
 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

 Vol 10, Issue 7, July 2023

67

Code clone detection in Smart Contract: A Survey
[1] Amandeep kaur, [2]Gurpreet singh, [3]Himanshu aggarwal

[1][2][3] Department of Computer Science and Engineering, Punjabi University Patiala, India
[1] amandeepdhiman45@gmail.com, [2]Gurpreet.1887@gmail.com, [3]himanshu@pbi.ac.in

Abstract— Blockchain technology has experienced exponential growth in the past few years and has provided a secure and

decentralized infrastructure for various applications, including smart contracts. Smart contracts have revolutionized the way financial

and business transactions are conducted by eliminating the need for intermediaries and enabling transparency, automation, and

immutability. However, the increasing complexity of smart contracts and the lack of proper testing and verification have resulted in

numerous bugs and vulnerabilities, leading to significant financial losses for businesses and individuals. Code clone detection has

emerged as an effective approach to ensuring the reliability and security of smart contracts by identifying and addressing potential

vulnerabilities. This paper presents a survey of the current status of smart contract clone detection. We address several research

questions, including the methods used for smart contract clone detection, the available tools, and the machine learning and deep

learning techniques used for this purpose. The study highlights the importance of clone detection in smart contracts and presents a

comprehensive analysis of existing approaches for detecting clones. By understanding the state of the art in this area, researchers and

practitioners can identify gaps in current approaches and develop new and more effective methods for detecting code clones in smart

contracts, thus ensuring their security and reliability.

Index Terms— Code Clone, Smart contract, code reuse, Blockchain, Ethereum.

I. INTRODUCTION

The technology behind blockchain enables a network of

computers to collaborate and administer a chronological

database of transaction records that is shared by all of the

computers in the network. As a result of the system's

decentralized design, transactions do not require the

participation of a centralized authority, such as a bank or

credit card firm. Accountability and openness are both

improved by the fact that every transaction is kept in a public

ledger that any user on the network may access and examine.

On the blockchain, Ethereum is a decentralized platform for

the construction of smart contracts. On a blockchain platform

like as Ethereum, the code for a transaction is stored and kept

indefinitely; the network then "runs" this code to complete

the transaction. Etherscan and Openzeppelin have recently

released over a million free and open-source smart contracts.

Anyone who uses Ethereum can create and deploy their own

smart contracts. Several developers are now making their

source code public in order to ensure their customers that

their contracts are safe and secure. As smart contracts

become increasingly common, various research on the code

used to generate them have been undertaken. Code cloning is

the step of copying and pasting the code without

modification, leading to the reuse of code fragments in

different parts of a program. In the context of smart contracts,

code cloning can pose even more severe consequences, as

vulnerabilities or errors introduced in one contract can easily

propagate to other contracts that reuse the cloned code.

Furthermore, since smart contracts are immutable once

deployed, any vulnerabilities or errors introduced through

code cloning cannot be easily fixed or patched. As such, it is

essential to prevent or minimize code cloning in smart

contract development.

Our primary focus is on investigating the cloned code

found in smart contracts. The code within these contracts

must be written correctly to ensure their proper functioning;

however, this task can prove challenging due to its

complexity and the high risk of introducing errors or

vulnerabilities into the system. Clones discovered early in the

development process allow teams to resolve them before they

pose big issues. According to the study report that was quoted

[12], the dataset contained 10 million smart contracts that

were put into use between July 2015 and December 2018.

They noticed that many copies of contracts contained

security weaknesses that existed in the originals.

Figure 1: Ethereum blockchain

The smart contract has various real-world applications.

Some application examples are as follows:

Healthcare: Smart contracts can be used to automate

healthcare procedures such as patient record administration,

insurance claim processing, and clinical trial data

management. Health systems can use contracts to reduce

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

 Vol 10, Issue 7, July 2023

68

costs, improve data security, and improve productivity.

Decentralized finance (DeFi): On top of smart contract

systems like Ethereum, decentralized finance (DeFi) is a

developing field of financial applications. DeFi protocols

enable a wide variety of financial operations to take place

without the need for a bank or an agent, including lending,

borrowing, trading, insurance, and financial transactions.

Intellectual property: Smart contracts can help automate

the management of intellectual property rights, including

patents, copyrights, and trademarks. Smart contracts can

automate the management of intellectual property rights,

ensuring creators and owners receive payments and their

rights are protected.

Supply chain management: Supply chain management

can be performed on smart contract systems such as

Ethereum to increase transparency and efficiency. Smart

contracts can automate supply chain processes, enforce

agreements, and ensure compliance. Supply chain

management with blockchain technology can reduce fraud

and errors while also providing a tamper-proof and traceable

record of transactions.

