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Abstract: Cloud computing is a mechanism in which company hires the data centre and hosts the confidential information for 

computing the various services in low cost infrastructure, on demand and dynamic  provisioning. An  important  open  issue here 

is to efficiently move the data, from different geographical locations over time, into a cloud for effective processing. The de facto 

approach of hard drive shipping is not flexible or secure. This work studies timely, cost-minimizing upload of massive, 

dynamically-generated, geo-dispersed data into the cloud, for processing using a Map Reduce-like framework. But    it    outstands    

with    security concerns. Security requirements for cloud computing environment should have trusted computing platform. The 

system proposes cloud computing  system  is  combined  with  Trusted Support Service (TSS). In this design, better user 

authentication can be obtained by using One Time Password (OTP) which will sent to user via email and SMS. The system also 

provides the Trusted Support  Service  (TSS)  by  using  Java/C  editor. Paper also demonstrates the performance comparison   

of   this   system. For   cost-minimizing data migration problem, we propose two online algorithms: an    online    lazy    migration    

(OLM) algorithm and a randomized fixed horizon control (RFHC)  algorithm  , for  optimizing  at  any  given time the choice of 

the data centre for data aggregation and processing, as well as the routes for transmitting data there. Here we are 

demonstrating this concept through a banking application 
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I. INTRODUCTION  

Cloud computing is a powerful technology to perform 

massive-scale and complex  computing.  It  eliminates the 

need to maintain expensive computing hardware, dedicated 

space, and software. The elastic and on- demand nature of 
resource provisioning makes a cloudplatform attractive for 

the execution of various applications,   especially   

computation-intensive   ones [1], [2], [3]. More and more 

data-intensive Internet applications, e.g., Facebook, Twitter, 

and big data analytics applications, such as the Human 

Genome Project [4], are relying on the clouds for processing 

andanalyzing their petabyte-scale datasets, with a computing 

framework such as MapReduce andHadoop.Massive growth 

in the scale of data or big data generated through cloud 

computing has been observed. Addressing big data is a 

challenging and time- demanding task that requires a large 
computational infrastructure to ensure successful data 

processing and analysis 

 

While most efforts have been devoted to designing 

bettercomputing models for big data analytics, an important 

issuehas largely been left out in this respect. The current 

practice to movethe massive amounts of data into a cloud, is 

to copy the data into largehard  drives  for  physically  

transportation  to  the data center or even to move entire 

machines. Such physicaltransportation incurs undesirable 

delay and possible servicedowntime, while outputs of the 

data analysis are often neededto be presented to users in the 

most timely fashion . It is alsoless secure, given that the 

hard drives are prone to infectionof malicious programs  and  
damages  from  road  accidents.  Asafer and more flexible 

data migration strategy is in need, tominimize any potential 

service downtime. 

 

The challenge escalates when we target at dynamically and 

continuously produced data from different geographical 

locations. Withdynamic data, an efficient online algorithm 

is desired, fortimely guiding the transfer of data into the 

cloud over time.For geo- dispersed data sets, we can select 

the best datacenter to aggregate all data onto, for processing 

with aMapReduce-like framework, which is efficient to 
process datawithin one data center but not across data 

centers, due to theenormous overhead of inter-data center 

data moving in thestage of shuffle and reduce Two efficient 

online algorithms are proposed to practicallyguide data 

migration over time: an online lazy  migration(OLM)  

algorithm  and  a  randomized fixed  horizon  

control(RFHC)  algorithm.  Theoretical 

 

 

 

mailto:muhsinabs@gmail.com
mailto:muhsinabs@gmail.com
mailto:preethz2408@gmail.com
mailto:suppuvl@gmail.com
mailto:thas235@gmail.com
mailto:navinsivendran@gmail.com


 

 
International Journal of Engineering Research in Computer Science and  

Engineering (IJERCSE) Vol 2, Issue 4, April 2015 
 

 

 15 

 

 

analyses show that the OLMalgorithm achieves a worst-case 

competitive ratio of 2.55,without the need of any future 

information and regardlessof the system scale, under the 

typical settings in real-worldscenarios. The RFHC algorithm 

achieves a competitive ratio of 1 + (1 𝑙+1)( 𝜅 𝜆)that 

approaches 1 as the lookahead window l grows. Here κ and 

λ are system dependent parameters ofsimilar magnitudes. 
 

