

International Journal of Engineering Research in Computer Science and

Engineering (IJERCSE) Vol 2, Issue 7,July 2015

 1

Role of Project Domain and Project Type attributes

for Software Development
[1]

 Prof. Ashwini Gharde ,
[2]

 Dr Ashish B.Sasankar
[1]

Department of Master of Computer Applications Rajiv Gandhi College of Engineering and Reaserch Nagpur, India

[2]

P.G.Department of Computer Science G.H.Raisoni Institute of Information Technology Nagpure,India
[1]

 ashwini.gharde@gmail.com,
[2]

 ashish.sasankar@raisoni.net

Abstract- Software worth billions and trillions of dollars have gone waste in the past due to lack of proper techniques used for

developing software resulting into software crisis. Historically , the processes of software development has played an important role

in the software engineering. A number of life cycle models have been developed in last three decades. This paper is an attempt to

identify attributes that are critical to software process model for a software project. The objective is to identify the project

domain(area) and project type(scale).

Key Terms: DSS,RSD,SDLC.

I. INTRODUCTION

In the current scenario, information systems are important

part of any organization. As compared to 1970’s and 1980’s,

they are becoming more and more complex. In the early

years i.e., 1940’s, software development was not an

independent established discipline. Instead it was only an

extension of the hardware. Earlier programs were written

mostly in assembly language and were not complex. The

persons/users who did programming were the one who also

executed, tested and fixed the problems/errors in the

software.

As the information systems became more and more complex

and organizations became more dependent on software, a

need was felt to develop the software in a systematic

fashion. A survey was conducted by researchers in seventies

and it was found that most of the software used by

companies was of poor quality.. Some important

characteristics of software are As compared to hardware

which follows the “bathtub curve” as shown in Fig. 1.1,

software does not wear out as over a period of time it will

become more reliable.

Figure 1.1 Bathtub curve (reproduce from pressman

Instead the software becomes obsolete due to new operating

environment, new user requirements etc.. Hence it can only

`

retire but not wear out. So it should follow the curve shown

in Fig. 1.2.

 Figure 1.2 The software Curve

From 1960’s to 1980’s , software engineering was spurred

by so called software crisis. A number of large size projects

failed called software runaways because of development

teams exceeding the budget, late delivery of software ,Poor

quality ,user requirements not completely supported by the

software, difficult maintenance, unreliable software.

Statistics show that only 2% of the projects were used as

they were delivered, 3% of the projects used after

modifications, 47% of the software was never used only

delivered, 19% of the software rejected or reworked and

29% was not even delivered. The problems increased

because of increased dependence of business on software

and lack of systematic approach to build the software.

Developers and researchers realized that development of

software was not an easy and straight forward task, instead

it required lot of engineering principles.

II. SOFTWARE DEVELOPMENT PROCESS

Developers should be able to deliver good quality software

to the end users using a well defined, well managed,

consistent and cost-effective process. A software process

framework therefore describes the different phases of the

project via the activities performed in each phase without

International Journal of Engineering Research in Computer Science and

Engineering (IJERCSE) Vol 2, Issue 7,July 2015

 2

telling about the sequence in which these phases or activities

will be conducted. The different phases of software

development process are shown in Fig. 1.3.

Figure. 1.3 Phases of Software Development Process

III. WHY ARE SOFTWARE LIFE CYCLE

MODELS IMPORTANT?

The duration of time that begins with conceptualization

of software being developed and ends after system is

discarded after its usage, is denoted by Software

Development Life Cycle (SDLC). A number of

software life cycle models have been proposed by the

researchers to organize the software engineering

activities into phases. While adopting a software

process for developing a product, the question which

immediately comes to the mind is that whether the

process is the right process to be adopted which will

ensure a good quality product. It is normally seen that

as complexity and size of the project increases, need for

a formal process also increases.

