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Abstract— Diseases affecting plants contribute to declining crop yields and associated economic costs. The cost, duration, and 

precision of a plant disease diagnosis depend on the early detection methods. This study analyzes the many techniques for identifying 

plant diseases by examining available photos and using different processing algorithms. It does this by utilizing both traditional machine 

learning methods and deep learning methods to perform a careful analysis of the work that has been done in the literature about the 

datasets that were used, the various image processing techniques that were implemented, the models that were used, and the efficiency 

that was obtained. The paper explains each technique's potential pitfalls and advantages and the obstacles that need to be overcome for 

efficient plant disease diagnosis. The results suggest that deep learning is superior to other machine learning algorithms in identifying 

plant diseases, whereas visible-range photos are preferred over spectral ones. 

 

Index Terms—Plant disease detection, visible range image, spectral image, traditional machine learning, deep learning. 

 

I. INTRODUCTION 

For many people in rural areas of developing nations, 

agriculture is the primary means of subsistence. As much as 

25% of GDP in certain low-income nations comes from 

farming [1]. Growing the crop's production is one way to 

keep up with the needs of a populace on the rise. However, 

the contribution given by agricultural goods is significantly 

impacted by losses due to crop diseases and pests. Diseases 

may spread quickly in unstable weather, further 

compounding the issue of food insecurity. The prevention of 

crop losses in the early stages is essential for the economy's 

growth and food provision for humans and animals. 

Maintaining ecological balance relies on this. The increased 

interest has been seen in implementing precision agriculture 

strategies to achieve a sustained boost in productivity and 

yields to overcome these hurdles and achieve success. 

The early diagnosis of plant diseases is now being 

accomplished in several ways. A classic agronomic diagnosis 

relies on the expert's ability to evaluate the plants visually. 

This approach, however, is time-consuming, expensive, and 

inaccurate. There is a substantial danger of output losses 

owing to crop diseases, and many growers in rural extensions 

lack access to this expert guidance. Because of the time and 

effort involved, laboratory testing can only provide much 

information. Non-invasive procedures have received more 

attention in recent decades as an alternative to the limitations 

of laboratory-based approaches. The extensive research in 

this field aims to overcome the limitations of conventional 

approaches by creating an automated, rapid, and precise 

system. Employing different image processing techniques is 

a common approach to fulfilling the abovementioned 

conditions. Recent years have seen the development of 

several cameras with sensitive sensors explicitly designed for 

gathering this information from crops. Visual, spectral, 

thermal, and fluorescence imaging are examples of the many 

imaging technologies available. To train and evaluate 

machine learning algorithms, the pictures taken by the 

appropriate imaging instruments are processed using various 

image processing techniques. All previous work in disease 

detection relied only on traditional machine-learning 

methods. However, the automated systems based on 

conventional machine learning techniques have performance 

and crop/disease limitations due to their reliance on tiny 

datasets and a human-constructed feature extraction 

approach. 

Deep learning is a practicable tool for increasing 

automated processes for extraordinary speed, a more 

significant crop and disease range, and real-time disease 

diagnosis due to recent breakthroughs in fields like computer 

vision and graphics processing units. The academic 

community has recently placed a greater emphasis on 

automated feature extraction and illness categorization. This 

research aims to evaluate the efficacy of employing RGB and 

spectral imaging to detect plant disease, emphasizing both 

conventional machine learning and deep learning 

architectures. Each technique's advantages and disadvantages 

are weighed, and the obstacles that must be overcome to 

achieve quick, accurate, real-time plant disease detection are 

outlined. Figure 1 depicts the several methods for diagnosing 

plant diseases included in this analysis. 

 
Figure 1. Various methods for detecting plant diseases 
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The remaining sections of the research are organized as 

follows. Section 2 looks at relevant research on image 

processing algorithms to detect pests and diseases. The 

strengths and weaknesses of the approaches are discussed in 

Section 3, along with the obstacles that must be overcome to 

develop a reliable crop disease diagnostic system. The 

findings are presented in section 4. 

