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Abstract— Motor imagery electroencephalograph is nonlinear, nonstationary and high dimensional in nature. Due to which, the 

prediction of existing classification model across multiple subjects is limited. To improve the performance of the existing classification 

models across multiple subjects, a new preprocessing approach is presented in this paper. A hybrid feature selection approach is 

introduced to select the optimal number of channels followed by clustering. Clustering helps to explore shared brain activity patterns and 

their relationships to outside factors by detecting similar clusters among different subjects. In this study, four different classifiers are 

used to classify motor imagery electroencephalograph data. The proposed approach yields an accuracy of 99.6% using ensemble 

technique. Significant improvement is seen in the Logistic Regression. The results in this study indicate that generalization of motor 

imagery electroencephalograph across multiple subjects is possible using our proposed approach. 

 
Index Terms— Machine Learning, Brain Computer Interface, Electroencephalograph, Feature optimization, Clustering 

 

I. INTRODUCTION 

Motor Imagery (MI) classification has received 

considerable attention in recent years but nevertheless 

confronts many difficulties, including multi-person and 

multi-class classification. The previous research work 

addressed the challenges like the limited availability of 

Electroencephalograph (EEG) training data and the high 

dimensional nature of EEG data. Another major challenge in 

MI classification is the non-stationary nature of EEG 

data[1][2][3]. This non-stationarity characteristic signifies 

that the temporal and spectral characteristics of the EEG 

signal vary with time. The individual differences in EEG lead 

to a loss of generalizability for classification systems across 

subjects (inter-subject task) and across different sessions for 

the same subject (intra-subject task). The traditional 

approach is to train new models using EEG data of each 

subject, which is very computationally very costly.  

So far, numerous research efforts have been dedicated to 

accurately classifying MI data[4][5]. But none of them 

thoroughly investigated the crucial data structure that 

captures the real distribution of EEG samples. Machine 

learning models are data-driven, meaning that classification 

performance is determined by the data quality and how the 

training data is used to train the model. An EEG data set may 

contain amplitude values with varying frequencies, ranging 

from resting to super active. Suppose the training data for 

different frequency classes is not balanced. In that case, the 

classification model will show high accuracy for a specific 

class with a higher ratio than the other classes. Since EEG 

signals are highly non-stationary, varying from session to 

session and subject to subject, the model fails to generalize 

unseen data. This is due to the fact that the underlying data 

distribution structure is typically unavailable beforehand. 

Finding intrinsic patterns in EEG data could provide model 

learning more background knowledge and improve neural 

pattern decoding. 

As a result, unsupervised techniques, such as clustering, 

are required to explore the intrinsic patterns present in EEG. 

With the increasing number of EEG signals without labels, 

clustering EEG signals is becoming an effective new 

technique for Brain Computer Interface (BCI) applications. 

The conventional methods for analyzing EEG data rely 

heavily on the experimenter's capacity to remove outliers and 

identify peaks and waves that correspond to various neural 

processes because the EEG signal is typically high 

dimensional and noisy. 

Unsupervised learning techniques has the ability to 

identify groups of subjects who share common MI EEG 

features. These methods do not use models that have been 

trained on labelled datasets, in contrast to supervised learning 

methods. Instead, they produce dense clusters of samples in a 

high-dimensional environment. There are two clustering 

algorithms: hierarchical and partitional clustering[6].  

Hierarchical clustering creates a cluster hierarchy by dividing 

large clusters into multiple smaller ones, then combining the 

smaller clusters at their nearest centroid [7]. Conversely, the 

data collection is divided into a set of discontinuous groups 

using partial clustering, which lacks a hierarchical structure 

[8]. In this paper, we consider hierarchical and partition 

clustering algorithms to solve the problem of cross-subject 

EEG variation data. 

 To summarize, we investigate whether unsupervised 

clustering can be used to investigate cross-subject 

classification while achieving a degree of accuracy. Thus, in 

this article, we hypothesize that: 

1. The performance of the MI classification in the case 

of cross-subject scenarios can be improved using 

methods for unsupervised clustering techniques. 

2. How performance depends upon feature selection 
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algorithm used? 

3. Classification accuracies are determined by the type 

of clustering technique used. 

4. A hybrid feature selection approach is proposed as a 

preprocessing step. 

This paper is divided into five sections. Section II discuss 

the related work. The proposed methodology is discussed in 

section III. Methodology is shown in section IV. The 

experimental verification and result analysis are discussed in 

section V. The results are discussed in section VI, and the 

conclusion is given in section VII.  