 3.1 SOFTWARE DEVELOPMENT LIFE CYCLE

MODELS

Some of the widely used, well known software life cycle

models are the Waterfall model, V model, Prototyping

model, Incremental model, Spiral model etc. Depending

upon the scope, complexity and magnitude of the project a

particular software life cycle model is selected and this

selection of life cycle model significantly contributes

towards the successful completion of the project. In the

following sections we will be briefly discussing each of

these models.

3.1.1Build and Fix Model

Techniques used in the initial years of software

development resulted into the term Build and Fix model. In

fact the model resulted in a number of project failures

because the product was not constructed using proper

specification and design. Instead the product was reworked

number of times in order to satisfy the clients as shown in

Fig. 1.4. This model has only historical importance now.

The advantages and disadvantages of the model are:

Advantages

❖ The model is useful only for small size projects,

in fact only for programming exercise 100 or 150 lines long.

Disadvantages

❖ The model is not suitable for large projects.

❖ As specifications are not defined, it results into

product full of errors.

 Figure. 1.4 Build and Fix Model

3.1.2The Waterfall Model

The Waterfall model is one of the most used model of 70’s.

It was proposed by Royce in 1970 as an alternative to Build

and Fix software development method in which code was

written and debugged. System was not formally designed

and there was no way to check the quality criteria. Different

phases of Waterfall model are shown in Figure 1.5.Given

below is a brief description of different phases of Waterfall

model.

❖ Feasibility study explores system requirements to

determine project feasibility. All projects are feasible given

unlimited resources and infinite time(Pressman92).

Feasibility can be categorized into

o Economic feasibility

o Technical feasibility

o Operational feasibility

o Schedule feasibility

o Legal and contractual feasibility

o Political feasibility

International Journal of Engineering Research in Computer Science and

Engineering (IJERCSE) Vol 2, Issue 7,July 2015

 3

 Figure 1.5 The Waterfall Model

Advantages and disadvantages of the Waterfall model are

listed below:

Advantages

❖ Easy to understand even by non-technical persons i.e.,

customers.

❖ Each phase has well defined inputs and outputs e.g., input

to system design stage is Requirement Specification

Document(RSD) and output is the design document.

❖ Easy to use as software development proceeds.

❖ Each stage has well defined deliverables or milestones.

❖ Helps the project manager in proper planning of the

project.

Disadvantages

❖ The biggest drawback of Waterfall model is that it does

not support iteration.

Software development on the other hand is iterative i.e.,

while designing activities are being carried out, new

requirements can come up. Similarly while product is being

coded, new design and requirement problems can come up.

❖ Another disadvantage of Waterfall model is that it is

sequential in nature. One cannot start with a stage till

preceding stage is completed e.g., one cannot start with the

system design till all the requirements are understood and

represented.

❖ Users have little interaction with the project team. Their

feedback is not taken during development.

❖ Customer gets opportunity to review the product very late

in life cycle because the working version of product is

available very late in software development life cycle.

❖ Model is very rigid because output of each phase is

prerequisite for successive stage.

❖ The Waterfall model also has difficulty in

accommodating changes in the product after the

development process starts. Amount of documentation

produced is very high.

 Figure 1.6 The Waterfall Model with feedback

Though Waterfall model has been used for large projects in

the past, its use must be limited to projects in which

requirements are well understood or the company is working

on a product of similar kind which it has developed in the

past. Modified version of Waterfall model shown in Fig.

1.6 allows feedback to preceding stages and hence is not

very rigid. The Waterfall model is suited for well

understood projects using familiar technology.It can also be

used for existing projects if changes to be made are well

defined.

3.1.3 The V-Model

This model was developed to relate the analysis and design

activities with the testing activities and thus focuses on

verification and validation activities of the product The

advantages and disadvantages of the model are listed below.

 Figure 1.7 The V Model

Advantages

❖ The model is simple and easy to use.

