

International Journal of Engineering Research in Computer Science and

Engineering (IJERCSE) Vol 2, Issue 4, April 2015

Efficient Algorithm For Mining High Utility Item

Sets From Large Datasets Using Vertical Approach

[1]Dr.S.G.Sanjeevi, [2] Aluguvelli Sindhu, [3] Shrutika Pimpalkar, [4] Sujith Srivardhan Arram

 [1] [2] [3] [4]National Institute of Technology, Warangal

[1] sgs@nitw.ac.in, [2] sindhureddy216@gmail.com, [3] shrutika.nitw@gmail.com, [4], suji.srivardhan@gmail.com

 Abstract- High Utility Item set Mining is a challenging task as the Downward Closure Property present in frequent item set

mining does not hold here. In recent times many algorithms have been proposed for mining high utility item set s ,but most of them

follow a two-phase horizontal approach in which candidate item set s are generated first and then the actual high utility item set s

are mined by performing another database scan. This approach generates a large number of candidate item set s which are not

actual high utility item set s thus causing memory and time overhead to process them. To overcome this problem we propose a

single phase algorithm which uses vertical database approach. Exhaustive search can mine all the high utility item set s but it is

expensive and time consuming. Two strategies based on u-list structure and item pair co-existence map are used in this algorithm

for efficiently pruning the search space to avoid exhaustive search. Experimental analysis over various databases show that the

proposed algorithm outperforms the two-phase algorithms UP-Growth and other two phase algorithms in terms of running times

and memory consumption.
 Index Terms — high utility item set s, min_util, u-list, item pair coexistence map.

I. INTRODUCTION

 Recent advances in database facilities led to the

increased use of databases by many organizations leading to

storage of large data. Extraction of knowledge and

information from this data is a developing area of research .

Frequent item set mining is identifying set if items whose

count in the transaction database is greater than a predefined

minimum value. Frequent item set mining is identifying set

of items whose count in the transaction database is greater

than a predefined minimum value. Frequent item set mining

follows downward closure property. According to this

property if an item set is infrequent then all the supersets of

that item set are also infrequent so it is not required to

check the supersets of the infrequent item set s thus

preventing checking all the item set s exhaustively. But

frequent item set mining doesn’t take into account the

profit/utility of each item and the importance of each item in

a transaction. So the high utility item set mining is used to

discover item set s with utility greater than a minimum

threshold value. But the downward closure property which

is used for pruning infrequent item set s does not hold in

high utility item set mining. So mining high utility item set

s is a

complex task. Most of the existing high utility item set

mining algorithms follow a two-phase approach in which

the candidate item set s are found first and the actual high

utility item set s among the candidate item set s are then

identified in the second phase.In this paper we propose a

single phase algorithm for mining high utility item set s

using a vertical approach.

Fig. 1. A transaction database

Fig. 2. Profit values of each item

II. DEFINITIONS
Let of I be the set of items, I={i1, i2…im} and each

item has a unit profit pr(ip), 1<=p<=m. A set of distinct item

set s {i1, i2…ik} is called as item set X where ijI,1≤j≤k. k

is the length of the item set X. An item set whose length is

International Journal of Engineering Research in Computer Science and

Engineering (IJERCSE) Vol 2, Issue 4, April 2015

 2

k is called k-item set . A transaction database

D={T1,T2…Tn} contains set of transactions and each

transaction has a unique identifier called as TID [4]. Each

item ip in transaction Td is associated with a quantity q(ip,Td)

which is the purchased quantity of the item ip in Td [4].

Definition 1: Utility of an item ip in a transaction Td is

denoted as u(ip,Td) and defined as pr(ip) X q(ip,Td).

Definition 2: Utility of an item set X in T is defined as

U(X,T) = iϵXX⊆T u(i,T) [4]. Definition 3: Utility of an item

set X in D is denoted as u(X) and defined as u(X) =

X⊆TTD u(X,T) [4]. Definition 4: An item set is called a

high utility item set if its utility is no less than a user-

specified minimum utility threshold which is denoted as

min_util. Otherwise, it is called a low-utility item set [4].

Definition 5: Transaction utility of a transaction Td is

denoted as TU(Td) and defined as u(Td,Td)[4]. Definition 6:

Transaction-weighted utility of an item set X is the sum of

the transaction utilities of all the transactions containing X,

which is denoted as TWU(X) and defined as TWU(X)=

X⊆TTDTU(T) [4]. Definition 7: An item set X is called a

high-transaction weighted utility item set (HTWUI) if

TWU(X) is no less than min_util [4]. Property 1 : The

Transaction-weighted utility of an item set follows the

downward closure property that is if the item set X is not a

high utility item set then any of the superset of X is not a

high utility item set [4]

Fig. 3. Transaction utility values

Fig. 4.Transaction weighted utility values Problem

statement : Mining high utility item set s from a transaction

database D given a user specified minimum utility threshold

min_util is finding all the item set s whose utility is greater

than min_util.

