
 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 10, Issue 9, September 2023

27

AI based Hidden Data Detection on OOXML based

MS-Office File
[1] Sangwon Na, [2] Hyung-Woo Lee

[1] Div. of Com. Eng., Hanshin University, Rep. of Korea
[2] School of Computing and Artificial Intelligence, Hanshin University, Rep. of Korea

Corresponding Author Email: [1] yournsw@naver.com, [2] hwlee@hs.ac.kr

Abstract— In case of forgery by including hidden information in MS-Office digital document, the computer system may be

malfunctioned by malware or shell code hidden in the digital document. If a malicious code is hidden in the official legal documents by

corrupting the OOXML-based structural of MS-Office serial digital files, it may be possible to be infected by ransomware hidden inside

of MS-Office files. Therefore, it is necessary to analyze corruption of OOXML-based MS-Office files. In this paper, we examine the

weaknesses of the existing OOXML-based MS-Office file structure, and analyze how concealment and forgery are performed on

MS-Office digital documents. We designed and implemented an ML based hidden data detection method for proactively responding

ransomware attack on exploiting MS-Office security vulnerabilities.

Index Terms—OOXML, ML, Hidden data detection, Security.

I. INTRODUCTION

In order to determine whether a digital file stored in a

computer system has been forged or altered, a cryptographic

hash function such as SHA256 is generally used to generate

one-way hash values from the original file and the forged

modified version file, respectively, and compare them to

determine whether or not the original digital file has been

forged or altered. There is a method (passive/passive forgery)

to check whether or not it exists. However, if there is no

original file to be compared, it is difficult to determine

whether the corresponding digital file has been forged or

altered. If it is strictly defined to check whether a file has

been forged or altered, it can be said to check whether a file is

damaged or not. Therefore, whether or not the digital file is

damaged can be determined through the case where the

internal structure of the digital file has been changed in an

illegal and malicious form, or if the internal structure of the

file has been changed to hide malicious code within the

file[1,2,3]. Since the use of MS-Office files is rapidly

increasing recently, it is necessary to select them as analysis

targets, and security vulnerabilities such as exploiting

internal structural problems of MS Office series are

continuously being discovered. In particular, recently

discovered malicious ransomware is propagated/infected

through MS-Office files, and is distributed in such a way that

malicious codes are hidden in image files such as

JPG/PNG/BMP included in MS-Office files. There is a

mechanism that can determine malicious internal structure

changes and abnormal internal structures of digital files by

verifying and determining whether the files are damaged

through internal structure analysis of MS Office files such as

MS-Office. Therefore, in this study, a mechanism that can

efficiently determine whether a file is damaged or

maliciously forged or altered is studied by analyzing the

abnormality of the internal structure of MS Office files.

If additional digital information or malicious code is stored

and hidden in a digital file by exploiting the vulnerability of

the digital file storage method and internal structure, it is

often not properly detected by existing digital forensic tools.

This is because it is possible to insert or conceal malicious

codes in the case of MS Office files by using structural

vulnerabilities of the internal storage format. MS-Office is

stored in the form of a ZIP compressed file based on the

OOXML format, and designates, stores, and manages various

elements in the document in the form of XML[4,5,6].

Although the OOXML format provides efficiency in the

saving process, there are security vulnerabilities due to the

structural nature of ZIP/XML, so if exploited, malicious

scripts, etc. can be hidden in MS-Office files. Therefore, the

information hidden in the MS-Office file through this

intentional digital file corruption process is opened normally

without errors being found even by the MS-Office editor.

Therefore, through the OOXML internal structure

verification process for MS-Office digital files, it is possible

to check whether malicious scripts are included, check for

malicious forgery and file damage, and identify abnormal

MS-Office files. It can also detect malicious files hidden

inside. In the digital forensic process, if a file is damaged or

corrupted by exploiting the vulnerability of the file's internal

structure to hide a specific message, a technology that can

efficiently detect and discriminate must be developed.