II. RELATED WORK 

To the best of our knowledge, multi-trial EEG clustering 

research is challenging because of its peculiarities and 

challenges. Very few studies are found in this domain[9][10]. 

Numerous research initiatives have been made to date to 

develop Common Spatial Pattern (CSP) variations that will 

increase the accuracy of reading EEG patterns. A filter bank 

CSP (FBCSP)  [11] has been created to optimize the retrieved 

CSP features from several filter bands by utilizing the mutual 

information between the features. An extension of FBCSP 

called discriminant FBCSP (DFBCSP) [12] has been 

additionally developed to incorporate Fisher's ratio into the 

most discriminative filter bands, improving the separability 

of CSP characteristics between classes. Additionally, for 

better pattern separability, a sparsity-constrained filter band 

common spatial pattern (SFBCSP) [13] has been created. It 

explores a condensed set of multi-bands CSP features. There 

are few further CSP variations in the literature [14]. Although 

each of the aforementioned methods has demonstrated some 

promise in terms of enhancing the decoding accuracy to 

varied degrees, none of them has successfully investigated 

the crucial data structure that accurately captures the real 

distribution of EEG samples. Given that the distribution 

structure of data is typically unknown beforehand due to the 

fact that EEG signals are extremely nonstationary and exhibit 

significant trial-to-trial changes, a model created in this 

manner is likely to reduce learning performance[15]. 

However, to our knowledge, this is the first comprehensive 

analysis between classification and preprocessing + 

classification on MI EEG dataset. Further, we have also 

proposed a hybrid feature selection approach to select the 

optimal features. 

III. PROPOSED APPROACH 

 In this section, we illustrate the proposed approach of 

this paper. The framework starts with a hybrid feature 

selection technique, followed by clustering. Finally, we adopt 

various classifiers to classify the trained EEG features.  

A. Feature selection in the MI EEG dataset 

  One of the most challenging aspects of BCI is that it is 

individual-dependent. The solution to this issue is to use as 

many electrodes as possible. Using many electrodes, 

however, introduces additional issues, such as low 

classification accuracy, high computational complexity, and 

lengthy setup time in the case of BCI. Consequently, this 

means that channel selection is critical for EEG signal 

classification. The metaheuristic algorithms choose the ideal 

choice from a list of potential solutions based on a random 

search space. The problem can be defined in terms of its cost 

function, which is a function built using values from the 

search space as inputs and evaluates solutions. In order to 

find the best possible solution, a metaheuristic algorithm 

seeks a solution that satisfies the constraints of the cost 

function. According to the issue at hand, the optimal use of a 

cost function is to either maximize or minimize the aim. Each 

metaheuristic algorithm has two stages, such as exploration 

and exploitation. Maintaining a balance between these two 

phases is crucial for finding a global optimum and avoiding 

local optimums. Various scholars have proposed different 

meta-heuristic algorithms, such as [16]–[20] etc. To boost the 

effectiveness of metaheuristic algorithms, hybrid 

metaheuristic algorithms are suggested [21]–[24]. For the 

most part, metaheuristic algorithms that  

 

 
Fig 1. Proposed Framework for MI EEG classification 

 

solve optimization problems combine two or more metaheuristic algorithms. Utilizing each algorithm's benefits 
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while minimizing each algorithm's disadvantages is the main 

goal of hybrid metaheuristic algorithms. The balance 

between exploitation and exploration is typically applied in 

hybrid metaheuristic algorithms. Hybrid metaheuristic 

algorithms are suggested to balance these two phases 

because, as already mentioned, some algorithms perform 

well during exploration and exploitation. On the other hand, 

these algorithms have a significant convergence/accuracy 

trade-off[25]. This chapter combines two feature selection 

techniques: Whale optimization algorithm(WOA)[26] and 

sine cosine optimization algorithm(SCA)[27].  

 The use of the WOA algorithm has some disadvantages. 

Although it is efficient at locating the best solutions and has a 

straightforward implementation, it occasionally has 

difficulties locating solutions during exploration. The 

exploration stage of the algorithm is crucial for accelerating 

convergence and avoiding local optimum situations. As a 

result, algorithm performance is significantly impacted by 

exploitation. Trigonometric sine and cosine functions are 

used to enhance the SCA's exploration and exploitation 

phases. The algorithm has some drawbacks despite being 

straightforward to use and requiring few parameters. The 

drawbacks include poor exploration, low precision and slow 

convergence in some optimization problems. As an 

alternative, the SCA algorithm makes complex 

computational efforts to find an ideal and effective solution in 

areas of the search space that are not optimal. 

