

Review over Probabilistic Routing Algorithm in **MANET**

Dr. Vikash K Singh, Devendra Singh Kushwaha, Shaibya Singh, Sonal Sharma d dryksingh76@gmail.com, ²devendra2904@gmail.com, ³shaibyaigntu@gmail.com ⁴Sonal sdl@yahoo.co.in Assistant Professor, Dept. of Computer Science, Indira Gandhi National Tribal University, Amarkantak.

Abstract: The nature of the universal computing has made it necessary to adopt wireless network as the interconnection method: it is not possible for the ubiquitous devices to get wired network link whenever and wherever they need to connect with other ubiquitous devices. The Mobile Ad Hoc Network is the wireless networks that have attracted most close attention from many researchers. A Mobile Ad hoc Network (MANET) is a system of wireless mobile nodes that dynamically self-organize in arbitrary and temporary network topologies. People and vehicles can thus be internetworked in areas without a preexisting communication infrastructure. In the mobile ad hoc network, nodes can directly communicate with all the other nodes within their radio ranges; whereas nodes that not in the direct communication range use intermediate nodes to communicate with each other. In these two situations, all the nodes that have participated in the communication automatically form a wireless network, therefore this kind of wireless network can be viewed as mobile ad hoc network. Network wide broadcasting in Mobile Ad Hoc Network provides important control and route establishment functionality for a number of unicast and multicast profocols. . Broadcasting in MANET poses more challenges than in wired networks due to node mobility and scarce system resources. Broadcasting is categorized into deterministic and probabilistic schemes. In this paper give a bird's eye view over probabilistic approach for routing besides the basic probability scheme also includes their recent advancements .This review paper identify which protocol gives better performance in terms of reach ability, saved derelo rebroadcast and average latency in rebroadcasting a route request message.

Index Terms MANET, Probabilistic Algorithm, Bayesian Approach

INTRODUCTION

A temporary network gathers wireless mobile devices without using central access, infrastructure or centralized administration known as Mobile Ad-Hoc Network (MANET) [1]. Mobile ad-hoc networks pusses' verity of features, such as the dynamic network topology, limited bandwidth and energy consumption in the network. Mobile ad hoc network is significant for military operation to provide communication between squads, emergency case in out-of-the-way places, medical control etc. Routing in ad-hoc networks is a challenging task ever since the wireless networks came into existence. The major reason for this is the constant change in network topology because of high degree of node mobility [2].

The history of wireless networks started in the 1970s and the interest has been growing ever since. During the last decade, and especially at its end, the interest has almost exploded probably because of the fast growing Internet. The tremendous growth of

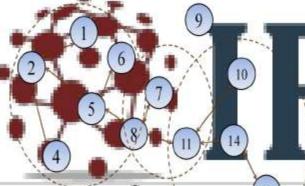
personal computers and the handy usage of mobile omputers necessitate the need to share information between computers. At present, this sharing of information is difficult, as the users need to perform administrative tasks and set up static, bi-directional links between the computers [3].

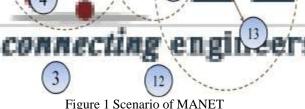
The presented paper gives an idea regarding ad-hoc network and probabilistic routing algorithm in it. This is review paper having previous work in the world of ad-hoc network.

The proposed paper is divided in seven sections including this one. The second section gives an idea of mobile ad-hoc network and its protocol hierarchy. The third section describes about the probably in the MANET. Fourth section throws some light on previous work of MANET. Finally the paper concludes in fifths section.

MOBILE AD-HOC NETWORK

Mobile ad-hoc network is a branch of wireless network in which all the nodes can move. There no center authority between nodes in order to communicate. This


Computing


is use for the temporary arrangement of a network. Generally this is used by military. It is also use at the time of natural digesters in order to establish communication channel. In such sort of network all node works a independent router having transmitter and receiver. Each node has the limited range of radio frequency for transmission and limited battery power. Figure 1 shows the snap of a temporary network [1,4].

Cooperative ad-hoc networks are formed by several homogeneous wireless stations. All the stations cooperate with each other, i.e., the traffic for the stations that are more than one hop away is routed by the intermediate stations. The intermediate stations are called relaying stations. There is various application of mobile ad-hoc network like Military or police exercises, Disaster relief operations, Sensor networks, Vehicle communications, Personnel Area Network (PAN) for communication of several portable devices etc [5].

facilities. Volatile network topology makes it hard to detect malicious nodes [4,5].

There are three types of major protocol works for MANET. These are proactive protocol, Reactive protocol and Hybrid protocols. As shown in figure 2 there is a hierarchy of these protocols. On one hand Proactive MANET protocols (PMPs) continuously update network topology information and ensure that it is available to all nodes. PMPs reduce time delay of system in a network but increase data overhead by continuously updating routing information. On other hand Reactive MANET protocols decide routing paths only when there is need of the path. They are linked with lower protocol overheads but longer packet delays. The Hybrid MANET routing protocols is a combination of proactive and reactive MANET protocols. The resulting hybrid protocol gets better results than the individual protocols. It is also capable of regulating packet dynamically on the basis of different network conditions. DSDV, WRP, CGSR are the example of roactive protocols. AODV, DSR and TORA are the xample of Reactive protocol whereas ZRP works he hybrid protocol [6].