For better user authentication we propose OTP in our 

system. This authentication system will ensure authorized 

access toinformation building trust in cloud users. The 

proposedsystem application will be Integrated 

DevelopmentEnvironment (IDE) for Java/C source code 

compilation,debugging and execution facilities. Only 

registered users can use this cloud service.To ensure 

information security, system will implement emailOTP 

authentication technique. For every login, an OTP willbe 

sent to registered email id/mobile no. The cloud user has 

tofetch the OTP to email account/mobile and then only he 
canaccess cloud services like Java/C source 

compilation,debugging and execution.  

In the rest of the paper, we discuss related work in Sec. II, 

describe the system and problem models in Sec. III, and 

present the online solutions in Sec. IV,Sec V describes the 

security methods that can be provided and Sec. 6 concludes 

the paper. 

 

II. RELATED WORK 

 

A series of recent work studies application migration to the 
cloud. Hajjat et al. [5] develop an optimization model for 

migrating enterprise IT applications onto a hybrid cloud. 

Cheng et al. [6] and Wu et al. [7] advocate deploying social 

media applications into clouds, for leveraging the rich 

resources and pay-as you-go pricing. These projectsfocus 

mainly on workflow migration and application performance 

optimization, by carefully deciding the modules to be 

moved to the cloud and the data caching/replication 

strategies in the cloud. The very first question of how to 

move large volumes of applicationdata into the cloud is not 

explored. Few existing work discussed such transfer of big 
data to the cloud. Cho et al. [8] design Pandora, a cost-aware 

planning system for data transfer to the cloud provider, via 

both the Internet and courier services.. Different from our 

study, they focus on static scenarios with a fixed amount of 

bulk data to transfer, rather than dynamically generated 

data; in addition, a single cloud site is considered, while our 

study pays attention to multiple data centers. 

 

III. THE DATA MIGRATION PROBLEM 

 

A. System Model  

We can consider a cloud consisting of K geo-distributed 
data centers in a set of regions.A cloud user continuously 

produces large volumes of data at a set D of multiple 

geographic locations. The user connects to the data centers 

from different data generation locations via virtual private 

networks (VPNs), with G 

 
VPN gateways at the user side and K VPN gateways each 

collocated with a data center. 

 

B.Cost-minimizing Data Migration: Problem  

Formulation  
Assume the system executes in a time-slotted fashion with 

slot length τ. Fd(t) bytes of data are produced at location d 

in slot t, for upload to the cloud. ldg is the latency between 

data location d ∈D and user side gateway g ∈G , pgi is the 

delay along VPN link (g,i), and ηik is the latency between 

data centersi and k. These delays, which can be obtained by 

a simple command such as ping, are dictated by the 

respective geographic distances. A cloud user needs to 

decide(i) via which VPN connections to upload its data to 

the cloud, and (ii) to which data center to aggregate data, for 
processing by a MapReduce-like framework, such that the 

monetary charges incurred, as well as the latency for the 

data to reach the aggregation point, are jointly minimized. 

The total cost C to be minimized has four components: 

bandwidth cost, aggregate storage and computing cost, 

migration cost, and routing cost.  

 

Decisionvariables. Two types of optimization variables are 

formulated:  

(1) Data routing variable xd,g,i,k(t),∀d ∈D ,∀g ∈G 

,∀i∈ K, ∀k ∈K, denotes the portion of data Fd(t) 
produced at location d in t, to be uploaded through 

VPN connection (g,i) and then migrated to data 

center k for processing. 