B. Clustering techniques 

 As the number of unlabeled EEG signals increases over 

time, EEG clustering is emerging as a crucial new method for 

BCI applications. One of the most significant choices in 

cluster analysis is selecting the right cluster number. 

Different approaches to figuring out the ideal number have 

been proposed.  Unfortunately, there aren't many studies on 

clustering unlabeled EEG time series except [28] [29][9]. 

They used an optimal objective function to find the cluster 

centroid on cross-correlations between candidate EEG trials 

and the cluster centroid. In this paper, we used two clustering 

algorithms: k-means++ and Fuzzy c means.  

C. Machine learning models used for classifying MI 

EEG signals 

This section presents a summary of machine learning 

models i.e., approaches that have been used in this paper for 

classifying MI EEG signals as shown in Fig. 1. In our work, 

10-Fold cross-validation is used for validating the data. To 

evaluate the effectiveness of the predictions made by 

machine learning models, we used accuracy, precision, recall 

and F1 score. Models used include: Logistic Regression, 

Random Forest, Decision Tree and Ensemble Learning. 

Various studies [30][31][3] have explored the ensemble 

approach, several classifiers have been used for the 

classification of MI EEG signals but none of these have 

achieved good results. Zenobi et. al. [32] proposed an 

ensemble learning which takes the advantage of multiple 

classifiers. Mistake made by one classifier is compensated by 

another classifier.  

IV. EVALUATION METHODOLOGY 

 This section introduces the evaluation metrics used in our 

work to assess the quality of the clusters generated and the 

performance of the machine learning models on those 

clusters. 

A. Metrics for assessing the quality of clusters generated 

The clustering quality of the clustering algorithms is 

reflected in the compactness and scatter of the clusters. In 

light of these findings, we examined the three clustering 

quality measures: Silhouette score, Calinski-Harabasz 

Index and Davies-Bouldin Index 

V. EXPERIMENTAL VERIFICATION AND ANALYSIS 

This section presents the dataset description, experimental 

configuration, and the results of our proposed 

clustering-based ensemble technique.  

A. Dataset Description 

To find out how cognitive measures affect MI BCI 

performance, the Department of Cognitive Science and 

Artificial Intelligence at Tilburg University in the 

Netherlands conducted experiments. The 57 subjects (36 

women and 21 men) who made up this dataset were recorded 

using the 16 electrodes (F3, Fz, F4, FC1, FC5, FC2, FC6, C3, 

CZ, C4, CP1, CP5, CP2, CP6, T7, and T8) suggested by the  

 
Fig. 2. Silhouette method to find an optimal number of 

clusters 

10-20 system. However, we only used a dataset 

of 3 subjects for our research. The participants were 

instructed to visualize the movements of their left and right 

arms throughout the experiment. Four different runs of 40 

trials each for each class were sampled at a rate of 250 

samples per second. The total number of features is 18, where 

0 denotes the first feature, and 17 is the last. As a result, a 17× 

S matrix with S standing for sample count is created as the 

entire training dataset. 

B. Experimental configuration 

This study used an Intel Core-i5 (2.60 GHz) computer with 

8 GB of RAM for the experiments. In order to implement the 
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suggested method, we used the machine learning library 

sci-kit-learn and the Python programming language. To 

develop a generalized model which can work across more 

than one subject, we combined the datasets of different 

subjects into one. We conducted our experiment in three 

folds. In the first fold, we used feature selection techniques to 

remove the redundant features and select the most optimal 

ones only. The number of features selected by proposed 

hybrid feature optimization algorithms is shown in Table. I. 

After finding the most relevant features, we use two different 

clustering techniques in the second fold. The scores obtained 

are shown in Table II. We choose clusters with the highest 

scores. Finally, we use our proposed ensemble model in the 

third fold. Additionally, we contrast the clusters of our 

proposed ensemble model with some machine learning 

classifiers. The classifiers used are Logistic Regression, 

Random Forest, and Decision Tree.  

C. Result 

To gain insights about the impact of the clustering on the 

classification of MI EEG data, we compared classification 

with the feature selection + clustering + classification 

framework. We first evaluate MI EEG data using machine 

learning models. No pre-processing is done. Simultaneously, 

we select optimal set of features using a proposed hybrid 

model. After selecting the features, clustering algorithms are 

applied. The quality of the clusters generated by different 

clustering algorithms is assessed in the third step. 

• Results obtained by machine learning models without 

pre-processing step: In this work, we applied Logistic 

Regression, Random Forest, Decision Tree and Ensemble 

technique using voting classifier on MI EEG dataset of 

three subjects. The results obtained are shown in Table I.  