II. SURVEY ON PLANT LEAF DISEASE 

DETECTION 

Over several decades, scientists have developed various 

invasive and non-invasive approaches for early disease 

detection in plants. But new agricultural technologies need a 

non-invasive, automated approach to diagnosing plant 

diseases. Different image processing techniques are used to 

create a reliable and efficient system for the autonomous 

plant disease detection job. This is made possible by the 

proliferation of cameras equipped with susceptible sensors 

that can catch even the finest crop characteristics. Leaves, 

roots, fruits, flowers, and even the stem may all show signs of 

illness. Even though you can look at pictures of stems [2], 

fruits [3], and the whole plant [4], most of the work in the 

literature has mostly looked at pictures of leaves. 

This article will examine the history of machine learning 

and deep learning concerning disease diagnosis. Classical 

machine-learning approaches for crop disease diagnosis 

using RGB and spectral pictures are reviewed in subsection 

A. In contrast, the work on deep learning architectures 

applied to visible light, and spectral images are reviewed in 

subsection B. 

A. Conventional machine learning approaches for 

plant disease detection 

We turn to machine learning techniques to uncover 

functional, general patterns in otherwise unstructured data. 

Traditional machine learning algorithms were first utilized 

for picture categorization in early work on an illness 

diagnosis. In Figure 2, we see the standard procedures for 

using conventional machine learning algorithms for plant 

disease identification and classification. 

 
Figure 2. General steps in traditional machine learning 

Whether starting from scratch or utilizing a publically 

accessible dataset, the initial step is to compile a database of 

photos. Preprocessing the image is a crucial first step that 

speeds up subsequent processing stages by improving picture 

quality. Image scaling, noise reduction, contrast 

improvement, color space conversion, etc., are all common 

preprocessing operations. We may extract the desired area 

from a larger picture by using image segmentation. Among 

the many segmentation methods available, thresholding and 

K-means clustering are two of the most used. Segmented 

photos are then processed to remove non-essential 

information and focus on the essentials, such as shape, size, 

texture, and color. After extracting feature vectors, they are 

used to teach machine learning algorithms how to classify 

pictures. Images may be categorized using a variety of 

classifiers, such as support vector machines (SVMs), naive 

Bayes classifiers (NBs), artificial neural networks (ANNs), 

and many more. The trained model is then applied to test data 

to assign the novel data to one of the predefined classes. 

Accuracy, precision, the F1-score, and the area under the 

curve are only a few assessment criteria used to calculate the 

model's potential. 

B. Conventional machine learning with RGB images 

There has been a lot of research in this area, and different 

illness detection systems have different recommendations for 

classifying and segmenting data. A system for the diagnosis 

and categorization of citrus diseases based on outward signs 

was given by Ali et al. [5]. Image-contaminated areas were 

separated based on the distance between colors. Color 

histogram and texture traits were used to classify citrus leaves 

as either healthy, diseased, downy, or infected. The technique 

was evaluated using an SVM, K-Nearest Neighbor (KNN), 

boosted tree, and bagged tree classifiers, as well as a Local 

Binary Pattern (LBP) and color features. The authors used 

illness-level and picture-level classification and found that 

color characteristics provided a substantial distinction for 

disease-level classification. It was stated that both the 

accuracy and sensitivity combined were 99.7%. Results from 

an experiment using a mixture of color and texture 

characteristics lagged behind those obtained using either 

feature alone. One hundred ninety-nine photos were all that 

was stored in the database.  

Potato disease classification using photos from the plant 

village dataset [7] was suggested by Islam et al. [6]. For 

picture separation, the authors used the La*b* color model to 

generate masks. Results showed a 95% accuracy using a 

combination of 10 color and texture characteristics and 

multiclass SVM. However, only 300 photos were included in 

the study's experiments, but there are many photographs of 

potato leaves in the plant village collection. A more extensive 

dataset might have helped performance in these experiments 

[5, 6]. 