 

xd,g,i,k(t) > 0 indicates that the data routing path d → g → i 

→ k is employed, and xd,g,i,k =0 otherwise.  

Let 𝑥⃗ =(xd,g,i,k(t))∀d∈D,∀g∈G,∀i∈K,∀k∈K, the set of 

feasible data routing variables are:  

X= { (𝑥⃗(𝑡)) | g∈G,i∈K,k∈KΣxd,g,i,k(t)=1and xd,g,i,k∈  

[0,1], ∀d ∈D ,∀g ∈G ,∀i∈K ,∀k ∈K} (1)  

HereΣg∈G,i∈K,k∈Kxd,g,i,k(t)=1ensures that all data 

produced from location d are uploaded into the cloud in t.  

(2) Binary variable yk(t), ∀k ∈K, indicates whether data 

center k is target of data aggregation in time slot t (yk(t)= 1) 

or not (yk(t)=0). Following the practical requirement of the 

current MapReduce framework, we require that at any given 
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time, exactly one data center is chosen. Let 𝑦⃗(t) = 

(yk(t))∀k∈K, the set of possible data 

aggregationvariablesare:  

Y={ (𝑦⃗(t)) |Σ𝑘∈Kyk(t)=1andyk(t) ∈{ 0,1},∀k∈K}(2)  

Costs. The costs incurred in time slot t, for uploading the 

data into the cloud and for processing the data at the 
selected data center, include the following components.  

(1)The overall bandwidth cost for uploading data via the 

VPN connections,where d∈D,k∈KΣFd(t)xd,g,i,k(t) is the 

amount uploaded via (g,i), and fgi is the charge for 

uploading one byte of data via(g,i), derived from bandwidth 

prices set by the cloud provider:  

CBW(𝑥⃗(t))≜Σg∈G,i∈K (fgiΣ d∈D,k∈KFd(t)xd,g,i,k(t)). (3)  

(2)Storage and computation costs are important factors to 

consider in choosing the data aggregation point.The data 

produced in t and also from the past which is in the form of 
raw data or intermediate processing results may involve in 

processing and analysing.Without loss of generality, let the 

amount of current and history data to process in t be 

F(t)=Σ𝑡𝑣=1(ανΣd∈DFd(ν)), whereΣd∈DFd(ν) is the total 

amount of data produced in time slot ν from different data 

generation locations, and weight αν∈[0,1] is smaller for 

older times ν and αt =1for the current time t. Specific 

applications determines the value of αν and it can be 

obtained through statistical data . Assume all the other 

historical data, except those inF(t), are removedfrom the 
data centers where they were processed, since all needed 

information has been stored in the retained data. Let 

Ψk(F(t)) be a non- decreasing cost function for storage and 

computation in data centerk in t. The aggregate storage and 

computing cost incurred in the cloud in t is: 

 

CDC(𝑦⃗(t)) ≜Σk∈Kyk(t) Ψk(F(t)). (4) 

 
The best data center for data aggregation can differ in t 

than in t−1, due to temporal and spatial variations in 

data generation.Historicaldata neededfor processing 

togetherwith new data in t, at the amount of 

Σ𝑡−1𝑣=1(ανΣd∈DFd(ν)), should be moved from the 

earlier data center to the current, and a migration cost is 

incurred. Let φik(z) be the non-decreasing migration 
cost to move z bytes of data from data centeri to date 

center k. The migration cost between t−1 and t is: 

 

CtMG(𝑦⃗(t),𝑦⃗(t−1))≜ Σi∈KΣk∈K([yi(t−1)−yi(t)]+  

 

[yk(t)−yk(t−1)]+φik(Σ𝑡−1𝑣=1ανΣd∈DFd(ν))) (5) 

 
(4) The latency incurred for data upload is an important 

performance measure, to be minimized in the data routing 

and aggregation process. Targeting both monetary cost 

minimization and delay minimization, a routing cost for 

delays along the selected routing paths is formulated, and 

combine it with other costs to be the optimization objective. 