Therefore, we propose a method for hidden data detection

method using 8 type of Machine Learning model to actively

respond to suspicious ransomware disguising legitimate

official OOXML-based MS-Office digital files.

mailto:yournsw@naver.com

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 10, Issue 9, September 2023

28

II. OOXML BASED MS-OFFICE FILE

A. MS-Office File Structure

Submit your manuscript electronically for review. Since

MS Word 2007, MS-Office files have been revised into an

OOXML-based format (Office Open XML Format), and

have been approved as XML-based international standards

ECMA-376 and ISO/IEC29500. In particular, recently

discovered malicious ransomware is propagated/infected

through MS-Office files, and is distributed in such a way that

malicious codes are hidden in image files such as

JPG/PNG/BMP included in MS-Office files. to be.

Therefore, there is a mechanism that can determine malicious

internal structure changes and abnormal internal structures of

digital files.

Fig. 1 MS-Office File Structure

B. ML-based Hidden data Detection

 MS-Office is stored in the form of a ZIP compressed file

based on the OOXML format, and designates, stores, and

manages various elements in the document in the form of

XML[1]. Although the OOXML format provides efficiency

in the saving process, there are security vulnerabilities due to

the structural nature of ZIP/XML, malicious scripts can be

hidden in MS-Office files. Therefore, through the OOXML

internal structure verification process for MS-Office digital

files, it is possible to check whether malicious scripts are

included, and identify abnormal MS-Office files. Therefore,

we proposed and implemented an AI-based malicious hidden

data detection system.

III. DATA HIDING ON OOXML-BASED MS-OFFICE

FILE

OOXML-based MS-Office files are stored in ZIP format,

and are referenced from the ECD(End of Central Directory)

record field at the end of the ZIP file. And embedded XML

and image files in the MS-Word document are defined in

LFH (Local File Header) and each LFH header is referenced

by each Central Directory Header (CDH) respectively.

General ZIP files are created and stored uniformly without

any internal slack space. However, several slack spaces can

be found in the each of CDH and LFH respectively when

displaying the storage bitmap of OOXML based MS-Office

files. Therefore, there is a problem that MS-Office Editor

does not generate an error even if the data is concealed in the

slack space or the shell code is stored inside the MS-Office

document. Therefore, in this study, damaged or corrupted

OOXML-based MS Office series digital files was analyzed,

and abnormal file structures were analyzed and verified[7].

Fig. 2 Data Hiding on MS-Office File

We have described two ways to corrupt for hiding data by

using extra field (slack space) or file comment field on inside

of MS-Office files illegally. Data Hiding is possible by using

the slack space such as the extra field in LFH and CDH. In the

ZIP header standard, it is defined so that the Extra Field part

can be included in the CDH and LFH parts in consideration

of extensibility. In most cases, it is confirmed that the area is

not being used for any particular purpose. However, if a

malicious attacker saves data in the Extra Field, it is not

directly displayed on the MS-Office editor screen. In

addition, it can be abused by manipulating the Extra Field

Length part, which is the size information of the Extra Field,

to create a slack space, and to hide a file or data of an

arbitrary length in an MS-Office file.

Fig. 3 Data Hiding on OOXML-based MS-Office File

As a result of hiding data in the Extra Field of the LF

header for the actual MS-Office file, it was confirmed that

data can be saved in the normally allocated Extra Field part

by overwriting method. Also, arbitrary data could be hidden

by overwriting the Extra Field without changing the overall

size of the LF header. It has been confirmed that data can be

inserted into the Extra Field area even inside the CD header.

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 10, Issue 9, September 2023

29

In particular, in the case of the CD header, since MS-Office

files are composed of several directories in the form of

OOXML, it was confirmed that it is also possible to divide

and store files to be hidden in multiple CDHs because there

are multiple CDHs. Therefore, it was found that data can be

hidden by inserting it into the Extra Field when it is divided

into multiple CDHs and hidden by the partitioning method. In

addition, malicious damage to MS-Office can be performed

by adjusting the number of CDHs and LFHs, deleting

specific CDHs, or adding LFHs.