Zhang et al. [8] showed a technique for diagnosing citrus 

canker by combining global characteristics and zone-based 

local features retrieved from photographs of leaves obtained 

in the field. The canker lesions were separated from the 

background using an enhanced AdaBoost algorithm, and a 

descriptor for them was generated by combining color and 

the distribution of the local texture. Citrus canker lesions 

were identified using a two-tiered hierarchical structure that 
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achieved classification accuracy on par with human 

specialists. 

Using three separate datasets, Sharif et al. [3] devised an 

algorithm for identifying lesions on citrus fruit and leaves. 

The preprocessed photos were then subjected to an optimized 

weighted segmentation approach. The color, texture, and 

geometric characteristics were used to create a codebook, 

from which the best features were chosen using a hybrid 

feature selection method. An average accuracy of 92.435% 

was achieved during classification using a multiclass SVM. 

Hassanien et al. [9] developed a moth-flame approach 

based on rough sets to detect powdery mildew and early 

blight in tomato leaves. The SVM algorithm classified sick 

tomato leaves using a feature selection approach given in this 

work. Particle Swarm Optimization (PSO) and a Genetic 

Algorithm (GA) were compared to the suggested moth flame 

optimization method. The classification accuracy was 

enhanced by 6% using the suggested feature selection 

strategy. 

This research [3,9] showed that classifiers' performance 

might improve with careful feature selection. To 

automatically detect and classify five types of leaf disease, 

Singh et al. [10] developed picture segmentation approaches 

based on GA. Bacteria cause infections on roses and beans, 

sunburn on lemon leaves, early scorch on banana leaves, and 

fungus on beans. A color co-occurrence matrix was used to 

determine four distinct features of the textures. We employed 

minimum distance criteria (MDC) and SVM during the 

separating procedure. The authors discovered that the 

accuracy of MDC with K-means was 86.54%, that of MDC 

with the suggested GA was 93.63%, and that of SVM with 

the proposed GA was 95.71%. This work demonstrates that 

using learning algorithms for lesion segmentation is possible 

and practical.  

Barbedo et al. [11] advocated using digital image 

processing to detect several plant diseases in field 

circumstances simultaneously. They utilized data from a 

database that included 82 unique diseases seen in 12 distinct 

plant species. For this purpose, we used the guided active 

contour (GAC) method. The degree to which each pixel 

diverged from green for symptom segmentation was 

determined using a binary mask and two ratios. Different 

properties useful for symptom identification were obtained 

by color manipulation. Color histograms were used for 

training to reflect the disease's overall pattern of activity, and 

a reference histogram was used for paired categorization 

confusion matrix was used to show what was found. 

Challenges like the link between diseases and the different 

ways pictures were taken were also mentioned in the research 

as things that could lead to mistakes.  

Alternaria, black spots, and leaf miner pests were 

identified in apples using image processing approaches by 

Omrani et al. [12]. K-means clustering was used to segment 

the photos after they were collected in a controlled laboratory 

setting. To do this, we employed the wavelet transform and a 

co-occurrence matrix of grey levels to extract color and 

texture information in the La*b* color space. SVMs using 

radial basis functions (RBFs), polynomial functions (polys), 

and ANN classifiers were used to classify apple leaf diseases. 

The algorithm was put through its paces using only well-lit, 

black-background photographs. 

Fermi energy-based segmentation techniques were used by 

Phadikar et al. [13] to categorize brown leaf patches, leaf 

blasts, sheath rot, and bacterial blight. Rough set theory was 

used to choose salient characteristics, including the 

infection's color, shape, and location. This study employed a 

rule-based classifier to categorize rice diseases with 92.29% 

accuracy. The authors tested their proposed technique on the 

benchmark UCI dataset in addition to the state-of-the-art 

feature selection and classification methods, finding that it 

outperformed them with an overall accuracy of 80%. 

Selecting principal characteristics may simplify the classifier 

and limit the data lost. It is always important to balance 

feature dimension and information loss. 