International Journal of Engineering Research in Computer Science and

Engineering (IJERCSE) Vol 2, Issue 7,July 2015

 4

❖ The V model focuses on testing of all intermediate

products, not only the final software.

❖ The model plans for verification and validation activities

early in the life cycle thereby enhancing the probability of

building an error free and good quality product.

Disadvantages

❖ The model does not support iteration of phases and

change in requirements throughout the life cycle.

❖ It does not take into account risk analysis.

The V model is used for systems in which reliability is very

important e.g., systems developed to monitor the state of the

patients, software used in radiation therapy machines.

3.1.4 The Prototype Model

The concept of prototyping is not new in various streams of

engineering. A prototype is a partially developed product.

Robert T. Futrell and Shafer in their book Quality Software

Project Management define prototyping as a process of

developing working replica of a system(Robert). This

activity of prototyping now forms the basis of prototype

software development life cycle model. Most of the users do

not exactly know what they want until they actually see the

product.

Two approaches of prototyping can be followed:

(i) Rapid Throwaway Prototyping: This approach is used for

developing the systems or part of the systems where the

development team does not have the understanding of the

system. The quick and dirty prototypes are built, verified

with the customers and thrown away. This process continues

till a satisfactory prototype is built. At this stage now the full

scale development of the product begins.

(ii) Evolutionary Prototyping: This approach is used when

there is some understanding of the requirements. The

prototypes thus built are not thrown away but evolved with

time. The block diagram of the prototype model is shown in

Fig. 1.8. The concept of prototyping has also led to the

Rapid prototyping model and the Spiral model.

The advantages and disadvantages of the prototyping model

are listed below:

Advantages

❖ A partial product is built in the initial stages. Therefore

customers get a chance to see the product early in the life

cycle and thus give necessary feedback.

❖ New requirements can be easily accommodated, as there

is scope for refinement.

❖ Requirements become more clear resulting into an

accurate product.

Disadvantages

❖ After seeing an early prototype end users demand the

actual system to be delivered soon.

End users may not like to know the difference between a

prototype and a well engineered fully developed system.

❖ Developers in a hurry to build prototypes may end up

with sub-optimal solutions.

❖ Poor documentation.

 Figure 1.8 The Prototype Model

3.1.5 The Incremental Software Development Life Cycle

Model

Software like all other complex systems is bound to evolve

due to changing business requirements or new requirements

coming up. Hence there is a need to have a model which can

accommodate the changes in the product. The models

discussed earlier do not take into consideration the

evolutionary nature of the product. Evolutionary models are

also iterative in nature. The incremental software

development life cycle model is one of the popular

evolutionary software process model used by industry.

The Fig. 1.9 shows the working of the incremental model.

International Journal of Engineering Research in Computer Science and

Engineering (IJERCSE) Vol 2, Issue 7,July 2015

 All Rights Reserved © 2015 IJERCSE 5

 Figure 1.9 The Incremental Model

The advantages and disadvantages of incremental model are

listed below:

Advantages

❖ As product is to be delivered in parts, total cost of project

is distributed.

❖ Limited number of persons can be put on project because

work is to be delivered in parts.

❖ As development activities for next release and use of

early version of product is done simultaneously, if found

errors can be corrected.

❖ Customers or end users get the chance to see the useful

functionality early in the software development life cycle.

Disadvantages

❖ As product is delivered in parts, total development cost is

higher.

❖ Well defined interfaces are required to connect modules

developed with each phase.

3.1.6 The Spiral Model

The Spiral model is also one of the popular evolutionary

process model used by the industry. The Spiral model was

proposed by Boehm in 1988 and is a popular model used for

large size projects. The model focuses on minimizing the

risk through the use of prototype. One can view the Spiral

model as a Waterfall model with each stage preceded by the

risk analysis stage. A simplified view of Spiral model is

shown in Fig. 1.10.

