
International Journal of Engineering Research in Computer Science and

Engineering (IJERCSE) Vol 2, Issue 4, April 2015

 14

Trusted Support Service and OTP method for

Moving Big Data to Cloud

[1]
Muhsina.B.S,

[2]
PreethikaRajashekhar,

[3]
Supriya.V,

[4]
ThusleenaKabeer,

[5]
Navin K.S

 LBS Institute of Technology for Women, Thiruvananthapuram, Kerala, India muhsinabs@gmail.com,
[1]preethz2408@gmail.com, [2]suppuvl@gmail.com, [3]thas235@gmail.com, [4]navinsivendran@gmail.com

Abstract: Cloud computing is a mechanism in which company hires the data centre and hosts the confidential information for

computing the various services in low cost infrastructure, on demand and dynamic provisioning. An important open issue here

is to efficiently move the data, from different geographical locations over time, into a cloud for effective processing. The de facto

approach of hard drive shipping is not flexible or secure. This work studies timely, cost-minimizing upload of massive,

dynamically-generated, geo-dispersed data into the cloud, for processing using a Map Reduce-like framework. But it outstands

with security concerns. Security requirements for cloud computing environment should have trusted computing platform. The

system proposes cloud computing system is combined with Trusted Support Service (TSS). In this design, better user

authentication can be obtained by using One Time Password (OTP) which will sent to user via email and SMS. The system also

provides the Trusted Support Service (TSS) by using Java/C editor. Paper also demonstrates the performance comparison

of this system. For cost-minimizing data migration problem, we propose two online algorithms: an online lazy migration

(OLM) algorithm and a randomized fixed horizon control (RFHC) algorithm , for optimizing at any given time the choice of

the data centre for data aggregation and processing, as well as the routes for transmitting data there. Here we are

demonstrating this concept through a banking application

Keywords: Cloud Computing, Big Data, and Online algorithms

I. INTRODUCTION

Cloud computing is a powerful technology to perform

massive-scale and complex computing. It eliminates the

need to maintain expensive computing hardware, dedicated

space, and software. The elastic and on- demand nature of
resource provisioning makes a cloudplatform attractive for

the execution of various applications, especially

computation-intensive ones [1], [2], [3]. More and more

data-intensive Internet applications, e.g., Facebook, Twitter,

and big data analytics applications, such as the Human

Genome Project [4], are relying on the clouds for processing

andanalyzing their petabyte-scale datasets, with a computing

framework such as MapReduce andHadoop.Massive growth

in the scale of data or big data generated through cloud

computing has been observed. Addressing big data is a

challenging and time- demanding task that requires a large
computational infrastructure to ensure successful data

processing and analysis

While most efforts have been devoted to designing

bettercomputing models for big data analytics, an important

issuehas largely been left out in this respect. The current

practice to movethe massive amounts of data into a cloud, is

to copy the data into largehard drives for physically

transportation to the data center or even to move entire

machines. Such physicaltransportation incurs undesirable

delay and possible servicedowntime, while outputs of the

data analysis are often neededto be presented to users in the

most timely fashion . It is alsoless secure, given that the

hard drives are prone to infectionof malicious programs and
damages from road accidents. Asafer and more flexible

data migration strategy is in need, tominimize any potential

service downtime.

The challenge escalates when we target at dynamically and

continuously produced data from different geographical

locations. Withdynamic data, an efficient online algorithm

is desired, fortimely guiding the transfer of data into the

cloud over time.For geo- dispersed data sets, we can select

the best datacenter to aggregate all data onto, for processing

with aMapReduce-like framework, which is efficient to
process datawithin one data center but not across data

centers, due to theenormous overhead of inter-data center

data moving in thestage of shuffle and reduce Two efficient

online algorithms are proposed to practicallyguide data

migration over time: an online lazy migration(OLM)

algorithm and a randomized fixed horizon

control(RFHC) algorithm. Theoretical

mailto:muhsinabs@gmail.com
mailto:muhsinabs@gmail.com
mailto:preethz2408@gmail.com
mailto:suppuvl@gmail.com
mailto:thas235@gmail.com
mailto:navinsivendran@gmail.com

International Journal of Engineering Research in Computer Science and

Engineering (IJERCSE) Vol 2, Issue 4, April 2015

 15

analyses show that the OLMalgorithm achieves a worst-case

competitive ratio of 2.55,without the need of any future

information and regardlessof the system scale, under the

typical settings in real-worldscenarios. The RFHC algorithm

achieves a competitive ratio of 1 + (1 𝑙+1)(𝜅 𝜆)that

approaches 1 as the lookahead window l grows. Here κ and

λ are system dependent parameters ofsimilar magnitudes.

