkplace-revolution

/3904/

[14] A. Anand, C. Muthukrishnan, A. Akella, and R.

Ramjee, ―Redundancy in

network traffic: Findings and implications,‖ in Proc.

SIGMETRICS, 2009, pp. 37–48.

[15] B. Aggarwal, A. Akella, A. Anand, A. Balachandran, P.

Chitnis, C. Muthukrishnan, R.

Ramjee, and G. Varghese, ―EndRE: An end-system

redundancy elimination service for

enterprises,‖ in Proc. NSDI, 2010, pp. 28–28.

[16] ―PACK source code,‖ 2011 [Online]. Available:

http://www.eyalzo.com/ projects/ pack

[17] A. Anand, A. Gupta, A. Akella, S. Seshan, and S.

Shenker, ―Packet caches on

routers: The implications of universal redundant traffic

elimination,‖ in Proc. SIGCOMM,

2008, pp. 219–0.

[18] A. Anand, V. Sekar, and A. Akella, ―SmartRE: An

architecture for

coordinated network-wide redundancy elimination,‖ in Proc.

SIGCOMM, 2009, vol. 39,

pp. 87–98.

[19] A. Gupta, A. Akella, S. Seshan, S. Shenker, and J.

Wang, ―Understanding and

exploiting network traffic redundancy,‖ UW- Madison,

Madison, WI, USA, Tech. Rep. 1592,

Apr. 2007.

[20] M. Zink, K. Suh, Y. Gu, and J. Kurose, ―Watch global,

cache local: YouTube network

traffic at a campus network Measurements and

implications,‖ in Proc. MMCN, 2008,

pp. 1–13.

[21] S. Schleimer, D. S. Wilkerson, and A. Aiken,

―Winnowing:Local algorithms for

document fingerprinting,‖ in Proc. SIGMOD, 2003, pp. 76–

85.

[22] S. Ihm, K. Park, and V. Pai, ―Wide-area network

acceleration for the developing

world,‖ in Proc. USENIX ATC, 2010

[23] J.Srinivasan,W.Wei, X.Ma, andT. Yu, ―EMFS:Esmail-

based personal cloud storage,‖ in Proc. NAS, 2011, pp. 248–

257.

 [24] Amazon Elastic Compute Cloud (EC2).

http://aws.amazon.com/ec2/.

[25] ―netfilter/iptables project: Libnetfilter_queue,‖ Oct.

2005 [Online]. Available:

http://www.netfilter.org/projects/libnetfilter_queue.

[26]. Suresh Chougala et al. / International Journal of

Computer Science & Engineering Technology (IJCSET)

Survey on Traffic Redundancy and Elimination Approach

for Reducing Cloud Bandwidth and Costs

1)Author Ankita Kotalwar ME(CSE) part II student

2)Author Dr.Sadhana Chidrawar Dean’s s MPGI COE

Nanded

http://www.netfilter.org/projects/libnetfilter_queue