 Figure 1.10 The Spiral Model

The radial coordinate in the diagram represents the total

costs incurred till date. Each loop of the spiral represents

one phase of the development. The model is divided into

four quadrants, each with a specific purpose. Each spiral

represents the progress made in the project

The advantages and disadvantages of spiral model are listed

below:

Advantages

❖ The model tries to resolve all possible risks involved in

the project starting with the highest risk.

❖ End users get a chance to see the product early in life

cycle.

Disadvantages

❖ The model requires expertise in risk management and

excellent management skills.

❖ The model is not suitable for small projects as cost of risk

analysis may exceed the actual cost of the project.

❖ Different persons involved in the project may find it

complex to use.

3.1.6 The Rapid Application Development (RAD) Model

The Rapid Application Development (RAD) model was

proposed by IBM in 1980s and later on was introduced to

software community by James Martin through his book

Rapid Application development. The important feature of

RAD model is increased involvement of the user/customer

at all stages of life cycle through the use of powerful

development tools. Block diagram of RAD model is shown

in Fig. 1.11.

The RAD model consists of following four phases:

Requirements Planning – focuses on collecting requirements

using elicitation techniques like brainstorming,

 User Description – Requirements are detailed by taking

users feedback by building prototype using development

tools.

 Construction – The prototype is refined to build the product

and released to the customer.

 Cutover – involves acceptance testing by the user and their

training.

 Figure 1.11 The RAD Model

The advantages and disadvantages of RAD model are

discussed below:

Advantages

❖ As customer is involved at all stages of development, it

leads to a product achieving customer satisfaction.

❖ Usage of powerful development tools results into reduced

software development cycle time.

International Journal of Engineering Research in Computer Science and

Engineering (IJERCSE) Vol 2, Issue 7,July 2015

 All Rights Reserved © 2015 IJERCSE 6

❖ Feed back from the customer/user is available at the

initial stages.

Disadvantages

❖ The model makes use of efficient tools, to develop the

prototype quickly, which calls for hiring skilled

professional.

❖ Team leader must work closely with developers and

customers/users to close the project in time.

Comparison of different process models in tabular form is

shown in Table 1.1.

Water

fall

V

Mode
l

Increm

ental
Spiral

Prot

oty
pe

RAD

1

Well

Defined
requirement

s

yes yes no No no Yes

2

Domain

knowledge
of team

members

adequ
ate

adequ
ate

adequat
e

Very
Less

Ver

y
Les

s

Adequat
e

3

Expertise of
users in

problem

domain

Very

Less

Very

Less

adequat

e

Very

Less

ade

quat
e

Adequat

e

4 Availability no no no Yes yes Yes

5

Users

involvemen
t in all

phases

no no no No yes Yes

6
Complexity

of System

simpl

e

simpl

e

Compl

ex

Compl

ex

Co

mpl

ex

Medium

IV. TYPES OF SOFTWARE

The software is being used in almost all the spheres of

human life e.g., hospitals, banks, defense, finance,

predicting stock rates, making pictures, running other

software and so on. In fact the list is endless. Though it is

somewhat difficult to categorize the software in different

types but based on their applications the software can be

categorized into following areas:

a. System Software: Systems software is necessary to

manage the computer resources and support the

execution of application programs. Software like

operating systems, compilers, editors and drivers

etc., come under this category. Operating systems

are needed to link the machine-dependent needs of

a program with the capabilities of the machine on

which it runs. Compilers translate programs from

high-level languages into machine languages.

Without the presence of system software, a

computer cannot function.

b. Scientific Software: Scientific and engineering

software satisfies the needs of a scientific or

engineering user to perform enterprise-specific

tasks. Such software are written for specific

applications using the principles, techniques and

formulae specific to that field. Examples are

software like MATLAB, AUTOCAD, PSPICE,

ORCAD etc.

c. Networking and Web Applications Software:

Networking software provides the required support

necessary for computers to interact with each other,

and with data storage facilities, in a situation where

multiple computers are necessary to perform a task.