The basic advantages of MANET are to provide access to information and services regardless of geographic position. It can also be set up at any place and time. In spite of having positive points there are some limitations. In MANET there is Limited resources and physical security. Here there is Lack of authorization

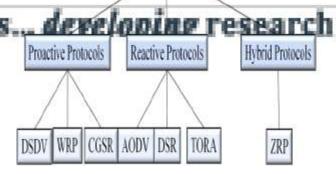


Figure 2 Routing protocol of MANET

]	Protocol	Advantage	Disadvantage
1			

Computing

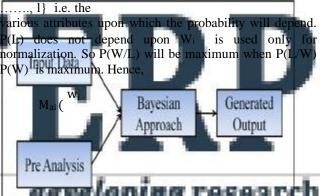
DSR	Multiple routes, Promiscuous overhearing	Scalability problems due to source routing and flooding, Large delays
AODV	Adaptable to highly, dynamic topologies	Scalability problems, Large delays, Overhead due to Hello messages
AODV-BR	Better throughput performance than AODV	Not efficient in heavily loaded frequently changing networks.
AOMDV	Reduces routing overhead, low intermodal coordination overhead.	Do no scale well in moderate to sparse networks due to equal length multiple paths
AODV-ABR	More adaptive to variation of network topology, smaller control overhead	Lower probability of finding an alternate route
SMORT	Reduces routing overhead, increases scalability even in large networks	Transmission of RERR over multiple paths increases overhead

I. PROBABILISTIC ALGORITHM

Among the deterministic and probabilistic approaches probabilistic scheme is one of the best ways to reduce rebroadcast. In a probabilistic scheme, nodes rebroadcast the message with a pre determined probability p. the studies in shows that probabilistic broadcast incurs significantly lower overhead as compared to blind flooding. Several probabilistic schemes have been proposed in the past These include probability-based, counter-based and distance-based.

Each probability model is represented by the equation [5,6,7]:

$$P = f(N, P)$$


Where P is the probability that a node forwards the broadcast packet and N is the number of nodes in the network. The function f depends on the specific protocol being analyzed.

Bayesian approach is a probabilistic method. This method works in two important factors. These are the input data and pre-analysis. Both the factors are works as a input for Bayesian Approach. Figure 3 shows the basic functionality of the Bayesian Approach.

Mutual Affinity index (AI) is a probability based upon historical data. Through this we can find out how much likely it is for a particular node to transfer the data packet to the desired destination. It is calculated by using the belief Theory [9,10].

igure 3 Bayesia n Appro ach

ere, W i s the cl ass sho wing w hether r eply wa s received for the RREQ s ent. And L = {11,

$$\begin{array}{c} T_{j} \\ \hline \\ T_{j} \end{array}) = \pi^{m}_{j=1} \ l_{ij_{1}} + l_{ij_{2}} + l_{ij_{3}} + \cdots + l_{ij_{k}} \ / n_{i} \\ M_{ai} = \pi_{j=1} \\ n_{i} \\ m \end{array}$$

Now since we are multiplying the probabilities of each and every attribute hence; even if one of the attributes has a zero probability; the whole index will become zero. Because of this; zero probability will be replaced with a very low probability (0.001).

II. PREVIOUS WORK

Many research works has been done in this area. Some of them are presented here.

The author presents and shows obtained results in his research. This work is based on Bayesian approach, Queueing theory and reliability theory. Here the methods bound of application of Bayesian approach to some problems of queueing theory and reliability theory. This approach could be used, for instance, for calculating moment and quantile characterics for performance and reliability characteristics of large groups of systems or devices[11].

The author proposed a hierarchical Markov mode for the sources with a common hidden classification field which is modeled via a Potts-Markov field Classical methods of dimensionality reduction in hyperspectral imaging use classification methods either to classify the spectra or to classify the images in classes where is, in general, much less than the number of spectra or the number of observed images. However, these methods neglect either the spatial organization of the spectra or the spectral property of the pixels along the spectral bands [12]

The processes for decision making problems based on the use of the Dempster-Shafer (D-S) theory can be able in different ways according to the requirements of each single problem. In this input the authors present a decision making scheme based on Demoster-Shafer (D-S) theory. The authors proposed the use of a hybrid averaging operator (2-THA) which uses the 2-tuple linguistic representation model. Due to use of 2-THA in D-S theory, the author obtained a new aggregation operator: the belief structure - 2-THA (BS-2-THA) operator. The authors studied some of its main properties and then show the descriptive example of the new approach in a decision making problem [13].

