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Abstract— In today's digital era, multimedia content such as images, videos, text, and audio are commonplace. With the increase in 

the number of Unmanned Aerial Vehicles (UAVs) in the sky, UAV videos have emerged as a new form of communication. To efficiently 

and effectively search for a specific video from a large dataset, text-to-video retrieval is recommended. In this paper, we present a text-

to-event retrieval model for UAV videos. The model comprises two parts: the first part extracts frame-level features from the video using 

Vision Transformer (ViT), and the second part extracts textual representations from the query using Bidirectional Encoder 

Representations from Transformers (BERT). Both parts are jointly trained on text-video pairs using bidirectional contrastive loss. The 

effectiveness of the proposed method was evaluated on the CapERA dataset, an extended version of the event recognition in aerial video 

(ERA) dataset, and the results demonstrate its efficacy. 

 
Index Terms— Unmanned Aerial Vehicles, Vision Transformer, Contrastive Loss 

 

I. INTRODUCTION 

Because of the great development in remote sensing (RS) 

technology, the number of high spatial resolution images 

increases day after day. This has resulted in an abundance of 

information that introduces new challenges in the study of RS 

images. Furthermore, as RS devices and technologies have 

advanced, many applications of RS images have made 

substantial progress, including scene classification [1], object 

detection [2], image retrieval [3], image captioning [4], and 

semantic segmentation [5]. 

Data in the RS technique will be collected using sensor 

technology based on satellites or UAVs. Satellite-based 

technologies cover a broader geographical area than UAV-

based technologies. Consequently, the data volume of RS is 

continuously increasing depending on the enormous number 

of launched earth observation satellites. One of the most well-

known satellites is Jilin-1 [6], a Chinese RS satellite sensor. 

Unlike satellites, UAVs can provide real-time allowing for 

quick decision-making and high-resolution video at a very 

low cost. In addition, UAVs can dramatically reduce reliance 

on weather conditions, such as clouds, dust and fog. And they 

are providing greater flexibility to deal with a variety of 

problems. For instance, the ERA dataset [7] is a new aerial 

video dataset that covers a wide range of events. Besides that, 

each event was represented by a record of 5 seconds, for a 

total of 2,864 video clips. 

In this work, we are concerned to propose a novel 

architecture for the text-to-video retrieval task in the RS field. 

The idea of retrieving RS data from a given text has been 

investigated in the context of images only. Zhang et al. [8] 

proposed a feature decoupling and reconstruction method 

using a vision transformer to solve the issue of redundant 

information that resulted from straightforward mapping in 

state-of-the-art models. First, image and text features are 

extracted using a ViT and BERT, respectively. Then, the 

resulting features are decoupled into modal invariant and 

modal heterogeneous features. And at the end, these features 

will be reconstructed back. After the features of text and RS 

images are extracted in [9], graph modules are applied to 

induce the interactive fusion of text and RS image features. 

In addition, the model highlights the components related to 

the query by using the Text-Image Association Module. Lv 

et al. [10] presented a fusion-based correlation learning 

model with two stages: modality-specific feature learning and 

common feature space learning. In the first stage, a deep CNN 

was used to extract distinct image and text features. Where in 

the second stage, a common space is constructed to compare 

the heterogeneous data with consecutive loss functions for 

realizing the semantic correlation between image and text 

pairs. 

Due to the scarcity, or rather absence, of literatures on RS 

text-to-video retrieval models, inspiration has come from 

works in the field of computer vision. Recently, in [11] the 

input video is represented with Reading-strategy-Inspired 

Visual Representation Learning (RIVRL). It is divided into 

two parts: a previewing part and an intensive-reading part. 

The first part is responsible for capturing general information 

about videos. While the second part is intended to get more 

detailed information about videos and it is aware of the 

resultant data in the previewing part. Feng et al. [12] 

proposed a Temporal Multi-modal Graph Transformer with 

Global-Local Alignment (TMMGT-GLA). The visual input 

is represented as a series of semantic correlation graphs to 

utilize the structural information between multi-modal 

features. In addition, graph and temporal self-attention layers 

are used to learn cross-modal relations and temporal 

associations in an effective way. 

Retrieving a video from a given textual query for RS aerial 

videos has not been investigated yet. This is a crucial issue 
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since most users prefer to convey their information needs 

using natural language. As a result, this paper presents a 

model for retrieving RS videos. Which is one of the most 

important multi-modal learning challenges that tries to find 

the most relevant video for a given textual query. The model 

includes two parts. The first part is the video encoder, which 

uses the vision transformer (ViT) to extract frame-level 

information from video. The second part is the text encoder, 

that employs Bidirectional Encoder Representations from 

Transformers (BERT) to extract textual representations from 

the query. The two parts are trained jointly on video-text pairs 

by minimizing a bidirectional contrastive loss. 