The networking software is also used when

software is running on a network of computers

(such as the Internet or the World Wide Web). This

category of software include all network

management software, server software, security

and encryption software and software to develop

Web based applications like HTML, PHP, XML

etc.

d. Embedded Software: This type of the software is

embedded into the hardware normally in the Read

Only memory(ROM) as a part of large system and

is used to support certain functionality under the

control conditions. Examples are software used in

instrumentation and control applications, washing

machines, satellites etc.

e. Business Software: This category of software is

used to support the business applications and is the

most widely used category of software. Examples

are software for inventory management, accounts,

banking, hospital, schools, stock markets etc., The

software written for Enterprise Resource

planning(ERP), project management , workflow

management etc., also come under this category.

f. Utilities Software: The programs coming under this

category perform specific tasks and are different

from other software in terms of size cost and

complexity. Examples are anti-virus software,

voice recognition software, compression programs

etc.

g. Artificial Intelligence Software: Software like

expert systems, decision support systems, pattern

recognition software, artificial neural networks etc.,

come in this category of software. Such type of

software solve complex problems which are not

affected by complex computations using non

numerical algorithms.

4.1 Product and project characteristics as criteria for model

selection

The literature on IT project SDLC models includes many

factors characterizing an IT project that influence selection

of an SDLC model. This paper will present the best known

of these, taking contemporary knowledge as a reference

point that aids the creation of a list of criteria for developing

a computer-aided DSS for model selection. The criteria

International Journal of Engineering Research in Computer Science and

Engineering (IJERCSE) Vol 2, Issue 7,July 2015

 7

were divided into two groups: product, and project criteria.

The criteria concerning software, in other words: the

product group, include: the type of information system, the

size and complexity of the software, system architecture,

modularity and level of module integrity, the variability and

clarity of user requirements, or generally speaking – the

quality of software

 4.1.1 Type of information system

Information systems used by various institutions and

companies can be divided into three categories.

a. The first category comprises commonly used

systems that facilitate organization. Their main

objective is to help employers in fulfilling various

everyday tasks. Office software such as MS Word

and MS Excel, or teamwork aiding programs such

as Lotus Notes and Novell Group Wise are

examples of such systems.

b. The second category of information systems

comprises so called domain systems. This group

can be further divided into two subgroups. The first

of these consists of systems that are aimed at

improving the efficiency of business processes in

e.g. customer service or financial management.

Examples of such systems are specialized Fixed

Assets Management Systems (FAMS), or

Customer Relationship Management (CRM). The

second subgroup consists of systems created to aid

creative activities, e.g. design or decision support

processes. Elements characteristic of this

subcategory are highly-advanced applications, such

as systems meant for industrial designers and

architects (Computer Aided Design, CAD), or

systems aiding technological planning processes,

designed for industrial engineers (Computer Aided

Process Planning, CAPP).

c. The third category of systems is constituted by

integrated management systems. This branch of

systems is being steadily introduced into the field

of applications that integrate the various levels on

which companies function. The most advanced of

such systems also cover strategic issues at the

functional level of an organization. The best known

examples are ERP3 integrated management

systems, such as the SAP4 software family, Oracle

Applications, IFS Applications5. For instance,

models with a clearly distinguished maintenance

stage seem to be the most appropriate for the first

category, while models which emphasize the

management of change and iterative cycles seem to

suit the second category best. The third category

seems to work best using models combining the

characteristics of the first two types with the

additional possibility of applying modular

fragmentation in the design and implementation of

software.

4.1.2 Software size and complexity

An important, though difficult activity to be done at the very

beginning of an IT project is software sizing. This problem

is usually solved by the use of various assessment methods

based upon mathematical models, by brainstorming, or by

the Delphi method. Depending on the accuracy of the

outcome, the assessment data serve as an approximation of

the size of the planned software6. Research shows that there

is a straightforward relationship between software size and

the amount of work needed for its development. Its

exponential form points to the necessity of dividing large

software projects into small parts, to reduce their complexity

and ease project management in general.