In his review, Barbedo [2] compared several techniques for 

diagnosing plant diseases and quantifying their impact. The 

author referred to digital photographs of leaves and stems 

captured in the visible spectrum. A method for automated 

identification and quantification of leaf disease signs was 

published by Barbedo [14], which uses image processing 

methods. Using just elementary morphological processes and 

the * channel in La*b* space, the author obtained a 96% 

overall classification accuracy in illness detection. However, 

the algorithm only worked if the photo was taken against a 

dark or white backdrop. 

Camargo et al. [15] detailed a technique for observing leaf 

symptoms. After adjusting the color of the RGB photos, we 

used the histogram's intensity distribution to create segments 

and then used local maxima as thresholds. The performance 

of the automated segmentation method was compared to that 

of a manual segmentation method to see how well it works. 

The authors continue their analysis by applying the 

discovered target locations [16]. It was used to classify 

retrieved features from the target areas. When pictures lack 

distinct color and form, the scientists found that texture 

attributes provided the greatest discriminating. These 

analyses revealed the significance of using suitable 

hand-crafted features for enhancing classifier performance. 

Johannes et al. [17] suggested an approach that uses the 

detection of a possible hot zone and statistical reasoning for 

the on-site diagnosis of Septoria, rust, and tan spot in wheat. 

According to the research results, two distinct approaches 

may be used for segmentation: manually generated masks, 

simple linear iterative clustering (SLIC), and visual 

characteristics. We were able to locate and evaluate potential 

disease hotspots by using the features of the surrounding 

neighborhoods. Using a meta classifier, the AUC was found 

to be more than 0.8. The authors say their algorithm is 
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effective across various crops and diseases and has been 

implemented in a mobile app. The authors demonstrated that 

color constancy might be utilized to correct light fluctuations 

by dealing with the illumination shifts that occur in field 

circumstances. 

Johannes et al. [17] devised a way to determine if wheat 

has Septoria, rust, or tan spot on-site by looking for a possible 

hot zone and using statistical reasoning. Making this choice 

when using manually built features and shallow classifiers 

necessitates trial and error since performance might fluctuate 

with a little shift in any of these variables. The hand-crafted 

method bound both the crop and disease range and the 

number of training samples. 

C.  Classical machine learning with spectral images 

Fluorescence, thermal, hyperspectral, and multispectral 

imaging are non-visual imaging techniques that have 

significantly impacted many areas of plant disease detection 

[18,19]. The most common imaging methods are 

multispectral and hyperspectral imaging. These imaging 

approaches may potentially provide spatial and spectral 

information on plants for assessment purposes. Within our 

investigation's scope, key concerns are the manual work 

required to carry out hyperspectral and multispectral imaging 

methods. Multispectral and hyperspectral methods acquire 

data across different wavebands. Hyperspectral data 

collection covers a more comprehensive spectral range than 

multispectral. The rich spectrum information in spectral 

imaging may be used to diagnose diseases before any 

outward symptoms arise. 

Cucumber downy mildew was detected via hyperspectral 

imaging by Tian et al. [19]. Image fusion was the first step in 

the process, followed by picture enhancement, binarization, 

corrosion, etc. This allowed them to obtain an accuracy rate 

of 90%. Bauriegel et al. [20] and Barbedo et al. [21] 

researched how to detect wheat infected with fusarium head 

blight. Wheat was studied by Bauriegel et al. [20] utilizing 

hyperspectral pictures for early identification of fusarium 

under realistic settings. We could pinpoint four spectral 

regions that were useful in the classification process using 

principal component analysis (PCA). The authors' results 

show that stage 75, as determined by the Chemical Industry, 

the Biologische Bundesanstalt, and the Bundessortenamt, is 

the ideal stage for disease detection during the development 

period (BBCH). The illness index was analyzed using a 

spectral angle mapper (SAM). The research did find that 

SAM was a time-consuming procedure, which is why they 

developed the head blight index: for speedy diagnosis. 