IV. AI-BASED HIDDEN DATA DETECTION ON

MS-OFFICE FILES

A. Hidden Data Detection

The MS-Office File Analyzer was designed and

implemented to check the abnormality of the MS-Office file

and to automatically determine its corruption by using ML

modules. It is implemented in a GUI form using the Python

language, and implemented to operate without a separate

additional module installation process. In the case of the SW

developed in this study, if we input a MS-Office file to be

inspected, it performs an analysis process on the internal

structure of OOXML to automatically detect whether the file

is damaged or not and provides a function to detect hidden

data.it analyzes the internal structure of MS-Office file saved

as OOXML-based ZIP file and examines LFH and CDH

header contents in detail and efficiently detects abnormally

hidden data. The internal module of the system implemented

in this study consists of ZIP File Identification Module, ZIP

File Structure Analysis Module, ZIP File Validation Module,

and GUI Module.

It was confirmed that all places where the slack area exists

are in the Extra Field part of the LFH and CFH. Therefore, if

the slack area that does not appear in the local file header of a

general ZIP file is exploited, malicious code or any additional

information can be hidden. Therefore, as shown in the figure

below, five types of damaged files were analyzed and a

function to automatically detect them was implemented.

Fig. 4 Hidden Data Detection from Corrupted MS-Office

Files

When the implemented SW is executed, the OOXML

structure analysis process is performed on input MS-Office

files to check whether the slack space is included in the CDH

and LFH headers. If hidden data exists, an alarm is displayed.

Also, as shown in the figure below, data of a specific length

can be added by changing/modifying and manipulating the

internal structure of the OOXML-based MS-Office file. If

specific data is hidden in MS-Office series digital files after

changing the data size, a module that can automatically detect

it has been developed. When a file disguised as a legitimate

digital file is executed, damage from encryption/infection of

digital files of general users by malicious ransomware code

hidden inside the file can be prevented in advance by simply

executing proposed SW.

B. AI-based Hidden Data Detection

A method for detecting hidden files in MS-Office files was

derived by applying machine learning techniques. As shown

in the figure below, files containing malicious code were

collected and static and dynamic analysis were performed

using Cuckoo sandbox[8]. Training and test data were

collected from MalwareBazaar, a free malicious software

database, and normal files were tested on files disclosed to

Digital Corpora. About 150,000 normal files and about 3,800

malicious files with doc, docx, xls, xlsx, ppt, and pptx

extensions were collected. Within the oletools module, a

Python library, there is a library called olevba. Additionally,

we analyze the internal source code for VBA macros

embedded in OLE or OpenXML files. Therefore, the Cuckoo

sandbox automatically executed macros of MS-Office file on

Windows OS, performed static and dynamic sandbox

analysis, and suspicious keywords that can interfere with

virtualization were derived and created as IoC(Indicators of

Compromise).

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 10, Issue 9, September 2023

30

Fig. 5 AI based Hidden Data Detection

The detailed analysis process is diagrammed as shown in

the figure below. After installing Windows OS and

MS-Office SW in the Cuckoo sandbox, MS-Office files

containing malicious codes were executed.

Fig. 6 Static/Dynamic Analysis Using Cuckoo sandbox (1)

 When MS-Word file is executed using Cuckoo sandbox,

static and dynamic analysis results and action-oriented event

information can be analyzed.

Fig. 7 Static/Dynamic Analysis Using Cuckoo sandbox (2)

C. Feature Extraction for AI-based Hidden Data

Detection

As a result of the experiment, malicious VBA macros

included in malicious doc files could be extracted as follows.

As a result of the analysis, it was confirmed that malicious

data was classified into AutoExec, Suspicious, and IoC by

type.

Fig. 8 Hidden Data Detection SW

We conducted an experiment using a total of 3,206

MS-Office series files (doc, docx) collected from the internet.

Among them, 2,565 files were used as training data, and 641

files were used as test data. For testing the AI-based

automatic detection feature, we utilized 16 feature

information, including the number of suspicious information

confirmations, automatic execution counts, and IoCs, as

shown in the figure below. In this regard, we employed a total

of eight models, namely Random Forest, SVM, K-NN,

Gaussian Naïve Bayes, Logistic Regression, Decision Tree,

Ada Boost, and Gradient Boosting.