Table I. Shows the performance of the machine learning 

models without preprocessing 

S.NO

. 

Machine 

learning 

models 

Accura

cy 

F1-sco

re 

Precisio

n 

Recal

l 

1.  Logistic 

Regressi

on 

53.75% 53.6% 53.7% 53.5

% 

2. Random 

Forest 

95.97% 98% 96% 98% 

3. Decision 

Tree 

98.7% 98% 99% 98% 

4. Ensembl

e 

techniqu

e 

99.2% 99.3% 99.2% 96% 

From the table, it is evident that the highest accuracy is 

achieved by ensemble technique. Logistic Regression 

showed worst performance. But the aim of our work is to 

analyze whether feature selection + clustering as a 

preprocessing step affects the classification performance or 

not.  

• Features selected by Proposed hybrid feature 

optimization technique: To conclusively demonstrate 

the effectiveness of a reliable feature selection 

technique, we use hybrid feature selection technique 

called Whale Optimization Sine Cosine Algorithm 

(WOSCA) on the combined dataset of MI EEG. The 

number of features selected is shown in Table II. 

TABLE II.  Shows the optimal features selected 

S.N

O. 

Feature 

Selectio

n 

Algorit

hm 

Total 

number 

of 

features 

No. of 

Features 

selected 

Features 

selected 

1.           

WOSC

A 

         18 5 

 

 

[‘timestamp’

, ‘C4’, 

‘CP6’, ‘F3’, 

‘FC6’] 

From the Table II, it is evident that the hybrid feature 

selection technique selects total 5 features out of 18. 

Therefore, we will use only these features and remove the 

redundant ones.  

In k-means++, three parameters influence the quality of 

the clusters generated. The three parameters include: distance 

measures, initial value of clusters and the number of clusters.  

 
Fig. 3. Confusion matrix obtained using hybrid feature 

selection and k means++ technique. 

The last two parameters are the most important 

hyperparameters. If we are able to initialize the values of 

clusters properly and select an optimal number of clusters to 

group the data points, then we achieve clusters with the best 

quality. In our work we initialized the clustering algorithm by 

using hybrid feature selection method. The proposed hybrid 

approach is successful in obtaining a set of optimal features. 

For finding the number of clusters in k-means++, we use 

silhouette method as shown in Fig. 2. It can also be used to 

find the consistency and the quality of the clusters generated.. 

In our method we found k=4, an optimal number of clusters 

for k-means++ whereas k=3 for Fuzzy c means clustering. 

From Table III, it is evident that the score obtained using 

k-means++ is 0.45. This means that the clusters are    

consistent and densely populated. The fuzzy c-means process 
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involves an additional parameter, commonly referred to as 

the fuzzifier, in contrast to k-means clustering. A data point is 

assigned fuzzy memberships to all clusters rather than being 

directly allocated to a cluster. As a result, it is feasible to 

reduce the impact of data items that are not part of a specific 

cluster, such as data points that are situated between 

overlapping clusters or data points brought on by background 

noise. Consequently, the cluster analysis becomes 

significantly more accurate with the addition of this new 

parameter. In our work, we obtained a silhouette score of 

0.0006 using Fuzzy c-means clustering algorithm. 

From the Table III, it is evident that the silhouette, 

Calinski-Harabasz score and Davies-Bouldin Index 

obtained using k-means++ algorithm is better than Fuzzy 

c-means algorithms on MI EEG dataset. 

TABLE III. Shows the Scores obtained by different 

clustering algorithms 

S.N

O. 

Clustering 

algorithm  

Silho

uette 

score 

Calinski-

Harabasz 

score 

Davies-Boul

din Index 

1. k-means++      

0.45 

 318767        0.851 

2. Fuzzy 

c-means  

0.000

6 

1.44 0.89 

We calculated classification accuracies on MI EEG dataset 

using feature selection followed by clustering. For 

classification, we used the same classifiers. The results 

obtained are shown in Table IV and the best results are 

highlighted in bold. The Table IV clearly yields that the 

accuracy achieved after applying preprocessing step is better 

than without using any pre-processing step.  

TABLE IV. Shows the performance of the machine 

learning models using k-means++ as clustering algorithm 

S.N

O. 

Machine 

learning 

models 

Accura

cy 

F1-sc

ore 

Pre

cisi

on 

Reca

ll 

1.  Logistic 

Regression 

99% 98.9

% 

99

% 

99% 

2. Random 

Forest 

98.5% 98.3

% 

97

% 

98.4

% 

3. Decision Tree 98.9% 98.9

% 

98

% 

98.9

% 

4. Ensemble 

technique 

99.6% 99.6

% 

99.