Banking: Smart contract systems can be used to execute

banking, making financial transactions faster and more

effective. Smart contracts can automate banking processes

such as account administration and payments while ensuring

compliance with regulatory requirements. The transparency

and security of blockchain-based banking can improve

confidence while reducing costs.

The goal of this research is to conduct a detailed review of

the available literature on finding code clones in smart

contracts. This review aims to cover the various techniques,

tools, and approaches used for detecting code clones in smart

contracts, and to identify the challenges and issues associated

with code clone detection in this context.

The study will explore the following research questions:

RQ1 : What is the current status of Smart contract clone

detection?

RQ1.1:What methods are used for smart contract clone

detection?

RQ2.What tools are available for smart contract clone

detection?

RQ3.Which Machine Learning and deep learning

techniques used for smart contract clone detection ?

II. BACKGROUD

2.1 BLOCKCHAIN

A blockchain is a transactional database that is

decentralized, public, and chronological. This database is

contributed to and updated by all nodes in a P2P network.

There are currently several blockchain platforms to choose

from, including Bitcoin and Ethereum [16]. A wide variety of

applications, such as voting systems, identity verification,

and management of supply chains, are currently exploring the

potential of blockchain technology. The term "blockchain"

refers to the process of recording transactions in this context.

Transactions are divided into blocks, which are linked

together in a chain. A hash that is exclusive to that block is

generated by taking into account the data in the previous

block as well as the data in the block that is currently being

processed.

Blockchain technology has the potential to boost

productivity and transparency across a wide range of

businesses. A blockchain, for example, can be used in SCM

to record and verify the movement of products, as well as

their legitimacy. It can be linked with voting systems to

provide a transparent and unchangeable log of votes,

increasing public trust in the integrity of elections.

2.2 ETHEREUM

 Ethereum is a distributed ledger platform that was first

proposed in 2014 and has since grown to become the most

widely used blockchain platform that enables smart

contracts. Ethereum is open source. Ether, sometimes known

as ETH, is the native cryptocurrency of the prominent

blockchain platform Ethereum, which was introduced in July

2015 after the network had already gained significant traction

[16]. Ethereum separates between contract accounts, also

known as simply contracts, and externally owned accounts

(EOA), usually referred to as users [17]. Ethereum is built on

accounts, which may be managed by either code or a

public/private key pair (referred to as external accounts; these

are for users) (called contract accounts). Storage (basically a

random-access memory that converts 256-bit addresses to

256-bit values) and an ether credit balance are shared by both

sorts of accounts (the unit of currency in Ethereum).

Ethereum also provides a storage system that enables smart

contracts to store and retrieve data. This storage system is

designed to be permanent and tamper-proof, ensuring that

data stored on the Ethereum network is secure and can be

accessed by anyone who has the necessary permissions.

2.3 SMART CONTRACT

The idea of a smart contract was initially presented for the

first time in 1994 by Nick Szabo [8]. An adaptable piece of

software that is capable of performing any task is known as a

smart contract. When it comes to the creation of Ethereum

smart contracts, Solidity is a popular choice. The syntax of

the object-oriented language Solidity is remarkably similar to

that of the programming language Java. Subcontracts,

interfaces, and libraries are the various subcomponents that

make up a Solidity smart contract. The term "code blocks"

refers to these three different kinds of building blocks [9].

Once they have been added to the blockchain, smart

contracts, which are built on the principle that the underlying

blockchain technology is immutable, cannot be modified in

any way. When a contract has been fulfilled in its entirety, all

subsequent operations are governed by the corresponding

code. Nobody, not even the person who made it, can make

any changes to it. Smart contracts cannot be executed without

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

 Vol 10, Issue 7, July 2023

69

the Ethereum Virtual Machine (EVM) [14]. A library is a

collection of functions that may be used repeatedly without

having to rewrite the code each time the situation or amount

of processing time changes. The library, like the Java

interface, has no state and no state variables. In Solidity, an

interface is an abstract contract with no implemented

functionality. A subcontract is a legal agreement that allows

ideas to be put into action. State variables can be accessed

directly as well as through state variable updating and

updating methods. A subcontract in Solidity often inherits

and uses an interface.

Figure 2: An example of a smart contract

2.4 CODE CLONE

 The act of copying and pasting a section of source code

into another piece of code, with or without significant

changes, is known as "code cloning." The method of "Code

cloning" and the cloned code are both known as "Code

cloning." [1][2].

Type of Code clone

(Exact clones)Type 1: Code segments that are similar

except modifications in comments, layouts, and white space.