Fig. 9 Feature Extraction Mechanism

D. Comparison of AI-based Hidden Data Detection

To build a machine learning model, a Python-based

machine learning library (scikit-learn) was used. In addition,

the following functions were implemented to calculate the

accuracy and F1 score of the malicious data classification

algorithm. In order to find the machine learning model that

provides optimal performance, an experiment was conducted

with a total of eight machine learning models. As a result of

experimenting with 8 machine learning models, it was found

that hidden files in MS-Office files can be detected best when

using the Random Forest model as shown in the figure below.

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 10, Issue 9, September 2023

31

Fig. 10 F1-score on AI-based Hidden Data Detection

V. CONCLUSIONS

In this paper, we analyzed the OOXML-based MS-Office

series digital file structure and proposed how illegal

corruption process is possible on official public MS-Office

digital documents by concealing malicious data on several

slack space such as extra fields of CDH/LFH respectively. In

addition, an advanced malicious data hidden detection

mechanism in MS-Office files by intentionally deleting the

CDH header is presented. We propose a method for

malicious hidden data analysis and detection method based

on 8 type of Machine Learning model to actively respond to

suspicious ransomware disguising legitimate official

OOXML-based MS-Office digital files. As a result, we

designed and implemented a software for detecting

corruption attack on OOXML-based public MS-Office files.

Based on this, it is possible to provide an advanced system or

mechanism for automatically detecting concealed

ransomware code hidden in OOXML-based MS-Office

digital files.

VI. ACKNOWLEDGEMENT

This work was supported by the National Research

Foundation of Korea (NRF) grant funded by the Korea

government (MSIT) (No.2021R1F1A1046954).

REFERENCES

[1] Anghel, Catalin, “Digital Forensics – A Literature Review,”

2019. 42. 23-27. 10.35219/eeaci.2019.1.05.

[2] Hassannataj Joloudari, J., Haderbadi, M., Mashmool, A.,

GhasemiGol, M., Shahab, S., and Mosavi, A., “Early detection

of the advanced persistent threat attack using performance

analysis of deep learning”, arXiv e-prints, 2020.

[3] A. Alenezi, H. Atlam, R. Alsagri, M. Alassafi, and G. Wills,

“IoT Forensics: A State-of-the-Art Review, Challenges and

Future Directions,” Proceedings of the 4th International

Conference on Complexity, Future Information Systems and

Risk (COMPLEXIS 2019), pages 106-115.

[4] Wikipedia contributors, "Office Open XML," Wikipedia, The

Free Encyclopedia, https://en.wikipedia.org/w/index.php?title

=Office_Open_XML&oldid=917283554 (accessed January

20, 2023).

[5] Wikipedia contributors, "Zip (file format)," Wikipedia, The

Free Encyclopedia, https://en.wikipedia.org/w/index.php?title

=Zip_(file_format)&oldid=916422219 (accessed January 20,

2023).

[6] File Formats: Microsoft Word Document (DOCX/DOC),

https://www.leadtools.com/help/leadtools/v20/dh/to/document

-file-formats-microsoft-word-document-docx-doc.html

[7] H. Lee, H.W. Lee, “Forgery Detection Mechanism with

Abnormal Structure Analysis on Office Open XXML based

MS-Word File,” IJASC 8 (4), 2019.

[8] Cuckoo, Automated Malware Analysis, https://cuckoosand

box.org.

https://en.wikipedia.org/w/index.php?title=Office_Open_XML&oldid=917283554
https://en.wikipedia.org/w/index.php?title=Office_Open_XML&oldid=917283554
https://en.wikipedia.org/w/index.php?title=Zip_(file_format)&oldid=916422219
https://en.wikipedia.org/w/index.php?title=Zip_(file_format)&oldid=916422219
https://www.leadtools.com/help/leadtools/v20/dh/to/document-file-formats-microsoft-word-document-docx-doc.html
https://www.leadtools.com/help/leadtools/v20/dh/to/document-file-formats-microsoft-word-document-docx-doc.html
https://cuckoosand/