The overall routing cost in the system in t is:  

CRT(x(t))≜d,g,i,k Lxd,g,i,k(t)Fd(t)(ldg + pgi + ηik). (6) 

 

where xd,g,i,k(t)Fd(t)(ldg + pgi + ηik) is the product of data 

volume and delay along the routing path d → g → i → k. 

The weighted formula suggests that transferring a large 
volume of data via a high latency path causes high cost. L is 

the routing cost weight converting 

xd,g,i,k(t)Fd(t)(ldg+pgi+ηik) into a monetary cost, 

reflecting how latency-sensitive the user is. A cloud user 

specifies L as a constant a priori. Latency ldg +pgi +ηik is 

fixed in each slot but can change over time. In summary, the 

overall cost incurred in t in the system is:  

C(𝑥⃗(t),𝑦⃗(t))=CBW(𝑥⃗(t))+CDC(𝑦⃗(t)) + CtMG  

(𝑦⃗(t),𝑦⃗(t-1)) + CRT(𝑥⃗(t)). (7) 

 

IV. TWO ONLINE ALGORITHMS 

 

A. The Online Lazy Migration (OLM) Algorithm  

We divide the overall costC(𝑥⃗(t),𝑦⃗(t)) incurred in t into 

two parts: (i) migration cost CtMG(𝑦⃗(t), 𝑦⃗⃗⃗⃗(t-1)) defined 

earlier, related to decisions in t−1; (ii) non- migration cost 

that relies only on current information at t: 

Ct−MG(𝑥⃗(t),𝑦⃗(t))=CBW(𝑥⃗(t))+CDC(𝑦⃗(t)) + CRT(𝑥⃗(t)).  
(8) 
 

We design a lazy migration algorithm (Alg. 1), whose basic 

idea is to postpone data center switching even if the one-

shot optimum indicates so, until the cumulative non-

migration cost (in Ct−MG(𝑥⃗(t),𝑦⃗(t))) has 

significantlyexceeded the potential data migration cost. 

Algorithm 1: The Online Lazy Migration (OLM)  

Algorithm  
1: t =1 ;  

2: �̂�=1; //Time slot when the last change of aggregation data 
center happens  

3: Compute data routing decision 𝑥⃗(1) and aggregation 

decision 𝑦⃗(1) by minimizing C(𝑥⃗(1),𝑦⃗(1))  

4: Compute 𝐶𝑀𝐺 1(𝑦⃗(1),𝑦⃗(0)) and 𝐶−𝑀𝐺 1 (𝑥⃗(1),𝑦⃗(1));  

5: while t ≤ T do  

6:if𝐶−𝑀𝐺 �̂�(𝑦⃗(𝑡 ̂),𝑦⃗(𝑡 ̂−1))≤ 1𝛽2ΣCν 

−MG(x⃗⃗(ν),y⃗⃗(ν))t−1ν=�̂�  

then  

7: Derive 𝑥⃗(t) and 𝑦⃗(t) by minimizing 𝐶−𝑀𝐺 𝑡 (𝑥⃗(t),𝑦⃗(t)) 

and constraint 𝐶𝑀𝐺 𝑡 (𝑦⃗(t),𝑦⃗(t-1)) ≤β1𝐶−𝑀𝐺 𝑡 

(𝑥⃗(t),𝑦⃗(t));  

8: if 𝑦⃗(t) ≠𝑦⃗(t−1) then  

9: Usethenew aggregation datacenter indicatedby 𝑦⃗(t);  
10: �̂�= t;  

11: if �̂�<tthen //not to use new aggregation data center 12: 

𝑦⃗(t)=𝑦⃗(t−1), compute data routing decision 𝑥⃗(t) by 

solving (10) if not derived;  