For better user authentication we propose OTP in our

system. This authentication system will ensure authorized

access toinformation building trust in cloud users. The

proposedsystem application will be Integrated

DevelopmentEnvironment (IDE) for Java/C source code

compilation,debugging and execution facilities. Only

registered users can use this cloud service.To ensure

information security, system will implement emailOTP

authentication technique. For every login, an OTP willbe

sent to registered email id/mobile no. The cloud user has

tofetch the OTP to email account/mobile and then only he
canaccess cloud services like Java/C source

compilation,debugging and execution.

In the rest of the paper, we discuss related work in Sec. II,

describe the system and problem models in Sec. III, and

present the online solutions in Sec. IV,Sec V describes the

security methods that can be provided and Sec. 6 concludes

the paper.

II. RELATED WORK

A series of recent work studies application migration to the
cloud. Hajjat et al. [5] develop an optimization model for

migrating enterprise IT applications onto a hybrid cloud.

Cheng et al. [6] and Wu et al. [7] advocate deploying social

media applications into clouds, for leveraging the rich

resources and pay-as you-go pricing. These projectsfocus

mainly on workflow migration and application performance

optimization, by carefully deciding the modules to be

moved to the cloud and the data caching/replication

strategies in the cloud. The very first question of how to

move large volumes of applicationdata into the cloud is not

explored. Few existing work discussed such transfer of big
data to the cloud. Cho et al. [8] design Pandora, a cost-aware

planning system for data transfer to the cloud provider, via

both the Internet and courier services.. Different from our

study, they focus on static scenarios with a fixed amount of

bulk data to transfer, rather than dynamically generated

data; in addition, a single cloud site is considered, while our

study pays attention to multiple data centers.

III. THE DATA MIGRATION PROBLEM

A. System Model

We can consider a cloud consisting of K geo-distributed
data centers in a set of regions.A cloud user continuously

produces large volumes of data at a set D of multiple

geographic locations. The user connects to the data centers

from different data generation locations via virtual private

networks (VPNs), with G

VPN gateways at the user side and K VPN gateways each

collocated with a data center.

B.Cost-minimizing Data Migration: Problem

Formulation
Assume the system executes in a time-slotted fashion with

slot length τ. Fd(t) bytes of data are produced at location d

in slot t, for upload to the cloud. ldg is the latency between

data location d ∈D and user side gateway g ∈G , pgi is the

delay along VPN link (g,i), and ηik is the latency between

data centersi and k. These delays, which can be obtained by

a simple command such as ping, are dictated by the

respective geographic distances. A cloud user needs to

decide(i) via which VPN connections to upload its data to

the cloud, and (ii) to which data center to aggregate data, for
processing by a MapReduce-like framework, such that the

monetary charges incurred, as well as the latency for the

data to reach the aggregation point, are jointly minimized.

The total cost C to be minimized has four components:

bandwidth cost, aggregate storage and computing cost,

migration cost, and routing cost.

Decisionvariables. Two types of optimization variables are

formulated:

(1) Data routing variable xd,g,i,k(t),∀d ∈D ,∀g ∈G

,∀i∈ K, ∀k ∈K, denotes the portion of data Fd(t)
produced at location d in t, to be uploaded through

VPN connection (g,i) and then migrated to data

center k for processing.

xd,g,i,k(t) > 0 indicates that the data routing path d → g → i

→ k is employed, and xd,g,i,k =0 otherwise.

Let 𝑥⃗ =(xd,g,i,k(t))∀d∈D,∀g∈G,∀i∈K,∀k∈K, the set of

feasible data routing variables are:

X= { (𝑥⃗(𝑡)) | g∈G,i∈K,k∈KΣxd,g,i,k(t)=1and xd,g,i,k∈

[0,1], ∀d ∈D ,∀g ∈G ,∀i∈K ,∀k ∈K} (1)

HereΣg∈G,i∈K,k∈Kxd,g,i,k(t)=1ensures that all data

produced from location d are uploaded into the cloud in t.