(Renamed clones)Type 2: Code snippets that are similar

save for small formatting, name, or commenting changes.

These are also referred to as parameterized copies.

(Near Miss clones)Type 3: code segments that have been

duplicated and modified, such as by adding or removing

statements and changing , identifiers, literals, types, and

layouts. These clones are also referred to as gapped clones.

(Semantic clones)Type 4: Code segments that are similar

in terms of functionality but implemented with different

syntactic variations .

2.5 WHY CLONE IN SMART CONTRACT

 Clones in smart contracts refer to the duplication of code

blocks within different contracts, which can pose significant

security risks. Here are some reasons why clone detection is

important in smart contracts:

Security risks: Cloned code blocks can contain

vulnerabilities or bugs, and if one contract is compromised,

all clones can be compromised as well. Identifying and

eliminating clones can reduce the chances of a security

breach.

Code maintenance: When the same code block is used in

multiple contracts, it can become challenging to maintain and

update the code. Clone detection can help identify these

instances and facilitate code maintenance.

Efficiency: Duplication of code blocks in different

contracts can lead to inefficiencies in storage and processing

power, especially in the case of blockchain-based systems

with limited resources. Identifying and eliminating clones

can help optimize resource usage.

Legal compliance: Cloning code can result in copyright

infringement and legal liabilities. Clone detection can help

developers ensure that their contracts do not violate any legal

or intellectual property rights.

2.5.1 HOW CODE REUSE WITH RENAMING IN

SMART CONTRACT

In smart contract development, renaming is a common

technique used for code reuse. This technique involves

copying existing code segments and renaming the contract

definition, function definition, string literals, and number

literals. We can see an example of code reuse in a smart

contract depicted in Figure 3. This particular example

includes renaming multiple nodes of the same type but with

different values in order to produce a Type 2 clone.

Figure 3: In this example [9] Type 2 clone in smart

contract. Rename the contract definition, function definition,

string literal and Number literal. The red strings each

represent a separate node that is of the same type but has a

different value. The beginning and ending lines of each code

example are indicated in purple by the strings.

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

 Vol 10, Issue 7, July 2023

70

III. 3. SELECTION PROCEDURE

3.1 Selection of primary study

The following keywords have been selected for primary

study

searches:

“Blockchain” AND “Smart contract” AND “Code Cloe ”

AND “Ethereum and “Code reuse ”

Google Scholar ,IEEE , Springer and Science Direct this

platforms are used in Primary Studies .

For each paper found with paper title , Abstract ,

Conclusion and Full Text .The remainder of each paper was

then examined to identify significant findings and remaining

issues.

3.2 Selection results

The following outcomes, divided into by platform, were

found using the keywords:

Google Scholar : Total results 22 paper

IEEE : Total results 20 paper

Springer : Total results 5 paper

Science Direct : Total results 7 paper

After this primary study 23 papers were left over for study.

IV. 4. RESULT

The following research questions are addressed in the

paper :

RQ1 :What is the current status of Smart contract clone

detection?

RQ1.1:What methods are used for smart contract clone

detection ?

RQ2.What tools are available for smart contract clone

detection?

RQ3.Which Machine Learning and deep learning

techniques used for smart contract clone detection ?

RQ1 Current status of Smart contract clone detection

 Ethereum has grown in popularity as a trustworthy

platform for conducting commerce and managing finances on

the Blockchain. However, Ethereum smart contracts

contain a significant security issue. Smart contracts have

been plagued by claims of faults and weaknesses, which not

only complicate blockchain maintenance but can result in

significant losses. Better tools are required for software

developers if they are to successfully validate and verify the

accuracy of smart contracts. In this article, we argue in favor

of utilizing SMARTEMBED[8], a web service tool that can

assist Solidity developers in identifying potential problems

with cloned smart contracts as well as instances of duplicate

contract code. The core of our technique is comprised of

different approaches for comparing codes and code

embeddings. Our capacity to identify code clones and issues

that are associated with clones can help users feel more

confident in the code that they have contributed to our

project. In order to establish whether or not there is any

overlap, the vectors that were utilized in the process of

embedding the code in the Ethereum blockchain were

compared to those that were connected with known

vulnerabilities. There have been a lot of research done in the

past that have looked into the issue of detecting faults in

smart contracts. Current approaches have a number of

drawbacks, one of the most significant of which is that they

rely excessively on human-provided bug patterns and

specification requirements. It may be prohibitively expensive

and time-consuming to continually develop new rules and

design new tests to address newly discovered defects and

vulnerabilities generated by attackers. This is because the

immense stakes involved in smart contracts, as well as the

continuing fight between attackers and defenders, make it

necessary for smart contracts to be constantly updated.