13: t = t +1 
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At the beginning (t=1), we solve the one-shot optimization 

and upload data via the derived optimal routes 𝑥⃗(1) to the 

optimal aggregation data center indicted by 𝑦⃗(1). Let �̂� be 
the time of the data center switch. In each following time 

slot t, we compute the overall non-migration cost in [�̂�,t − 

1],Σ𝑡−1𝑣=�̂�Cv−MG(𝑥⃗(v),𝑦⃗(v))). The algorithm 

checkswhether this cost is at least β2 times the migration 

cost 𝐶𝑀𝐺 �̂�(𝑦⃗(𝑡 ̂), 𝑦⃗(�̂�−1)). If so, it solves the one-shot 

optimizationto derive 𝑥⃗(t) and 𝑦⃗(t) withoutconsidering the 

migrationcost, i.e., by minimizing 𝐶−𝑀𝐺 𝑡(𝑥⃗(t),𝑦⃗(t)) and 

an additional constraint, that the potential migration 

cost,𝐶−𝑀𝐺 𝑡 (𝑦⃗(t),𝑦⃗(t-1)), is no larger than β1 times the 

nonmigration cost 𝐶−𝑀𝐺 𝑡 (𝑥⃗(t),𝑦⃗(t)) at time t (to make 

sure that the migration cost is not too excessive). If a change 

of migration data center is indicated (𝑦⃗(t) = 𝑦⃗(t − 1)), the 

algorithm accepts the new aggregation decision, and 

migrates data accordingly.In all other cases, the 

aggregationdata center 

remainsunchangedfromt−1,whileoptimaldataroutingpaths 

are computed given this aggregation decision, for upload of 
new data generated in t.  

Alg.1 avoids aggressive switches of the aggregation data 

center, to prevent moving a large amount of data back and 

forth too often. Excessive “laziness” is also avoided. 

Parameters β2 > 0 and β1 > 0 control the “laziness” and 

“aggressiveness” of the algorithm: a large β2 prolongs the 

inter-switch interval, while a large β1 invites more frequent 

switches. 

 

B. The Randomized Fixed Horizon Control (RFHC) 

Algorithm  

In practical applications, near-term future data 
generationpatterns can often be estimated from history.We 

assume that the information in the lookaheadwindow can be 

predicted precisely without error.We divide time into equal-

size frames of l + 1 time slotseach (l ≥ 0). In the first time 

slot t of each frame, assumeinformation on data generation 

for the next l time slots, i.e.,Fd(t), Fd(t + 1), ..., Fd(t + l), ∀d 

∈ D, are known. We solvethe following cost minimization 

over time frame [t, t + l],given the data aggregation decision 

of 𝑦⃗(t − 1), to derivedata routing decisions 𝑥⃗(ν) and 

aggregation decisions 𝑦⃗(ν),∀ν = t, . . . , t + l, using Alg. 1  

minimizeΣC(𝑥⃗(𝜈),𝑦⃗(𝜈))𝑡+𝑙𝜈=𝑡. (9) 

 

We design a Randomized Fixed Horizon Control 

(RFHC)algorithm (Alg. 2). At the beginning, the algorithm 

uniformlyrandomly chooses p ∈ [1, l + 1] as the start of the 

firsttime frame of l + 1 slots, i.e., it randomly picks one 

specificalgorithm FHC(p)from the l+1 FHC algorithms: at t 

= 1, it solves (16) to decide the optimal data routing and 
aggregationstrategies in the period of t = 1 to p − 1 (p ≠1); 

then att = p, p + l + 1, p + 2(l + 1), . . ., it solves (16) for 

optimalstrategies in the following l + 1 time slots, 

respectively. 