(2) Binary variable yk(t), ∀k ∈K, indicates whether data

center k is target of data aggregation in time slot t (yk(t)= 1)

or not (yk(t)=0). Following the practical requirement of the

current MapReduce framework, we require that at any given

International Journal of Engineering Research in Computer Science and

Engineering (IJERCSE) Vol 2, Issue 4, April 2015

 16

time, exactly one data center is chosen. Let 𝑦⃗(t) =

(yk(t))∀k∈K, the set of possible data

aggregationvariablesare:

Y={ (𝑦⃗(t)) |Σ𝑘∈Kyk(t)=1andyk(t) ∈{ 0,1},∀k∈K}(2)

Costs. The costs incurred in time slot t, for uploading the

data into the cloud and for processing the data at the
selected data center, include the following components.

(1)The overall bandwidth cost for uploading data via the

VPN connections,where d∈D,k∈KΣFd(t)xd,g,i,k(t) is the

amount uploaded via (g,i), and fgi is the charge for

uploading one byte of data via(g,i), derived from bandwidth

prices set by the cloud provider:

CBW(𝑥⃗(t))≜Σg∈G,i∈K (fgiΣ d∈D,k∈KFd(t)xd,g,i,k(t)). (3)

(2)Storage and computation costs are important factors to

consider in choosing the data aggregation point.The data

produced in t and also from the past which is in the form of
raw data or intermediate processing results may involve in

processing and analysing.Without loss of generality, let the

amount of current and history data to process in t be

F(t)=Σ𝑡𝑣=1(ανΣd∈DFd(ν)), whereΣd∈DFd(ν) is the total

amount of data produced in time slot ν from different data

generation locations, and weight αν∈[0,1] is smaller for

older times ν and αt =1for the current time t. Specific

applications determines the value of αν and it can be

obtained through statistical data . Assume all the other

historical data, except those inF(t), are removedfrom the
data centers where they were processed, since all needed

information has been stored in the retained data. Let

Ψk(F(t)) be a non- decreasing cost function for storage and

computation in data centerk in t. The aggregate storage and

computing cost incurred in the cloud in t is:

CDC(𝑦⃗(t)) ≜Σk∈Kyk(t) Ψk(F(t)). (4)

The best data center for data aggregation can differ in t

than in t−1, due to temporal and spatial variations in

data generation.Historicaldata neededfor processing

togetherwith new data in t, at the amount of

Σ𝑡−1𝑣=1(ανΣd∈DFd(ν)), should be moved from the

earlier data center to the current, and a migration cost is

incurred. Let φik(z) be the non-decreasing migration
cost to move z bytes of data from data centeri to date

center k. The migration cost between t−1 and t is:

CtMG(𝑦⃗(t),𝑦⃗(t−1))≜ Σi∈KΣk∈K([yi(t−1)−yi(t)]+

[yk(t)−yk(t−1)]+φik(Σ𝑡−1𝑣=1ανΣd∈DFd(ν))) (5)

(4) The latency incurred for data upload is an important

performance measure, to be minimized in the data routing

and aggregation process. Targeting both monetary cost

minimization and delay minimization, a routing cost for

delays along the selected routing paths is formulated, and

combine it with other costs to be the optimization objective.

The overall routing cost in the system in t is:

CRT(x(t))≜d,g,i,k Lxd,g,i,k(t)Fd(t)(ldg + pgi + ηik). (6)

where xd,g,i,k(t)Fd(t)(ldg + pgi + ηik) is the product of data

volume and delay along the routing path d → g → i → k.