Hyperspectral imaging was used by Barbedo et al. [21] to 

detect fusarium head blight in wheat grains. The method 

returned an index representing the likelihood that the kernel 

was compromised. The system accurately classified the 

kernels and estimated the quantity of the mycotoxin 

deoxynivalenol inside them. In their study, Li et al. [22] used 

a hyperspectral imaging technique to identify common flaws 

in orange peels. This research used a straightforward 

thresholding approach with principal component analysis and 

band ratio to assess the hyperspectral pictures. However, only 

270 samples were utilized in the experiments. Therefore, the 

research cannot be considered statistically significant. 

Huang et al. [23] identified the rice leaf folder using 

hyperspectral reflectance. A linear regression model was 

developed to investigate the relationship between the leaf 

reflectance measurements obtained during the rice growth 

booting phase and the ensuing impacted canopy. The 

research determined which was most effective for spotting 

the rice leaf folder using the red, green, and near-infrared 

spectrums. This model used spectral indices to identify a leaf 

roll rate and an infection scale. The root means square error 

(RMSE) method was used to examine the data, and the 

authors proposed employing hyperspectral reflectance to 

detect the rice leaf folder. However, the scope of the research 

was too narrow to account for a wide range of variables, 

including crop type, growth stage, pest kind, and so on. 

Zhang et al. [24] investigated Winter wheat's spectral 

reflectance to detect the presence of powdery mildew. The 

authors investigated the possible use of hyperspectral 

reflectance as a winter wheat powdery mildew diagnosis tool. 

When the reflectance of healthy and ill leaves was examined 

in controlled laboratory conditions, it was found that there 

were significant spectral changes in the visible and 

near-infrared areas. According to the severity of the patient's 

injuries, researchers divided the patients into three groups 

using Fisher's linear discriminant analysis (FLDA), 

multivariate linear regression (MLR), and partial least square 

regression (PLSR). The results showed that PLSR 

outperformed MLR in determining the degree of the illness, 

whereas FLDA excelled in a discriminatory analysis of 

highly damaged leaves. 

According to studies by Rumpf et al. [25] and Mahlein et 

al. [26], sugar beet is vulnerable to Cercospora leaf spots, leaf 

rust, and powdery mildew. As an early warning system, 

Rumpf et al. [25] employed SVM to identify and categorize 

sugar beet diseases detected by hyperspectral reflectance 

before the onset of apparent symptoms. In addition to being 

able to tell the difference between healthy and sick leaves, the 

study was also able to tell the difference between different 

types of leaves with over 86 percent accuracy. 

Particular disease spectral indices were developed by 

Mahlein et al. [26] to aid in diagnosing sugar beet diseases 

using hyperspectral signatures. This study used the 

RELIEF-F method to derive the optimal and normalized 

wavelength differences. With this technology, we were able 

to detect sugar beet diseases with an accuracy of 89%, 

including leaf spot (92%), powdery mildew (95%), and rust 

(87%). 

Shi et al. used a kernel discriminant technique based on 

spectral vegetation indicators [27] to detect and categorize 

winter wheat pests and diseases. Discriminant analysis was 
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performed using a Gaussian kernel function, and redundant 

spectral vegetation indicators were eliminated using 

independent t-tests and correlation analysis. The system 

achieved an accuracy of over 87% when determining which 

leaves in the canopy were healthy and which were damaged. 

The total accuracy of the program at the leaf level was 82.9 

(light), 89.2 (moderate), and 87.9 (very accurate) (severe). 

The first plant pathogen detection systems used hyperspectral 

and multispectral imaging methods. 

Soybean rust was detected using multispectral pictures by 

Cui et al. The authors separated the diseased area using a 

threshold established following a hue-saturation-intensity 

(HSI) color model. The rust severity index was calculated 

with the help of two different disease diagnostic factors. In 

addition, a study of the leaflet's central color spread in polar 

coordinates was carried out to automate the rust identification 

process. Aleixos et al. [29] captured images of citrus faults 

using visible and near-infrared spectral ranges. The algorithm 

was built on a board with two DSPs to speed up calculations. 