Recent papers [4] have focused on the identification of clones

in Ethereum smart contracts as well as the existence of clones

themselves.

 Because the symbolic transaction sketch or pair-wise

comparisons are so expensive, they can only be utilized for

clone detection. Machine learning and deep learning

approaches have been utilized to address clone identification

and bug detection concerns in traditional software programs

Sr.

no

Sou

rces

E-Sources Type Search string Year

1 IEE

E

ieeexpolre.ie

ee.org

Journ

al &

confe

rence

Abstract

(“code

clone”)and

(“Smart

contract”) and

(“Blockchain”

)

10

Years

2 Scie

nce

Dire

ct

www.scienc

edirect.com

Journ

al &

confe

rence

Abstract

(“code

clone”)and

(“Smart

contract”) and

(“Blockchain”

) and

(“Ethereum”)

All

date

3 Spri

nger

www.spring

er.com

Journ

al &

confe

rence

Abstract

(“code

clone”)and

(“Smart

contract”) and

(“Blockchain”

) and

(“Ethereum”)

All

year’

s

entire

range

of

publi

catio

n

4 Goo

gle

Sch

olar

www.google

scholar.com

Journ

al &

confe

rence

(“code

clone”)and

(“Smart

contract”) and

(“Blockchain”

,”Ethereum”)

2007-

2022

http://www.sciencedirect.com/
http://www.sciencedirect.com/
http://www.springer.com/
http://www.springer.com/
http://www.googlescholar.com/
http://www.googlescholar.com/

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

 Vol 10, Issue 7, July 2023

71

[6] but there hasn't been much success in this area with smart

contracts.

 Clones can be found in a variety of ways. The majority

of techniques are strongly reliant on their source

representation and match detection mechanism.

RQ1.2 Intermediate source representations and match

detection techniques

During pre-processing, first, the source code is cleaned up

by removing comments and whitespace. An intermediate

representation of the preprocessed code was built using the

appropriate transformation techniques. Clones have varying

degrees of granularity across different intermediary source

representations. All of these items are detailed in Table 1.

The two most prevalent types of intermediate transformations

are XML parse trees and abstract syntax trees (ASTs). Code,

control flow, and the structure of an XML document are all

represented by the AST, CFG, and XML Parse Trees,

respectively. Syntactic clones, or chunks of code that share

the same syntax, are found using ASTs [7,15,19]. This

includes duplicated statements, contracts, and complete

functions. Clones can be recognized at various levels of

detail, such as in contracts and assertions, using CFG[3,6].

However, CFG-based clone identification is based on

comparing their control flow pattern. XML parse trees [4, 8,

10] are used to represent the structure of XML documents.

An XML parse tree is a tree-like structure that represents the

hierarchical structure of XML elements, their attributes, and

their content. This representation can be used to detect clones

in XML documents, which are fragments that have similar

structures, including similar element names, attributes, and

content.

TABLE 1 : Intermediate representation

Intermediate

representation/transf

ormation technique

Clone granularity

level

Refere

nces

control flow graph

(CFG)

Smart contract [3,6]

Abstract syntax

trees (ASTs)

Smart contract,

Function ,statements

[7,15,

19]

XML Parse Tree

Smart Contract [4,8,1

0]

Match detection methods are a major issue in the clone

detection process. Table 2 includes every method for

detecting matches that we discovered. Primary research that

compares and contrasts the various matchmaking algorithms

is provided. The most prevalent match detection methods are

Symbolic Transaction Sketch, Code Parsing, XPath

Matching, Substring Comparison, and Longest Common

Subsequences (LCS). In [3,6] Symbolic transaction sketch is

used for code clone type 4 detect in smart contract. Code

Parsing involves parsing code to generate an abstract syntax

tree, which can then be used to identify similarities between

different code fragments. XPath Matching involves using

XPath expressions to extract and compare specific code

elements, such as function calls or variable assignments.

Substring Comparison involves comparing the substrings of

code fragments, while LCS[23] involves finding the longest

common subsequence between code fragments.

TABLE 2 : Match Detection

Match Detection

Technique

Clone granularity

level

References

Symbolic

Transaction Sketch

Smart contract [3,6]

Code parsing Contract, Function,

Statement

[7,8,11]

XPath Matching Smart contract [4]

Substring

Comparison

Smart contract [10]

Longest common

subsequences

(LCS)

Smart contract [23]

RQ2.smart contract clone detection Tools

Several techniques and tools are used to detect cloned

smart contracts.