III. EXISTING APPROACH

An existing efficient algorithm for mining high

utility item set s is UP-Growth. It uses a compact data

structure called UP-tree which is constructed by scanning

the database twice. Potential high utility item set s with

overestimated utilities are generated from the UP-tree by

applying the UP-Growth algorithm. After finding the

potential high utility item set s another database scan is

performed to find actual high utility item set s among

potential high utility item set s. Drawbacks: This approach

generates a large number of candidates but most of these

may not be high utility item set s because of overestimated

utilities. It results in large memory and time overhead in

storing and processing these candidate item set s.

IV. METHODOLOGY
To overcome the problems faced by existing two-

phase algorithms, we propose a single phase algorithm

which discovers all high utility item set s using two pruning

strategies based on u-lists structure and item pair co-

existence map. These pruning strategies are used to

efficiently prune the item set s in the search space which is

otherwise exponentially high due to all the possible

enumerations of items in the database. In the first step,

Transaction Weighted Utility of each item and Transaction

Utility of each transaction is calculated. The transactions are

then reorganized by removing the items with utility less than

min_util and by arranging remaining items in the ascending

order their Transaction Weighted Utility.

Fig. 5. Reorganized transactions

A. Item Pair co-existence map
After finding transaction weighted utilities of

individual items, the item pair co-existence map is

constructed in which each distinct item pair is mapped to its

Transaction Weighted Utility. Definition : Transaction

Weighted Utility of an item pair denoted as TWU(x,y) is

defined as the sum of transaction utilities of all reorganized

transactions in which both x and y are present where x and y

are distinct items in the database. TWU(x,y) is calculated as

x,yTTDTU(T). The Transaction weighted utilities of all

distinct item pairs are calculated and stored in the Item Pair

co-existence map (abbreviated as IPCM).

B. U-List structure
Definition: Remaining utility (ru) of an item set X

in a reorganized transaction is the sum of utilities of all

items after X in the transaction. The set of items after the

item set X i.e remaining items after X in a reorganized

transaction T is denoted as T/X. Each element in the U-List

structure of every item set X consists of 3 fields .

TID(Transaction ID), iu(item set utility) and ru(remaining

utility) where TID is the transaction id of the transaction in

which the item set X is present , iu is the utility and ru is the

remaining utility of X in the reorganized transaction with

transaction id TID.The U-List for each item is then

constructed. First the U-Lists for all the 1-item set s with

Transaction weighted utility greater than min_util are

constructed. U-Lists for all 1-item set s of the Database

shown in Fig. 1 are shown in fig.6.

International Journal of Engineering Research in Computer Science and

Engineering (IJERCSE) Vol 2, Issue 4, April 2015

 3

Fig. 6. U-Lists of 1-item set s

Then U-Lists for 2-item set s of the form {pq} are

constructed from U-Lists of 1-item set s {p} and {q} by

taking the intersection of U-Lists of {p} and {q}.The

common TIDs from both U-Lists are identified and the iu of

each element in the U-List of 2-item set {pq} is the sum of

iu’s of the corresponding element in U-Lists of {p} and {q}

where as ru of each element in the U-List of 2-item set is

the minimum of ru’s of the corresponding element in the U-

Lists of {p} and{q}.Fig.7shows the U-Lists of 2-item set s.

Fig. 7. U-Lists of 2-item set s

The U-Lists of k+1 item set P (i1,i2…….. ik,ik+1) can be

constructed by intersecting the U-Lists of two k-item set s

P1(i1,i2………ik-1,ik) and P2(i1,i2………ik-1,ik+1) respectively.

The subroutine is shown below: Let UL(P) denote the u-list

of P and E denote an element in the u-list. Join(P1,P2)

Output: u-list of k+1 item set P for each element Ei in

UL(P1) and Ej in UL(P2) if Ei.TID == Ej.TID E.TID =

Ei.TID E.iu = Ei.iu + Ej.iu – iu(i1i2...ik-1) E.ru =

Minimum(Ei.ru, Ej.ru) Add E to UL(P) end if end for

Pruning strategies

A. Strategy 1
U-List for k+1 item set s are formed only if sum of its iu’s

and ru’s in the U-List of its corresponding k-item set s is

greater than or equal to min_util i.e., if sum

of iu’s and ru’s in the U-List of an item set A is lesser than

min_util, then any extension A' of the item set A cannot be

a high utility item set . Proof: For all transactions T such

that A' ⊆T Given A' is an extension of A. Let A'-A denote

the items present in A' but not in A. As A'⊆T this implies A-

A' ⊆ T/A So u(A',T) = u(A,T) +u((A'-A),T) = u(A,T)

+iϵ(A'-A)u(i,T) ≤ u(A,T) +iϵ(T/A)u(i,T) = u(A,T) +ru(A,T)

Let id(T) represent the id of transaction T, tids(A) and

tids(A') represent the tid set in A’s U-List and A' ’s U-List

respectively . As A⊆A' this implies tids(A) ⊆ tids(A') So,

u(A') = id(T)ϵ tids(A')u(A',T) ≤ id(T)ϵ tids(A') u(A,T) +ru(A,T) ≤

id(T)ϵ tids(A) u(A,T) +ru(A,T) Utility of an item set A' which

is an extension of item set A is less or equal to sum of ru’s

and iu’s in the U-List of A. Therefore if id(T)ϵ tids(A) u(A,T)

+ru(A,T) < min_util then u(A') is less than min_util Hence

Proved. For example consider the U-List of the item set

{ec} in fig 7.If we consider min_util as 30 ,{ec} should be

pruned from being extended because the sum of ru’s and

iu’s is less than min_util.