4.1.3 Computer system modularity and the level of module

integrity and complexity

The possibility of designing a modular framework for

computer systems definitely simplifies work on an IT

project. Problems related to the complexity of a computer

system are frequently resolved by dividing the project into

smaller parts, which are to be worked on by individual

project teams. The integration process tends to be time

consuming. However, the benefits of modularity are

priceless, mainly because the complexity of a large project

is dispersed over smaller tasks, each tackled individually.

CONCLUSION

Selecting an SDLC model can be compared in many ways to

the specification of user requirements; the more data

gathered and examined, the higher the chances for

successful completion of the project. Just as the

specifications of user requirements are vital in the stages of

design and computer system development, so can the

knowledge and regulations which constitute the basis for

SDLC model selection determine the success or failure of a

given project. To sum up, selecting an appropriate SDLC

model is a complex and a challenging task, which requires

not only broad theoretical knowledge, but also consultation

with experienced expert managers. Therefore, the computer

application presented should be perceived as the first step

towards building a system that could be applied in practice;

the possibilities for its development depend on the activity

of its users. The flexible construction and permanent

parameterization method used in the system makes it a

multi-tasking tool for decision support, which not only gives

decision-makers the opportunity to learn, but also allows

them to participate in a system’s development.

International Journal of Engineering Research in Computer Science and

Engineering (IJERCSE) Vol 2, Issue 7,July 2015

 8

REFERENCES

[1] Bryant, A. (2000), “Chinese Encyclopaedias and

Balinese Cockfights – Lessons for Business Process

Change and Knowledge Management,” In Knowledge

Engineering and Knowledge Management.

[2] Lecture Notes in Artificial Intelligence #1937, R.

Dieng and O. Corby, Eds., Springer Verlag.

[3] Bryant, A. (2001), “Metaphor, Myth and Mimicry:

The Bases of Software Engineering,” Annals of

Software Engineering 10, 273-292.

[4] Curtis, B., H. Krasner, V.Y. Shen, and N. Iscoe

(1987), “On Building Software Process Models under

the Lamppost,” In Proceedings of the 9th

International Conference on Software Engineering,

IEEE Computer Society Press, Monterey, CA., pp. 96-

103.

[5] Evans M.W. and J.J. Marciniak (1987), Software

Quality Assurance and Management, Wiley-

Interscience, New York.

[6] Fayad, M.E. (1997), “Software Development

Process: the Necessary Evil?” Communications of the

ACM. 40, 9,pp. 101-103.

[7] Gilb, T. (1988), Principles of Software

Engineering Management, Addison-Wesley, Reading,

MA.

[8] Haase, V., R. Messmarz, G. Koch, H.J. Kugler and

P. Decrinis (1994), “BOOTSTRAP Fine-Tuning

Process Assessment,” IEEE Software 11, July, 25-

35.

[9] Humphrey, W.S. (1988), “Characterizing the

Software Process: A Maturity Framework,” IEEE

Software 5, 2, March, 73-79.

[10] Humphrey, W.S. (1995), A Discipline for Software

Engineering, SEI Series in Software Engineering,

Addison- Wesley, Reading, MA.

[11] Humphrey, W.S. and W.L. Sweet (1987), “A

Method for Assessing the Software Engineering

Capability of Contractors,” Technical Report

CMU/SEI-87-TR-23, Software Engineering Institute,

Pittsburgh, PA.

 AUTHORS PROFILE

 Authors 1. Ashish B. Sasankar had done
MCA,M.Phil(C/S) and M.Tech(CSE) .He had 12 yrs
experience in teaching and Industry.

 Authors 2. Prof. Ashwini Gharde is an assistant
Professor in Rajiv Gandhi College of Engineering and
Research, Nagpur. She had 9 yrs experience in
teaching.