It turns out that Eclone [3] was used. EClone is an

Ethereum-based semantic clone detection that makes use of

Symbolic Transaction Sketch. This schematic depicts a

variety of salient semantic features resulting from symbolic

interactions.In order to facilitate the subsequent computation

of similarity, they normalized two smart contract designs into

numeric vectors of the same length.

Smartcheck [4] analyses the smart contract using a lexical

and syntactical technique. We use a proprietary Solidity

language and ANTLR (a parser generator) to generate an

XML parse tree to get to this intermediate form. XPath

searches are used to parse the intermediate form and detect

vulnerability patterns.

SmartEmbed[7], a machine learning and deep learning tool

based on code embeddings and similarity testing

methodologies, was proposed by Gao et al. in 2019. By

comparing the code embedding vectors of the current

Ethereum code to those of known defects, this tool may

detect code clones and clone-related problems.

Coinwatch[10] proposed a systematic remedy to solve the

cloned cryptocurrencies, called COINWATCH (CW) .

System based technology that uses code evolution analysis

and clone detection to identify potentially vulnerable coins.

Eth2vec[15], a method for static analysis that is based on

machine learning, has been used by the researchers. Through

the study of assembly language, EVM bytecode, and abstract

syntax trees, this compiler has the ability to generate code for

smart contracts. The vulnerabilities in smart contracts have

been uncovered with the use of this technology. Eth2Vec is a

rewrite-resistant, high-throughput code generator. The

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

 Vol 10, Issue 7, July 2023

72

targeted smart contract code is sent into the natural language

processing analysis tool Eth2Vec, which subsequently

reports on the presence and type of vulnerabilities in the code.

Users of Eth2Vec are able to study the source code of smart

contracts in a quick and straightforward manner, without the

need for prior understanding of smart contract vulnerabilities.

For example, the most recent official exchange rate for the

US dollar is data that some smart contracts require but is not

kept in the blockchain. As a means of achieving this goal

Oracles are complex smart contracts designed for the

Ethereum platform. Oracle smart contracts grant external

services access to the Oracle as well as the power to change

its status. As a result, Oracles can serve as reliable

intermediates between other smart contracts and the real

world. Rather of relying on an external service, a non-Oracle

smart contract will communicate directly with the Oracle

smart contract. An Oracle transaction will be sent in by an

external service in the case that the event is completed

successfully.

Because of this, we went looking for a device that could (i)

detect clones at a price that was reasonable, and (ii) be

customized so that it met our particular needs.

NiCad [21]: NiCad is a piece of software that scours the

smart contracts on Ethereum for instances of duplicated or

duplicated-looking code. The goal of this research is to gain

an understanding of the ways in which a variety of smart

contracts in relevant industries make beneficial use of code

cloning and near-miss detection. NiCad is ideally suited for

use in the construction of a model-driven development

framework for decentralized applications (DApps) due to its

capacity to identify code clones of Type 1, Type 2, Type 2c,

Type 3-1, and Type 3-2c. [21] Out of all the free clone

detection apps that we tested, NiCad stood out as the most

flexible and user-friendly option. NiCad is a well-known

program for locating clones that are virtually

indistinguishable from one another and is based on the textual

analysis of digital data. Clone detection studies have made

considerable use of it as a result of its excellent precision and

recall for recognizing practically identical clones. This is

because of its ability to distinguish between nearly identical

clones [21].

Table 3 : Smart contract clone detection tools

Tool

Name

Clo

ne

Type

Technique Parameters

Performances

Experimental

Datasets

Evaluation R

ef.

Eclone Typ

e IV

Symbolic

execution

Accuracy ,

ROC curve ,

Baseline

Precision

,threshold,

TP , FP

2,117 Solidity

smart contracts

Identifying Clones with accuracy

93.27%

[

3]

SmartEm

bed

Typ

e

III,IV

Code

parsing

Precision ,Recall,

Threshold, F1

Score , False Positive

rate ,False Negative

rate

More than

22,000 smart

contracts

The tool identified 90% of the

Clone ratio.

[

7]

CoinWatc

h

Typ

e I

,II,III

Substring

compression

Accuracy , TP vs

FP

1094

cryptocurrencies

786 identify true Vulnerability in

384 Projects

[

10]

SmartChe

ck

Typ

e

III,IV

Static code

analysis

TP , FP , FN

,FDR(False

discovery rate) , FNR

(False negative rate).

4,600 verified

smart contracts.

The tool detected 99.9% of clone

contracts.