The weighted formula suggests that transferring a large
volume of data via a high latency path causes high cost. L is

the routing cost weight converting

xd,g,i,k(t)Fd(t)(ldg+pgi+ηik) into a monetary cost,

reflecting how latency-sensitive the user is. A cloud user

specifies L as a constant a priori. Latency ldg +pgi +ηik is

fixed in each slot but can change over time. In summary, the

overall cost incurred in t in the system is:

C(𝑥⃗(t),𝑦⃗(t))=CBW(𝑥⃗(t))+CDC(𝑦⃗(t)) + CtMG

(𝑦⃗(t),𝑦⃗(t-1)) + CRT(𝑥⃗(t)). (7)

IV. TWO ONLINE ALGORITHMS

A. The Online Lazy Migration (OLM) Algorithm

We divide the overall costC(𝑥⃗(t),𝑦⃗(t)) incurred in t into

two parts: (i) migration cost CtMG(𝑦⃗(t), 𝑦⃗⃗⃗⃗(t-1)) defined

earlier, related to decisions in t−1; (ii) non- migration cost

that relies only on current information at t:

Ct−MG(𝑥⃗(t),𝑦⃗(t))=CBW(𝑥⃗(t))+CDC(𝑦⃗(t)) + CRT(𝑥⃗(t)).
(8)

We design a lazy migration algorithm (Alg. 1), whose basic

idea is to postpone data center switching even if the one-

shot optimum indicates so, until the cumulative non-

migration cost (in Ct−MG(𝑥⃗(t),𝑦⃗(t))) has

significantlyexceeded the potential data migration cost.

Algorithm 1: The Online Lazy Migration (OLM)

Algorithm
1: t =1 ;

2: �̂�=1; //Time slot when the last change of aggregation data
center happens

3: Compute data routing decision 𝑥⃗(1) and aggregation

decision 𝑦⃗(1) by minimizing C(𝑥⃗(1),𝑦⃗(1))

4: Compute 𝐶𝑀𝐺 1(𝑦⃗(1),𝑦⃗(0)) and 𝐶−𝑀𝐺 1 (𝑥⃗(1),𝑦⃗(1));

5: while t ≤ T do

6:if𝐶−𝑀𝐺 �̂�(𝑦⃗(𝑡 ̂),𝑦⃗(𝑡 ̂−1))≤ 1𝛽2ΣCν

−MG(x⃗⃗(ν),y⃗⃗(ν))t−1ν=�̂�

then

7: Derive 𝑥⃗(t) and 𝑦⃗(t) by minimizing 𝐶−𝑀𝐺 𝑡 (𝑥⃗(t),𝑦⃗(t))

and constraint 𝐶𝑀𝐺 𝑡 (𝑦⃗(t),𝑦⃗(t-1)) ≤β1𝐶−𝑀𝐺 𝑡

(𝑥⃗(t),𝑦⃗(t));

8: if 𝑦⃗(t) ≠𝑦⃗(t−1) then

9: Usethenew aggregation datacenter indicatedby 𝑦⃗(t);
10: �̂�= t;

11: if �̂�<tthen //not to use new aggregation data center 12:

𝑦⃗(t)=𝑦⃗(t−1), compute data routing decision 𝑥⃗(t) by

solving (10) if not derived;

13: t = t +1

International Journal of Engineering Research in Computer Science and

Engineering (IJERCSE) Vol 2, Issue 4, April 2015

 17

At the beginning (t=1), we solve the one-shot optimization

and upload data via the derived optimal routes 𝑥⃗(1) to the

optimal aggregation data center indicted by 𝑦⃗(1). Let �̂� be
the time of the data center switch. In each following time

slot t, we compute the overall non-migration cost in [�̂�,t −

1],Σ𝑡−1𝑣=�̂�Cv−MG(𝑥⃗(v),𝑦⃗(v))). The algorithm

checkswhether this cost is at least β2 times the migration

cost 𝐶𝑀𝐺 �̂�(𝑦⃗(𝑡 ̂), 𝑦⃗(�̂�−1)). If so, it solves the one-shot

optimizationto derive 𝑥⃗(t) and 𝑦⃗(t) withoutconsidering the

migrationcost, i.e., by minimizing 𝐶−𝑀𝐺 𝑡(𝑥⃗(t),𝑦⃗(t)) and

an additional constraint, that the potential migration

cost,𝐶−𝑀𝐺 𝑡 (𝑦⃗(t),𝑦⃗(t-1)), is no larger than β1 times the

nonmigration cost 𝐶−𝑀𝐺 𝑡 (𝑥⃗(t),𝑦⃗(t)) at time t (to make

sure that the migration cost is not too excessive). If a change

of migration data center is indicated (𝑦⃗(t) = 𝑦⃗(t − 1)), the

algorithm accepts the new aggregation decision, and

migrates data accordingly.In all other cases, the

aggregationdata center

remainsunchangedfromt−1,whileoptimaldataroutingpaths

are computed given this aggregation decision, for upload of
new data generated in t.