B. Strategy 2

U-List for k+1item set P(i1i2…ik,ik+1) is formed from U-

Lists of two k item set s P1(i1i2…ik-1ik) and P2(i1i2…ik-1ik+1)

only if TWU(ik, ik+1) is greater than or equal to min_util.

Proof: It is clear that P(i1i2…ik+1) is super set of { ik ik+1} If

TWU(ik,ik+1) <min_util then TWU(P(i1i2…ik+1)) is also less

than min_util according to Property 1 If

TWU(P(i1i2…ik+1))<min_util then P is not a high utility item

set . Therefore item set P can be pruned if

TWU(ikik+1)<min_util. Hence Proved For example consider

U-Lists of two item set s {abc} and {abe}. The U-Lists of

{abc} and {abe} are joined to form U-List of {abed} only if

TWU(c,e) is greater than or equal to min_util.From the

reorganized database in fig 5 the TWU(c,e) can be

calculated as follows TWU(c,e)= TU(<T1,T2,T3,T4,T6>

 <T2,T4,T5>) =TU(T2)+TU(T4) =18+6 =24 As

TWU(c,e)<min_util the item set {abce} formed by joining

{abc} and {abe} will not be a high utility item set and

hence can be pruned before performing the join

.

VI. PROPOSED ALGORITHM
Algorithm: U-Vertical Algorithm Input : B: an item

set (initially empty), Ext(B): a set of 1-extensions of B, the

min_util threshold, the item pair co-existence map Output:

all high utility item set s with B as prefix For each item set

BX  Ext(B) if sum(UL(BX.iu’s)) ≥ min_util print BX end if

if sum(UL(BX).iu’s) + sum(UL(BX).ru’s)≥ min_util then

//Strategy 1Ext(BX)←NULL for each item set BYExt(B)

such that yt(x) /*t(x) Is the set of items with TWU less

than TWU(x)*/If TWU(x, y)≥ min_uti //Strategy 2

BXY←BX U BY UL(BXY)←Join(BX, BY) Ext(BX)←Ext(BX)

U BXY End if End for End if U-Vertical(BX, Ext(BX),

min_util) End

VII. EXPERIMENTAL EVALUATION AND

RESULTS
The algorithm presented in the paper had been

experimented with real time databases Retail-Store and

Accidents database.

Fig 8. Database Details

International Journal of Engineering Research in Computer Science and

Engineering (IJERCSE) Vol 2, Issue 4, April 2015

 4

The running time and memory requirement values for

various min_util values of retail store database is shown in

fig 9.

Fig 9. Running times and memory requirement for retail-

stores database.

The running time and memory requirement values for

various min_util values of accidents database is shown in fig

10.

Fig 10.Running times and memory requirements for

accidents database.

From the above values of running time and memory

requirement it can be observed that the algorithm U-Vertical

outperforms UP-Growth in terms of time and memory

complexit.

CONCLUSION
In this paper we presented the algorithm for mining high

utility item set s which outperforms UP-Growth and other

two-phase algorithms. The algorithm proposed in the paper

is designed for static databases. It can be further extended to

design an efficient algorithm for mining high utility item set

s from dynamic databases.

REFERENCES
[1] R. Agrawal and R. Srikant. Fast algorithms for mining

association rules. In Proc. of the 20th Int'l Conf. on Very

Large Data Bases, pp. 487-499, 1994.

[2] C. F. Ahmed, S. K. Tanbeer, B.-S. Jeong, and Y.-K. Lee.

Efficient tree structures for high utility pattern mining in

incremental databases. In IEEE Transactions on Knowledge

and Data Engineering, Vol. 21, Issue 12, pp. 1708-1721,

2009.

[3] B.-E. Shie, V. S. Tseng, and P. S. Yu. Online mining of

temporal maximal utility item set s from data streams. In

Proc. of the 25th Annual ACM Symposium on Applied

Computing, Switzerland, Mar., 2010..

[4] Vincent S. Tseng1 , Cheng-Wei Wu1 , Bai-En Shie1 ,

and Philip S. Yu2. UP-Growth: An Efficient Algorithm for

High Utility Item set Mining, In IEEE Transactions on

Knowledge and Data Engineering , Vol. 25, No. 8, August

2013.