[

4]

Eth2Vec

Typ

e

III,IV

Static code

analysis

Precision ,Recall

,F1-score

5,000 contract

files from

Etherscan

This technique may detect

vulnerabilities in rewritten code with

an accuracy of 77.0% and identify

reentrancy with 86.6% precision by

incorporating lexical semantics

between contracts and extracting

features implicitly.

[

15]

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

 Vol 10, Issue 7, July 2023

73

RQ3.Which Machine Learning and deep learning

techniques are used for smart contract clone detection?

Machine learning has developed an effective technique for

detecting smart contract clones. Machine learning algorithms

can be trained to identify similarities and differences between

code fragments as well as potential code clones by using

supervised, unsupervised learning approaches and deep

learning.

Figure 4: Machine learning classification methods

Supervised learning is the process of training a machine

learning model on labeled datasets, with each data point

classed as either clone or non-clone. The model can then be

used to classify new code fragments based on their similarity

to the training data. Common supervised learning methods

for smart contract clone detection include Support Vector

Machines (SVMs) [15] and neural networks. Unsupervised

learning involves training a model on unlabeled datasets, in

which the model must identify patterns and relationships on

its own. Clustering approaches such as K-means and

hierarchical clustering can group similar code snippets

without first determining whether ones are clone.

Figure 5: Recent research uses a category-based grouping of

classification algorithms.

This category includes both supervised and unsupervised

approaches. Code clone detection is just one of the many

machine learning and deep learning technologies used in

smart contracts. Researchers use a wide range of approaches,

including Siamese neural networks, convolutional neural

networks, multi-layer perceptrons, support vector machines

(SVM), and word embeddings. In [18,19,21] paper

researchers use deep learning techniques (CNN, word

embeddings, and SNN). CNNs have been used for bug

detection, clone detection, and code clustering, while MLPs

have been applied to code clone detection and code search.

Word embedding techniques, which involve mapping words

to high-dimensional vectors, have been used for the

unsupervised detection of clones and bugs in smart contracts.

TABLE 4: Machine learning and Deep learning techniqueMachine Learning technique

 Type of

machine

learning

Category Application Performance

parameters

Referenc

es

Convolutional

neural network

(CNN)

Supervised Deep Learning Bug detection,

clone detection, and

code clustering

Precision, Recall

F1-score, ARI

[19]

Multi-Layer

Perceptron

(MLP)

Supervised Machine Learning

Code Clone

Detection and Code

Search

Accuracy [18]

Word Embedding

Technique

Unsupervised

Deep Learning

Detect the clone

and bug in Smart

Contract

Precision, Recall,

Threshold, F1 Score, False

Positive rate, False

Negative rate

Clone ratio 90%

[8]

Support vector

machine

Unsupervised

Machine Learning Detects

vulnerabilities in

Ethereum smart

contracts.

Precision

Recall

F1-score

[15]

Siamese neural

network

Supervised Deep Learning Detect the

similarity of

Ethereum smart

contracts

Precision,

Recall,

F1-score ,

ROC, TP, FP

F1-score :0.9850

Accuracy: 98.37%

[21]

https://www.bing.com/ck/a?!&&p=1eaff827f6eecd3aJmltdHM9MTY3ODY2NTYwMCZpZ3VpZD0wNjYzMjkyYy05OTE2LTY0OWYtMzBlOS0zYmFjOThlNDY1MjkmaW5zaWQ9NTQ0Nw&ptn=3&hsh=3&fclid=0663292c-9916-649f-30e9-3bac98e46529&psq=svm+in+machine+learning&u=a1aHR0cHM6Ly93d3cuZ2Vla3Nmb3JnZWVrcy5vcmcvc3VwcG9ydC12ZWN0b3ItbWFjaGluZS1pbi1tYWNoaW5lLWxlYXJuaW5nLw&ntb=1
https://www.bing.com/ck/a?!&&p=1eaff827f6eecd3aJmltdHM9MTY3ODY2NTYwMCZpZ3VpZD0wNjYzMjkyYy05OTE2LTY0OWYtMzBlOS0zYmFjOThlNDY1MjkmaW5zaWQ9NTQ0Nw&ptn=3&hsh=3&fclid=0663292c-9916-649f-30e9-3bac98e46529&psq=svm+in+machine+learning&u=a1aHR0cHM6Ly93d3cuZ2Vla3Nmb3JnZWVrcy5vcmcvc3VwcG9ydC12ZWN0b3ItbWFjaGluZS1pbi1tYWNoaW5lLWxlYXJuaW5nLw&ntb=1

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

 Vol 10, Issue 7, July 2023

74

The most frequent method for confirming smart contracts

utilizing structural code embeddings is to use deep learning

and machine learning. Because of its broad applicability, our

approach can be applied to a wide range of code debugging

and maintenance jobs, including those that necessitate the use

of code embedding or similarity testing. Among these are the

detection of duplicate (or "cloned") [8,9,10,21] contracts, the

detection of specific sorts of faults in a large contract corpus,

and the comparison of a contract to a database of known

problems. Furthermore, by constructing code embeddings for

the increasing bug patterns, our method may simply

incorporate new bug-checking criteria, removing the need for

any further manual work in building the bug specifications.