Algorithm 2: The Randomized Fixed Horizon Control 

(RFHC) Algorithm  

1: 𝑦⃗(0) = 0;  

2: p = rand(1, l + 1); //A random integer within [1,l+1]  
3: if p ≠ 1 then  

4: Derive 𝑥⃗(1) ・・・𝑥⃗(p − 1) and 𝑦⃗(1) …𝑦⃗(p − 1) by 

solving(16) over the time window [1, p −1]; 

 

5: t = p;  

6: while t ≤ T do  

7: if (t − p) mod (l + 1) = 0 then  

8: Derive 𝑥⃗(t), ・・・,𝑥⃗(t + l) and 𝑦⃗(t), ・,𝑦⃗(t + l) 

bysolving (16) over the time frame [t, t + l];  

9: t = t+ 1; 

 

An adversary, with no information on p, finds it hard to 

contrivespecific inputs to degrade the performance of 

RFHC. 
 

V. SECURITY 

 

In our proposed system, security can be ensured by two 

methods.  

(A). One Time Password (OTP)  

Security requirements for cloud computingenvironment 

should have trusted computing platform.Our proposed 

system will demonstrate One TimePassword through email 

to ensure information security. Thesystem will generate this 

OTP every time the user is trying tologin. The One time 

password will be mailed /sent SMS tothem for every login.  

1.Implementing trusted computing platform  

Dynamic password is generated either in time based or 
event base mechanisms. One-time password authentication 

system (OTP) provides authentication for system access 

(login). 

 

Algorithm 3: OTP generation  
Input: User’s detailed information including Gmail  

account& mobile number  

Output: One time password  

1. Generate random values between 0-123(excluding  

0,123)  

2. Check the values in range of 47-57(0-9), 65-91(A to  

Z),97-122(a to z)  
3. If the number is in the range then convert the  

number in to its ASCII value Else convert the  

number to its nearest number then convert the  

number in to its ASCII value  

4. Append the generated characters in the password  

String(OTP) 
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(B).Privacy Preservation  

Privacy preservation is an important issue in the release of 

data for mining. We focus on a study on the k-anonymity 

property[10]. The k-anonymity model assumes a quasi-

identifier, which is a set of attributes that may serve as an 

identifier in the data set. It is assumed that the dataset is a 

table and that each tuple corresponds to an individual. Let Q 

be the quasi-identifier. An equivalence class of a table with 
respect to Q is a collection of all tuples in the table 

containing identical values for Q. The size of an equivalence 

class indicates the strength of identification protection of 

individuals in the equivalent class. If the number of tuples in 

an equivalence class is greater, it will be more difficult to re-

identify individual. A data set D is k-anonymous with 

respect to Q if the size of every equivalence class with 

respect to Q is k or more. As a result, it is less likely that 

any tuple in the released table can be linked to an individual 

and thus personal privacy is preserved. 

 
We propose a simple and effective model to protect both 

identifications and sensitive associations in a disclosed data 

set. The model extends the k-anonymity model to the 

(α,k)anonymity model to limit the confidence of the 

implications from the quasi-identifier to a sensitive value 

(attribute) to within α in order to protect the sensitive 

information from being inferred by strong implications. 

 

DEFINITION: ((α,k)-ANONYMIZATION). A view of a 

table is said to be an (α,k)-anonymization of the table if the 

view modifies the table such that the view satisfies both k-

anonymity and α-deassociation properties with respect to the 
quasi-identifier.  

The approaches mentioned in this section solve the privacy 

issues while moving big data to cloud. (α,k)anonymity 

model protects sensitive attribute when the attribute contains 

many values and no single value dominates the attribute. At 

the same time user authentication is provided by the OTP 

method. 

 

CONCLUSION  

This paper designs efficient algorithms for timely, cost 

minimizing migration of geo-dispersed big data to thecloud, 
for processing using a MapReduce-like framework. Two 

online algorithms are designed to practically migrate data in 

an online fashion. Data security and privacy is one of the 

biggest challenges in cloud computing .Cloud data must be 

protected not only against external attackers but also corrupt 

insiders .Our proposed system uses OTP and Privacy 

Preservation approach which aims to make cloud data self 

intelligent. 
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