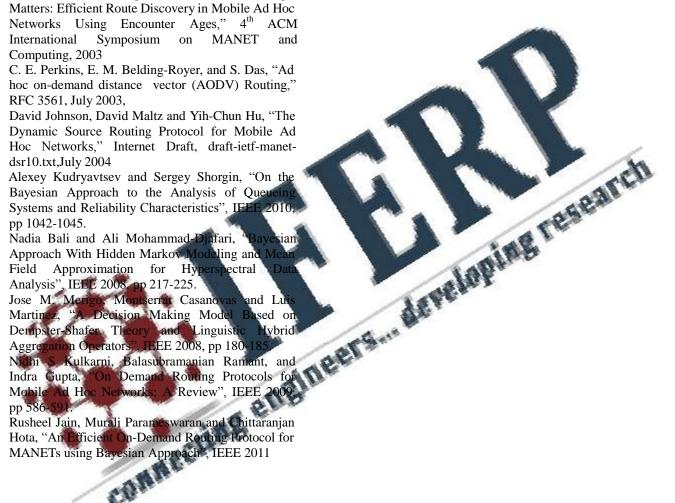
The author studied and analysis the on demand routing protocols in deep. This paper gives an overview of the existing on demand routing protocols and a parametric comparison is made with the recently developed protocols. This paper covers some important conventional routing protocols and the recently proposed extensions of AODV. These protocols are the multipath extensions of Ad Hoc On Demand Distance Vector routing protocol (AODV) such as AODV with break avoidance (AODV-BR), Scalable Multipath on demand routing (SMORT). Apart from this author also through some light on other related protocol for mobile Ad Hoc Network [14].

One of the typical routing methods in mobile adhoc networks use on demand distance vector, or Ad-hoc Ondemand Distance Vector (AODV). The key concern in this

protocol is the cost of route establishment. The author suggested an efficient routing algorithm for mobile ad-hoc networks with a route establishment technique using Bayesian approach. They consider both time and space information to compute the route from source to destination. The results show that there is major improvement in delivery ratio, control packets overhead w.r.t. mobility and control packet overhead w.r.t. network size [15]

III. CONCLUSION

Proposed paper use to give an idea of probabilistic routing over Mobile ad-hoc network. Probabilistic routing work over historical and probabilistic traffic information of time and space of each node to compute route from source to destination and reduce the probability of collision, rebroadcast at the expense of reach ability and enhanced scheme has higher throughput, lower latency and better reach ability. In future we will try reducing degree of collision by using a Dumpster-Shafer belief function probabilistic approach in order to limit the flooding of broadcast requests. And increase packet delivery ratio, throughput and decrease routing load in compare to previous Bayesian probabilistic approach.


- IV. REFERENCES

 B. Williams and T. Camp, Comparison of broadcast in techniques for mobile ad hoc networks. In Proc. ACM Symposium on Mobile Ad Hoc Networking & Computing (MOBIHOC 2002), pp. 194–205, 2002.
- S.-Y. Ni, Y.-C. Tseng, Y.-S. Chen, and J.-P. Sheu, [2]. "The broadcast storm problem in a mobile ad hoc network", Proc.Mobicom 99, 1999.
- [3]. Y. Sasson, D. Cavin, and A. Schiper, Probabilistic Broadcast for flooding in wireless mobile ad hoc networks, In Proc. IEEE Wireless Communications & Networking Conference (WCNC 2003), pp. 1124-1130, March 2003.
- J. Wu and W. Lou, "Forward-node-set-based [4]. broadcast in clustered mobile ad hoc networks," Wireless Communication and Mobile Computing. vol. 3, pp. 155 – 173, 2003.
- A. Keshavarz-Haddad, V. Ribeiro, and R. Riedi, [5]. "Color- Based Broadcasting for Ad Hoc Networks," in Proceeding of the 4th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Network (WIOPT' 06). Boston, MA, 2006, pp. 1 - 10.
- J. Cartigny and D. Simplot, [6]. retransmission based probabilistic broadcast protocols in ad hoc networks," Telecommunication Systems,, vol. 22, pp. 189-204, 2003.
- C. E. Perkins, and E. M. Royer, "Ad-hoc on-demand [7]. distance vector routing," 2nd IEEE Workshop on Mobile Computing Systems and Applications,

- Monterey, California, USA: Feb 25 26, 1999: 90-
- H D-Ferriere, M Grossglauser, and M Vetterli, "Age [8]. Matters: Efficient Route Discovery in Mobile Ad Hoc Networks Using Encounter Ages," 4th ACM Symposium on MANET International Computing, 2003
- C. E. Perkins, E. M. Belding-Royer, and S. Das, "Ad [9]. hoc on-demand distance vector (AODV) Routing," RFC 3561, July 2003,
- [10]. David Johnson, David Maltz and Yih-Chun Hu, "The Dynamic Source Routing Protocol for Mobile Ad Hoc Networks," Internet Draft, draft-ietf-manet-
- [11]. Alexey Kudryavtsev and Sergey Shorgin, "On the
- [12]. Nadia Bali and Ali Mohammad-Diafari,
- Analysis", IEEE 2008, pp 217-225.

 [13]. Jose M. Merigo, Montserrat Casanovas and Luis Martinez, "A Decision Making Model Based on
- [14]. Nidhi S Kulkarni, Balasubramanian Ramant, and
- [15]. Rusheel Jain, Murali Parameswaran and Chittaranjan