The system also recognized citrus fruits like lemons and 

mandarins. 

The effectiveness of multispectral and RGB systems in 

identifying winter wheat head illness was evaluated by 

Dammer et al. [30]. The RGB system required calibration for 

R, G, and B values in the grayscale channel and adjusting 

each type's threshold. On the other hand, the multispectral 

strategy only required a single calibration before the 

measurements, which led the authors to conclude that it was 

more effective than the RGB system. Only one calibration 

was necessary for the multispectral approach. 

Oberti et al. [31] took multispectral images of grapevine 

leaves from five angles to test off-angle sensing calculations' 

effectiveness in boosting powdery mildew's detection 

sensitivity. A combination of two spectral indices was used to 

determine the detection sensitivity. The authors found that 

the optimal viewing angle was 60 degrees and that sensitivity 

increased from 0 to 75 degrees. The studies above show that 

pictures with a wide spectral range (multispectral or 

hyperspectral) might aid in an early diagnosis of illness. 

However, their use is limited by factors like their 

prohibitively high price, the need for specialized sensors and 

calibration, the need to operate in a tightly controlled 

environment, carefully picking an acceptable spectral band, 

and so on. 

D. Classical machine learning with spectral images 

Because of recent developments in artificial intelligence, 

processor technology, image processing, and the software 

that supports these processes, deep learning represents a 

significant advancement in computer vision technology. 

Supervised and unsupervised pattern recognition and 

classification methods have seen considerable use in this 

promising area of research. Similarly, it has been used to 

solve problems associated with food production in the 

agricultural sector [32]. Plant disease diagnostics is one area 

where deep learning may be used. During model training, 

convolutional neural networks (CNNs) in deep learning are 

famous for extracting characteristics from the input. Deep 

learning architecture for identifying plant diseases. Many 

computer vision tasks may now be completed without the 

requirement for feature engineering because of the success of 

deep learning as a feature extractor and classifier. Deep 

learning architectures need extensive datasets for proper 

training, which is necessary for effective feature extraction. 

However, extensive and diverse datasets are scarce in plant 

disease identification. Some of these challenges are being 

overcome by using transfer learning. An example of transfer 

learning is using a model trained on a large dataset to perform 

a similar but distinct task [33, 34]. 

 
Figure 3. Classification steps in deep learning 

In recent years, there have been several advances in 

identifying plant diseases using deep learning algorithms 

applied to visible band pictures. Single-shot multi-box 

detector (SSD) was used by Jiang et al. [35] to identify apple 

diseases. The improved VGGNet and rainbow concatenation 

method is reported in the paper. The model achieved a 

recognition speed of 23.13 frames per second (FPS) and a 

mAP of 78.80 %. In addition, it was shown that the model 

could identify many diseases in a single picture of the 

damage. DCNN was suggested by Selvaraj et al. [4] to 

identify pests and diseases in banana plants by their outward 

symptoms. The authors employed transfer learning to 

propose six models (one for each component of the banana 

plant) and 18 classifications. We employed the ResNet50, 

InceptionV2, and MobileNetV1 models to classify data. 

Rapid object identification was achieved by combining an 

SSD model with MobileNetV1. These results show that 

SSD's capabilities may be used for real-time applications like 

plant disease detection. 

To identify plant diseases from leaf lesions and spots, 

Barbedo et al. [36] turned to a pre-trained network, 

GoogLeNet. Segmenting the original photos into discrete 

lesions and spots was required, with various symptoms 

(small, big, dispersed, solitary, extensive, and powdery) 

taken into account. The fidelity of the detected lesions and 

spots was higher than that of the source images. They've 

made the database freely available online. Because of this 

study, we can now accurately detect many illnesses on a 

single leaf. With DCNN, Geetharamani et al. [37] were able 

to categorize 13 types of plant leaves from the plant village 

dataset into 39 distinct groups. The authors state that the 

model's accuracy increased by augmenting the data by 91.43 
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% to 97.87 %. They experimented with different epochs, 

batch sizes, and dropouts when training their model. This 

study demonstrates that augmenting data improves 

recognition accuracy. 