SmartEmbed [7] to assist Solidity writers in examining their

own smart contracts for code duplication and flaws. This was

done after taking into account the Solidity community's

criticism of Github. Furthermore, we enhance SmartEmbed

in three ways to meet the efficiency needs of a web-based

tool: (i) use a matrix computation to substitute numerous

discrete loop structure calculations. (ii) Cache the code

embeddings to avoid loading the same information multiple

times. (iii) To speed up data retrieval, we will develop smart

contract indexes in our database.

V. CONCLUSION

The host and execution environment for smart contracts is

Ethereum, a blockchain platform. Digital currencies and

initial coin offerings (ICOs) would not exist if smart contracts

were absent. It is essential to address the issue of security in

Ethereum smart contracts. In contrast to more conventional

approaches to software development, smart contracts cannot

be modified after they have been created. Because of their

limitations and flaws, smart contracts leave themselves open

to the possibility of suffering catastrophic financial loss.

Creators of smart contracts can avoid writing incorrect code

by borrowing code and functionality from established

libraries and frameworks like OpenZeppelin.Our research

contributes to efforts to increase the reuse capabilities of

Solidity and, more broadly, smart contract programming

languages. When creating such reuse mechanisms, tool

developers and language engineers may find this work useful.

Blockchains present a new processing paradigm for

distributed systems where data must be stored indefinitely.

Smart contracts are computer programs that can be run on a

blockchain. Once installed, these programs cannot be

changed and will run eternally for the duration of the

platform's existence. Because the deployed code is

immutable, any modifications must be done in the source

code and then re-deployed. As a result of insufficient

software engineering practices, blockchains represent larger

risks than traditional software environments. Given that the

great

majority of presently implemented smart contracts are

designed for monetary purposes, any security issues they may

include could have serious financial ramifications.

This paper can be used by business stakeholders to better

analyze the technical potential and security risks of

blockchain systems. Unfortunately, due to a lack of

communication among engineers, such initiatives are

particularly difficult. When it comes to blockchain DevOps

operations, we anticipate an increase in the use of automated

audit procedures during the phase of integration

(pre-deployment) [1]. Such a growth would be beneficial for

a number of reasons. One example of a solution that might be

used to propose refactoring suggestions for reducing the

clone ratio in distributed code and, as a result, improving the

quality of the platform's code is the NiCad-based tool that

was exhibited in this research. This tool is only one example

of a solution that may be utilized. We also anticipate that

platform agents will start offering quality control as a service

for a cost that is proportional to the work necessary to

complete the computation.

Because of the difficulties involved in generating smart

contracts, future research is required into how typical

software engineering lifecycle models might be modified. It

is essential for future research to broaden the scope of this

study to incorporate the smart contract programming

languages of other platforms, such as Bitcoin's Script

language. This is one of the most important areas to

investigate.

REFERENCES

[1] Roy, C.K. and Cordy, J.R., 2007. A survey on software clone

detection research. Queen’sSchool of Computing

TR, 541(115), pp.64-68.

[2] Rattan, D., Bhatia, R. and Singh, M., 2013. Software clone

detection: A systematic review. Information and Software

Technology, 55(7), pp.1165-1199.

[3] Liu, H., Yang, Z., Liu, C., Jiang, Y., Zhao, W. and Sun, J.,

2018, October. Eclone: Detect semantic clones in ethereum

via symbolic transaction sketch. In Proceedings of the 2018

26th ACM Joint Meeting on European Software Engineering

Conference and Symposium on the Foundations of Software

Engineering (pp. 900-903).

[4] Tikhomirov, S., Voskresenskaya, E., Ivanitskiy, I., Takhaviev,

R., Marchenko, E. and Alexandrov, Y., 2018, May. Smart

check: Static analysis of ethereum smart contracts.

In Proceedings of the 1st International Workshop on

Emerging Trends in Software Engineering for Blockchain (pp.

9-16).

[5] Kiffer, L., Levin, D. and Mislove, A., 2018, October.