Alg.1 avoids aggressive switches of the aggregation data

center, to prevent moving a large amount of data back and

forth too often. Excessive “laziness” is also avoided.

Parameters β2 > 0 and β1 > 0 control the “laziness” and

“aggressiveness” of the algorithm: a large β2 prolongs the

inter-switch interval, while a large β1 invites more frequent

switches.

B. The Randomized Fixed Horizon Control (RFHC)

Algorithm

In practical applications, near-term future data
generationpatterns can often be estimated from history.We

assume that the information in the lookaheadwindow can be

predicted precisely without error.We divide time into equal-

size frames of l + 1 time slotseach (l ≥ 0). In the first time

slot t of each frame, assumeinformation on data generation

for the next l time slots, i.e.,Fd(t), Fd(t + 1), ..., Fd(t + l), ∀d

∈ D, are known. We solvethe following cost minimization

over time frame [t, t + l],given the data aggregation decision

of 𝑦⃗(t − 1), to derivedata routing decisions 𝑥⃗(ν) and

aggregation decisions 𝑦⃗(ν),∀ν = t, . . . , t + l, using Alg. 1

minimizeΣC(𝑥⃗(𝜈),𝑦⃗(𝜈))𝑡+𝑙𝜈=𝑡. (9)

We design a Randomized Fixed Horizon Control

(RFHC)algorithm (Alg. 2). At the beginning, the algorithm

uniformlyrandomly chooses p ∈ [1, l + 1] as the start of the

firsttime frame of l + 1 slots, i.e., it randomly picks one

specificalgorithm FHC(p)from the l+1 FHC algorithms: at t

= 1, it solves (16) to decide the optimal data routing and
aggregationstrategies in the period of t = 1 to p − 1 (p ≠1);

then att = p, p + l + 1, p + 2(l + 1), . . ., it solves (16) for

optimalstrategies in the following l + 1 time slots,

respectively.

Algorithm 2: The Randomized Fixed Horizon Control

(RFHC) Algorithm

1: 𝑦⃗(0) = 0;

2: p = rand(1, l + 1); //A random integer within [1,l+1]
3: if p ≠ 1 then

4: Derive 𝑥⃗(1) ・・・𝑥⃗(p − 1) and 𝑦⃗(1) …𝑦⃗(p − 1) by

solving(16) over the time window [1, p −1];

5: t = p;

6: while t ≤ T do

7: if (t − p) mod (l + 1) = 0 then

8: Derive 𝑥⃗(t), ・・・,𝑥⃗(t + l) and 𝑦⃗(t), ・,𝑦⃗(t + l)

bysolving (16) over the time frame [t, t + l];

9: t = t+ 1;

An adversary, with no information on p, finds it hard to

contrivespecific inputs to degrade the performance of

RFHC.

V. SECURITY

In our proposed system, security can be ensured by two

methods.

(A). One Time Password (OTP)

Security requirements for cloud computingenvironment

should have trusted computing platform.Our proposed

system will demonstrate One TimePassword through email

to ensure information security. Thesystem will generate this

OTP every time the user is trying tologin. The One time

password will be mailed /sent SMS tothem for every login.

1.Implementing trusted computing platform

Dynamic password is generated either in time based or
event base mechanisms. One-time password authentication

system (OTP) provides authentication for system access

(login).