Transfer learning and visual geometry group-16 are both 

used in the method suggested by Coulibaly et al. [33] to 

identify mildew illness in millet crops at an early stage 

(VGG16). The model performed exceptionally well, with an 

F1-score of 91.75 %, 95 % accuracy, 90 % precision, 95 % 

recall, and 95 % F1-score. This was achieved even though the 

dataset was tiny. Too et al. [38] worked to improve the 

CNNs, now considered state-of-the-art. Utilizing a dataset 

consisting of photos from 38 different illness types, they 

compared the effectiveness of six distinct deep architectures. 

According to the results, DenseNets performed better 

regarding accuracy, necessary parameters, and computational 

time. 

By comparing infected and healthy leaves, Mohanty et al. 

[34] were able to train a deep convolutional neural network 

(DCNN) to distinguish between 14 crop kinds and 26 

diseases. Based on their examination of two prominent 

topologies, AlexNet and GoogleNet, the authors conclude 

that GoogleNet performs better on the dataset. These 

researches show that when there aren't enough publically 

accessible big datasets for plant disease diagnosis, transfer 

learning may still outperform models created from scratch. 

To build on the work done by Johannes et al. [17] and 

tackle the problem of disease categorization in crops 

produced in the wild, Picon et al. [39] used DCNN. The 

system uses a deep residual neural network (ResNet), 

enhanced augmentation techniques, and tile cropping to 

classify real-world images of three wheat illnesses. It 

improved artificial background training, superpixel 

segmentation, and confidence estimation, among other 

things, to an average of 0.87 (ResNet) from 0.78. (Traditional 

technique). On the pilot test, the model likewise showed a 

balanced accuracy of 0.96. The investigation showed that 

putting random pictures in the backdrop of training 

photographs improved recognition performance in field 

situations. 

Diseases in tea leaves might be identified using a low-shot 

learning method, as suggested by Hu et al. [40]. Tea leaf 

classification using VGG16's conditional deep convolutional 

generative adversarial networks achieved an average 

accuracy of 90%. (C-DCGAN). The spots were segmented 

using color and texture data using SVM. 

The plant disease diagnosis work of Ferentinos [41] 

included training several CNN architectures (VGG, over feat, 

AlexNet, GoogLeNet, and AlexNetOWTBn) utilizing photos 

of infected leaves. 87,848 photos from controlled lab settings 

and natural environments were included in the data 

collection. The authors found that a success rate of 99.53 % 

was achieved by using the VGG model. However, the 

scientists noticed a significant decrease in identification 

accuracy when testing the model using field photos instead of 

laboratory images. This study shows that for the model to 

generalize to new images, especially those taken outdoors 

successfully, it must be trained on large datasets with high 

variability. 

Ghazi et al. [42] assessed how various factors influenced 

the effectiveness of DCNN for plant identification using the 

LifeCLEF 2015 database. They examined three deep learning 

models (GoogLeNet, AlexNet, and VGGNet) via fine-tuning 

and discovered that combining several classifiers resulted in 

significant performance increases. There was an 80% success 

rate in validation using the suggested model, and an inverse 

rank score of 0.752 was obtained using the test data. A 

comprehensive performance analysis based on critical 

aspects that affect the honed performance of deep learning 

models was also highlighted in the research. This research 

showed that a better classifier might be achieved by 

combining results from many classifiers. It also showed how 

the recognition rate was affected by tweaking the data and the 

hyperparameters. 