 
Fig. 1. The general flow chart of the proposed text-video 

retrieval method. 

II. PROPOSED METHOD 

This section will explain the proposed method of the text-

to-video retrieval task in detail. The backbone of our 

methodology is the vision transformer, and the model consists 

of two parts: a language transformer encoder and a video 

transformer encoder, as shown in Fig. 1. In the beginning, we 

supposed to have a set of 𝑅  video-text pairs as 𝐷 =

{𝑋𝑖 , 𝑐𝑖}
𝑅

𝑖=1
, where 𝑋𝑖 is the video of size 𝑋𝑖 ∈ ℝ𝑇×𝐻×𝑊×𝐶  and 

𝑐𝑖 is the related textual caption. The following is a detailed 

explanation of the proposed model. 

A. Language Transformer Encoder 

The mechanism of the language transformer encoder 

begins with taking the sentence input as word tokens 𝑐𝑖 =
(𝑤1, 𝑤2, 𝑤3, ⋯ , 𝑤𝑛), where 𝑛 is the length of the sentence. 

Then, a learnable embedding layer 𝐸𝑐 was applied to convert 

the “word vector” into a series of textual features with 

dimension 𝑑𝑐. And by using a learnable positional embedding 

layer, the output textual features series has included 

additional information about the position of each word. 

Moreover, two special tokens, CLS and SEP, are added at the 

beginning and end of the word series. Therefore, the sentence 

is represented as: 

𝑔𝑐0 =  [𝑤𝑐𝑙𝑎𝑠𝑠;  𝑤1𝐸𝑐 ;  𝑤2𝐸𝑐;  ⋯ ; 𝑤𝑛𝐸𝑐] + 𝐸𝑝𝑜𝑠          (1) 

𝑤𝑐𝑙𝑎𝑠𝑠  is the general token and 𝐸𝑝𝑜𝑠 ∈ ℝ(𝑛+1)×𝑑𝑐  is the 

positional embedding information. Then, the initial 𝑔𝑐0  is 

passing through multiple identical layers of the language 

transformer encoder produce the last representation 𝑔𝑐𝐿  at 

the latest layer 𝐿. Each encoder’s layer begins with a multi-

head self-attention (MSA) block and ends with a multi-layer 

perceptron (MLP) block with GELU activation function in 

between. These two blocks are joined by residual skip 

connection and follow up by a normalization layer (LN): 

𝑔′𝑙 =  𝑀𝑆𝐴 (𝐿𝑁(𝑔𝑙−1 )) + 𝑔𝑙−1 , 𝑙 = 1,2, ⋯ , 𝐿            (2) 

𝑔𝑙 =  𝑀𝐿𝑃 (𝐿𝑁(𝑔′𝑙 )) + 𝑔′𝑙 ,        𝑙 = 1,2, ⋯ , 𝐿              (3) 

Then the output textual features are normalized by L2-

normlization technique as {𝑓𝑐𝑖}
𝑏

𝑖=1
. 

B. Video Transformer Encoder 

In video encoder architecture, the input video is splitting 

into a sequence of 𝑓 nonoverlapping video frames 

(𝑥𝑝
1;  𝑥𝑝

2;  ⋯ ; 𝑥𝑝
𝑓

). Each frame has processed as single image 

with its own image encoder [13] and has dimension of 

(3𝑝2) where 𝑝  is the height or width of the frame and 𝑓 

represents the total number of frames 𝑓 = (224 × 224)/𝑝2. 

The resulting frame sequence is then projected and flattened 

by a linear projection layer 𝐸𝑣 to dimension 𝑑𝑣. A positional 

embedding layer is applied to include the positional 

information, as done in the language transformer encoder. 

After that, the video frame sequence supplies the transformer 

encoder as: 

𝑔𝑣0 = [𝑥𝑐𝑙𝑎𝑠𝑠;  𝑥𝑝
1 𝐸𝑣;  𝑥𝑝

2 𝐸𝑣;  ⋯ ; 𝑥𝑝
𝑓

 𝐸𝑣] +  𝐸𝑝𝑜𝑠                (4) 

here the linear embedding layer is 𝐸𝑣 ∈ ℝ(𝑝2.  𝑐) × 𝑑𝑣 , and 

the positional embedding layer is 𝐸𝑝𝑜𝑠 ∈ ℝ(𝑓+1) × 𝑑𝑣 . Also, 

𝑥𝑐𝑙𝑎𝑠𝑠  represents the patch representations. The last video 

representation 𝑔𝑣𝐿 is obtained by utilizing equations (2) and 

(3). Also, the output video frame features are normalized by 

L2-normlization as {𝑓𝑣𝑖}
𝑏

𝑖=1
. Furthermore, contrary to the 

language transformer encoder, normalization occurs before 

MSA and MLP blocks in the video transformer encoder. 