Algorithm 3: OTP generation
Input: User’s detailed information including Gmail

account& mobile number

Output: One time password

1. Generate random values between 0-123(excluding

0,123)

2. Check the values in range of 47-57(0-9), 65-91(A to

Z),97-122(a to z)
3. If the number is in the range then convert the

number in to its ASCII value Else convert the

number to its nearest number then convert the

number in to its ASCII value

4. Append the generated characters in the password

String(OTP)

International Journal of Engineering Research in Computer Science and

Engineering (IJERCSE) Vol 2, Issue 4, April 2015

 18

(B).Privacy Preservation

Privacy preservation is an important issue in the release of

data for mining. We focus on a study on the k-anonymity

property[10]. The k-anonymity model assumes a quasi-

identifier, which is a set of attributes that may serve as an

identifier in the data set. It is assumed that the dataset is a

table and that each tuple corresponds to an individual. Let Q

be the quasi-identifier. An equivalence class of a table with
respect to Q is a collection of all tuples in the table

containing identical values for Q. The size of an equivalence

class indicates the strength of identification protection of

individuals in the equivalent class. If the number of tuples in

an equivalence class is greater, it will be more difficult to re-

identify individual. A data set D is k-anonymous with

respect to Q if the size of every equivalence class with

respect to Q is k or more. As a result, it is less likely that

any tuple in the released table can be linked to an individual

and thus personal privacy is preserved.

We propose a simple and effective model to protect both

identifications and sensitive associations in a disclosed data

set. The model extends the k-anonymity model to the

(α,k)anonymity model to limit the confidence of the

implications from the quasi-identifier to a sensitive value

(attribute) to within α in order to protect the sensitive

information from being inferred by strong implications.

DEFINITION: ((α,k)-ANONYMIZATION). A view of a

table is said to be an (α,k)-anonymization of the table if the

view modifies the table such that the view satisfies both k-

anonymity and α-deassociation properties with respect to the
quasi-identifier.

The approaches mentioned in this section solve the privacy

issues while moving big data to cloud. (α,k)anonymity

model protects sensitive attribute when the attribute contains

many values and no single value dominates the attribute. At

the same time user authentication is provided by the OTP

method.

CONCLUSION

This paper designs efficient algorithms for timely, cost

minimizing migration of geo-dispersed big data to thecloud,
for processing using a MapReduce-like framework. Two

online algorithms are designed to practically migrate data in

an online fashion. Data security and privacy is one of the

biggest challenges in cloud computing .Cloud data must be

protected not only against external attackers but also corrupt

insiders .Our proposed system uses OTP and Privacy

Preservation approach which aims to make cloud data self

intelligent.

REFERENCES

[1]. “Moving Big Data to The Cloud: An Online Cost-

Minimizing Approach” Linquan Zhang, Chuan Wu,

Zongpeng Li, Chuanxiong Guo, Minghua Chen, and Francis

C.M. Lau

[2]. M. Armbrust, A. Fox, R. Grifth, A. D. Joseph, R. Katz,

A. Konwinski,G. Lee, D. P. A. Rabkin, I. Stoica, and M.

Zaharia, “Above the Clouds:A Berkeley View of Cloud

Computing,” EECS, University of California,Berkeley,

Tech. Rep., 2009.

[3]. S. Pandey, L. Wu, S. Guru, and R. Buyya, “A Particle
Swarm Optimization(PSO)-based Heuristic for Scheduling

Workflow Applicationsin Cloud Computing Environment,”

in Proc. IEEE AINA, 2010

[4].Human Genome Project,

http://www.ornl.gov/hgmis/home.shtml.

[5]. M. Hajjat, X. Sun, Y. E. Sung, D. Maltz, and S. Rao,

“CloudwardBound: Planning for Beneficial Migration of

Enterprise Applications tothe Cloud,” in Proc. ACM

SIGCOMM, August 2010.

[6] X. Cheng and J. Liu, “Load-Balanced Migration of

Social Media toContent Clouds,” in Proc. ACM NOSSDAV,
June 2011.

[7] Y. Wu, C. Wu, B. Li, L. Zhang, Z. Li, and F. Lau,

“Scaling Social MediaApplications into Geo-Distributed

Clouds,” in Proc. IEEE INFOCOM,

Mar. 2012.

[8].B. Cho and I. Gupta, “New Algorithms for Planning

Bulk Transfer viaInternet and Shipping Networks,” in Proc.

IEEE ICDCS, 2010.

[9]. Trusted Platform for support services in Cloud

Computing environment SnehaKolhe, SudhirDhage*2

[10].Raymond Chi-Wing Wong, Jiuyong Li, Ada Wai-Chee

Fu and Ke Wang,”(α,k)-Anonymity:An enhanced k-
anonymity model for privacy preserving data publishing,”