2% 

99.6

% 

Table IV illustrates the accuracy achieved by machine 

learning models when the features of MI EEG dataset were 

selected by the proposed hybrid feature selection method 

followed by k-means++clustering. Significant improvement 

can be seen in case of Logistic Regression. The best accuracy 

is achieved by ensemble learning.  

 

 

 

 

TABLE V. Shows the performance of the machine 

learning models using Fuzzy c means as clustering algorithm 

S.N

O. 

Machine 

learning 

models 

Accur

acy 

F1-sc

ore 

Pre

cisi

on 

Recal

l 

1.  Logistic 

Regression 

33% 32.04

% 

33.

5% 

33.5

% 

2. Random 

Forest 

97% 96.6

% 

97.

5% 

97.4

% 

3. Decision 

Tree 

98% 98.1

% 

98

% 

98.2

% 

4. Ensemble 

technique 

99.3% 99% 99

% 

99.1

% 

VI. DISCUSSION 

To have a comprehensive impact of the feature selection 

and clustering on the classification performance, feature 

relevance and generalization, we compared the two pipelines- 

classification without preprocessing and classification with 

preprocessing. Feature selection can help in identifying the 

most relevant features present in MI EEG dataset. By 

comparing classification results with and without 

preprocessing (feature selection + clustering), we can get 

insights into which features are significant.  

 In this paper, we evaluate the generalization of the 

classification models. By combining the datasets of more 

than one subjects, we aim to introduce subject independent 

framework. In this way, a model trained on the data of one 

subject can be used on all other subjects as well. To 

demonstrate the impact of preprocessing on MI EEG dataset, 

we first classified MI EEG dataset without using any 

preprocessing technique using four different classifiers: 

Logistic Regression, Random Forest, Decision Tree and 

Ensemble technique. The classification comparison is shown 

in Table I. The results demonstrate that the ensemble 

technique outperformed the other three methods. However, 

logistic Regression performed very poor achieving an 

accuracy of 53.75%. To show the efficacy of pre-processing 

on MI EEG data, we also computed the classification of four 

different classifiers with the selected EEG channels followed 

by clustering. The feature selection is done using a proposed 

hybrid approach called WOSCA. The number of features 

selected are shown in Table II. Out of 18, the proposed hybrid 

approach selected 5 features. For clustering, we used k 

means++ and Fuzzy c means algorithm. The optimal number 

of clusters in k-means++ is found to be 4 where as in case of 

Fuzzy c means it is 3. The algorithms are successful in 

grouping similar EEG signals irrespective of the subject. The 

quality of the clusters is assessed using three different scores: 

Silhouette score, Calinski-Harabasz score and 

Davies-Bouldin Index as shown in Table III. It is evident 

from the table that k-means++ forms better clusters than 

Fuzzy c-means. The classification performance after 

preprocessing is shown in Table in Table IV. It is clear from 
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the table that the classification accuracy is improved. By 

using only significant features, the model is able to generalize 

well on the unseen dataset. However, significant 

improvement can be seen in the Logistic Regression where 

the classification accuracy has increased from 53.7% to 99% 

using K means++. Surprisingly, the classification 

performance of Logistic Regression using hybrid feature 

selection and Fuzzy c means clustering degraded as shown in 

Table V. Therefore, after comprehensive analysis, it is clear 

that preprocessing improves the classification performance of 

MI EEG data. 

VII. CONCLUSION 

 Unsupervised EEG clustering is a difficult but important 

task because there is an increase in unbalanced EEG data. In 

case of multi-subject EEG, clustering can help in identifying 

common intrinsic patterns. Inter-individual variability occurs 

due to the differences in the anatomy of brain. Moreover, 

removal of redundant features is a very crucial step in the 

classification of MI EEG data. It is because unnecessary 

features from noise, electrode disturbance etc degrade the 

performance of a model. Therefore, our work proposes a 

supervised approach to MI EEG classification. A data 

preprocessing workflow is introduced that can be applied to 

multisubject MI EEG datasets. It is done in order to explore 

the intrinsic structure captured by the proposed preprocessing 

step. For choosing the best features, we proposed a hybrid 

feature selection method. It is followed by clustering. From 

the results, it is evident that the proposed preprocessing 

approach have a significant impact on the performance of the 

classification models. Our approach is able to enhance the 

classification accuracy from 53.7% to 99% using Logistic 

Regression as classifier and 99.2% to 99.6% using an 

ensemble technique.  
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