DCNN was suggested by Lu et al. [43] as a tool for 

identifying rice diseases. Plant life, namely leaves and stems, 

inspired their designs. This investigation attained an accuracy 

of 95.48% using a tenfold cross-validation technique. Using 

stochastic pooling, the authors improved classification 

accuracy. Using CNN for plant identification, Lee et al. [44] 

suggested using valuable discriminating characteristics 

extracted from photos of leaves. To quantify the traits that 

best distinguish the leaves, they used a deconvolutional 

network (DN) technique. According to the research, the vein 

structure is crucial for detection when the form characteristic 

is insufficient. The results showed that including both 

regional and international characteristics improved 

identification accuracy. 

III. DISCUSSION 

Several different early detection approaches are being 

developed to reduce the financial impact of pests and diseases 

on crops. Some of the most common methods used for this 

goal are those that are automated and use machine learning 

algorithms. These methods analyze the imaging hardware 

and software data to classify photos. Many different imaging 

methods have been documented in the literature, each with its 

advantages and disadvantages. However, many imaging 

methods exist, with RGB imaging being the most 

well-known and straightforward. Technology like digital 

cameras and sensors have allowed for widespread acceptance 

of this technique. However, certain illnesses have no 

apparent symptoms or don't present themselves until it's too 

late to treat. In such situations, the symptoms often only 

become apparent in the electromagnetic spectrum ranges 

beyond the typical human visual system's ability to detect 

them. Multispectral imaging, hyperspectral imaging, thermal 

imaging, etc., might all be valuable tools in these scenarios. 
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One benefit of using these photos is that they may spot 

diseases before symptoms appear. It has been shown in the 

literature that chlorophyll fluorescence and thermography are 

best at recognizing early stress in plants but are less effective 

at detecting particular diseases [18]. At the same time, 

multispectral and hyperspectral pictures are more effective at 

detecting these diseases. No doubt, many helpful studies have 

been accomplished using these imaging methods. However, 

the expense currently prevents such imaging technology's 

widespread use. Large sensors and unusual hardware are 

required, and choosing the right spectral band is a crucial step 

that may impact predictions' accuracy and the processing 

time required to make them. Even if several different imaging 

technologies are available, an appropriate application of the 

algorithms that analyze and classify the images plays a vital 

part in detecting agricultural diseases and pests. Due to the 

tiny datasets and need for feature engineering for manually 

constructed feature extraction, these techniques have 

limitations. Thus, this results in constrained crop and disease 

scope and performance. The early research on identifying 

pests and diseases was done using traditional 

machine-learning techniques. The number of experiments 

using deep learning architectures has increased during the 

last several years. The availability of more enormous 

datasets, the fast advancements in GPU processing 

capability, and the creation of auxiliary software libraries are 

some of the causes of this growth. 

IV. CONCLUSION 

This study provides a comprehensive overview of current 

methods for identifying plant diseases using various imaging 

modalities, classical machine learning, and deep learning 

frameworks. According to recent studies, convolutional 

neural network (CNN) models are superior to traditional 

machine learning models for diagnosing agricultural diseases 

in terms of accuracy and detection breadth across a wide 

range of plant species and diseases. However, to train the 

model effectively, vast datasets are required. In addition, the 

constraints caused by the absence of publicly accessible 

datasets and photographs recorded in natural situations are 

discussed. The research also discusses using many imaging 

modalities to collect as much data as feasible for early illness 

diagnosis. As one of several imaging methods available, 

RGB imaging is by far the most common. There is no way to 

diagnose diseases before they show symptoms. We may 

employ hyperspectral and multispectral pictures to 

accomplish this asymptomatic illness detection. However, 

the processing of high-dimensional data, the need for a 

significant amount of computer time, the handling of spectral 

band noise, the choice of the most valuable bands, and other 

difficulties must be overcome. Smartphones with 

sophisticated built-in sensors and small deep-learning 

architecture will be used for real-time, rapid, accurate, and 

early disease detection for many plants and illnesses to 

minimize financial and agricultural losses. This has been 

made possible by advancing technology, including image 

sensors, GPUs, and computer vision. 
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