Analyzing Ethereum’s contract topology. In Proceedings of

the Internet Measurement Conference 2018 (pp. 494-499).

[6] Liu, H., Yang, Z., Jiang, Y., Zhao, W. and Sun, J., 2019, May.

Enabling clone detection for ethereum via smart contract

birthmarks. In 2019 IEEE/ACM 27th International

Conference on Program Comprehension (ICPC) (pp.

105-115). IEEE.

[7] Gao, Z., Jayasundara, V., Jiang, L., Xia, X., Lo, D. and

Grundy, J., 2019, September. Smartembed: A tool for clone

and bug detection in smart contracts through structural code

embedding. In 2019 IEEE International Conference on

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

 Vol 10, Issue 7, July 2023

75

Software Maintenance and Evolution (ICSME) (pp. 394-397).

IEEE.

[8] Gao, Z., Jiang, L., Xia, X., Lo, D. and Grundy, J., 2020.

Checking smart contracts with structural code

embedding. IEEE Transactions on Software Engineering.

[9] Kondo, M., Oliva, G.A., Jiang, Z.M.J., Hassan, A.E. and

Mizuno, O., 2020. Code cloning in smart contracts: a case on

verified contracts from the Ethereum blockchain

platform. Empirical Software Engineering, 25(6),

pp.4617-4675.

[10] Hum, Q., Tan, W.J., Tey, S.Y., Lenus, L., Homoliak, I., Lin,

Y. and Sun, J., 2020, November. CoinWatch: A clone-based

approach for detecting vulnerabilities in cryptocurrencies.

In 2020 IEEE International Conference on Blockchain

(Blockchain) (pp. 17-25). IEEE.

[11] Gao, Z., 2020, December. When deep learning meets smart

contracts. In Proceedings of the 35th IEEE/ACM

International Conference on Automated Software

Engineering (pp. 1400-1402).

[12] He, N., Wu, L., Wang, H., Guo, Y. and Jiang, X., 2020,

February. Characterizing code clones in the Ethereum smart

contract ecosystem. In International Conference on Financial

Cryptography and Data Security (pp. 654-675). Springer,

Cham.

[13] Di Angelo, M. and Salzer, G., 2020, September.

Characteristics of wallet contracts on Ethereum. In 2020 2nd

Conference on Blockchain Research & Applications for

Innovative Networks and Services (BRAINS) (pp. 232-239).

IEEE.

[14] Chen, J., Xia, X., Lo, D., Grundy, J. and Yang, X., 2021.

Maintenance-related concerns for post-deployed Ethereum

smart contract development: issues, techniques, and future

challenges. Empirical Software Engineering, 26(6), pp.1-44.

[15] Ashizawa, N., Yanai, N., Cruz, J.P. and Okamura, S., 2021,

May. Eth2Vec: learning contract-wide code representations

for vulnerability detection on Ethereum smart contracts.

In Proceedings of the 3rd ACM International Symposium on

Blockchain and Secure Critical Infrastructure (pp. 47-59).

[16] Hu, T., Liu, X., Chen, T., Zhang, X., Huang, X., Niu, W., Lu,

J., Zhou, K. and Liu, Y., 2021. Transaction-based

classification and detection approach for Ethereum smart

contract. Information Processing & Management, 58(2),

p.102462.

[17] Pierro, G.A. and Tonelli, R., 2021, March. Analysis of source

code duplication in Ethereum smart contracts. In 2021 IEEE

International Conference on Software Analysis, Evolution and

Reengineering (SANER) (pp. 701-707). IEEE.

[18] Cui, N., Jiang, Y., Gu, X. and Shen, B., 2022. Zero-Shot

Program Representation Learning. arXiv preprint

arXiv:2204.08360.

[19] Yang, S., Gu, X. and Shen, B., 2022. Self-Supervised

Learning of Smart Contract Representations.

[20] Cui, N., Jiang, Y., Gu, X. and Shen, B., 2022. Zero-Shot

Program Representation Learning. arXiv preprint

arXiv:2204.08360.

[21] Tian, Z., Huang, Y., Tian, J., Wang, Z., Chen, Y. and Chen,

L., Ethereum Smart Contract Representation Learning for

Robust Bytecode-Level Similarity Detection.

[22] Khan, F., David, I., Varro, D. and McIntosh, S., 2022. Code

Cloning in Smart Contracts on the Ethereum Platform: An

Extended Replication Study. IEEE Transactions on Software

Engineering.

[23] Samreen, N.F. and Alalfi, M.H., 2022. Mining Domain

Models in Ethereum DApps using Code Cloning. arXiv

preprint arXiv:2203.007