C. Contrastive Loss 

To improve the model's performance, we utilized 

contrastive loss, which has proven to be effective in 

measuring pairwise similarity. We computed contrastive loss 

in both text and video spaces. In the text space, we aimed to 

ensure that the visual features are very close to their 

corresponding text features. Similarly, in the video space, we 

aimed to ensure that the text features are very close to their 

corresponding visual features. 
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Fig.2. Sample video clips from CapERA dataset with their captions. 

 
Fig. 3. Attentions over text and video for different samples

III. EXPERIMENTS RESULTS 

A. Dataset Description 

The aerial video dataset ERA [7] includes an extensive 

range of events. Moreover, it captures dynamic events in a 

variety of situations with significantly different scales. It is a 

collection of 2,864 videos divided between 1,473 training set 

and 1,391 test set, and each video is clipped from a long 

YouTube UAV video to 5 seconds with 24 frames per second 

and a spatial size of 640×640. Researchers of ERA dataset 

have started by making a general taxonomy of 24 most 

commonly seen events in aerial scenes. Also, they set up 

additional category called "non-event" to ensure that models 

can distinguish between events and normal videos. In this 

paper, we utilized an upgraded version of the ERA dataset 

called CapERA [14]. It describes each video by five 

descriptions. The first description of each video is manually 

annotated, while the rest are automatically produced by 

paraphrasing and translation tools. In Fig. 2, we show an 

example of three videos with their five captions. 

B. Experimental Settings 

Our text-to-video retrieval model was trained on the 

contrastive language image pre-training (CLIP) model [15] 

with over 400 million text-image pairs. Furthermore, we 

adopt BERT with 12 layers as a language transformer. The 

size of the vocabulary is equal to 49,408, and to embed the 

sequence into the features of dimension 𝑑𝑐 = 512 a word 

embedding layer is utilized. The Bert-base-uncased tokenizer 

is used with a fixed length equal to 𝑛 = 77. While ViT32 

with 12 layers is used as a video transformer. It splits the 

image into 𝑓 = 49  patches of 32 × 32  pixels each and 

flattened to the dimension 𝑑𝑣 = 768. Moreover, we choose 

one of the five captions for each video at random during 

training. In addition, we set the learning rate to 3𝑒 − 4 to 

optimize the model and use the Adam optimizer. We trained 

the model for 50 epochs and a mini-batch of size 10. 

C. Evaluation Metrics 

The results in this paper are evaluated by the Recall@k 

(R@k) metric. It is the fraction of the relevant items that are 

successfully retrieved with a given textual query, and it is 

expressed as: 

𝑅@𝐾 = (𝑇𝑃@𝑘)/(𝑇𝑃@𝑘 + 𝐹𝑁@𝑘)                                    (5) 

The TP@k represents the true positive condition, while the 

FN@k is the false negative. To evaluate the performance, we 

use three different values of k (1,5,10) with the R@k 

indicator. 

D. Results 

The outcomes presented in Table 1 are categorized into two 

retrieval methods: text-to-video and video-to-text. 

Furthermore, the retrieval performance of the video encoder 

is examined by using varying numbers of sampled frames. It 

can be observed that the R@k scores for video-to-text 

retrievals are slightly lower than text-to-video retrievals, as 

each video in the CapERA dataset has five relevant captions, 

while each text sentence has only one relevant video. 

Moreover, it is evident that the R@k score outcomes are 

relatively high when using eight sampled frames for both 

text-to-video and video-to-text retrieval. However, when the 

number of sampled frames is increased to 16, the results 

decrease across all metrics. 

Fig. 3 displays the attention maps generated by our model 

for two video frames retrieved from two distinct textual 

queries. The attention maps assist us in identifying the 

specific spatiotemporal regions of focus. The attention maps 
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on the left indicate that the model emphasizes the people and 

basket mentioned in the query, indicating that the model 

should concentrate on fine-grained temporal details. On the 

other hand, the attention maps on the right highlight the 

dancers more prominently. Despite the differences, the 

attention maps reveal that the proposed model is adept at 

accurately learning deep spatiotemporal features for UAV 

video retrieval. 

Table 1. Retrieval Results on Era Dataset 

IV. CONCLUSION 

In conclusion, we proposed a self-attention model of text-

to-video retrieval for aerial videos. In addition, the 

enhancement of text and video representations has been done 

by improving the bidirectional contrastive loss. We can 

clearly see the effectiveness of our model from the 

quantitative results on the CapERA dataset. 
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 CapERA Dataset 

Text-to-video Retrieval Video-to-text Retrieval 
Recall@k 

No. of frames
 R@1      R@5      R@10 R@1        R@5      R@10 

4 frames 8.92 27.79 41.59 7.83 23.36 34.29 

8 frames 9.20 28.09 42.49 8.91 25.23 35.37 

16 frames 7.40 26.47 39.57 7.33 20.85 31.78 


