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Abstract— The Proton Exchange Membrane Fuel Cell (PEMFC) is the most widely fuel cell used today despite its limitations of 

efficiency and lifetime. Since it has been proven that the PEMFC voltage shows chaotic behavior under certain operating conditions, the 

development of nonlinear models with chaotic solution should be an important new tool to improve their control and therefore the 

efficiency, effectivity and pertinent applications of this kind of fuel cells. In this work we propose a procedure to build nonlinear models 

from time series of the voltage generated by PEMFC at different operational conditions. The procedure starts with a qualitative and 

quantitative identification of chaotic content of a given time series, continuous highlighting such chaotic content by a feedback 

procedure of digital filters and ends by capturing and controlling the chaotic behavior with a 3D nonlinear dynamical system with 

chaotic solutions. When the operation parameters of the PEMFC correspond to a chaotic behavior of the voltage, the fuel cell achieves a 

robust dynamical equilibrium where the efficiency and durability can be increased. 

 

Index Terms— Chaos, control, fuel cells, nonlinear dynamics. 

 

I. PROBLEM STATEMENT 

Fuel cells have been known since the 19th century with the 

works of the Welsh physicist Sir William Grove published in 

1843 [1]. Fuel cells are energy transforming devices for the 

hydrogen energy vector, converting chemical energy into 

electrical energy. There are several types of fuel cells and 

each type have different functionalities [2]. This article is 

concerned specifically to the PEMFC (Proton Exchange 

Membrane Fuel Cell). This type of cell is also the most 

widely used today, with space travel and the automotive 

sector being the industries that have made the most use and 

development of this technology [3]. It has been proven that 

the PEMFC voltage shows chaotic behavior under certain 

operating conditions [4]. Therefore, the development of 

nonlinear models with chaotic solutions [5]-[9], could be an 

important new tool to improve their control and therefore the 

efficiency, effectivity and pertinent applications of fuel cells. 

In this work we propose a procedure to build nonlinear 

models from time series of the voltage generated by PEMFC 

at different operational conditions. Initially, many different 

voltage time series have to be generated corresponding to 

different operation parameter values. Given the complexity 

of the system constituted by a PEMFC, the experimental time 

series of voltage measurements have different sources of 

dynamical contamination. Therefore, the time series with 

some potentially useful chaotic content have to be identified, 

the chaotic content highlighted and finally develop the 

corresponding nonlinear model. 

The procedure starts with a qualitative and quantitative 

identification of the chaotic content of a given time series 

using chaotic indicators such as visual inspection of the time 

series and its power spectrum, estimation of false nearest 

neighbors, mutual information, maximum Lyapunov 

exponent and correlation dimension [10]-[12]. Then, the 

chaotic information content in the identified time series with 

potentially chaotic behavior has to be highlighted as much as 

possible in order to separate the chaotic information from 

other sources of deterministic and stochastic information and 

contamination. Finally, the chaotic information content of the 

time series can be used to build a 3D nonlinear dynamical 

system with chaotic solutions that capture the chaotic 

dynamics of the fuel cell through its corresponding voltage 

time series. When the operation parameters of the PEMFC 

correspond to a chaotic behavior of the voltage, the fuel cell 

achieves a robust dynamical equilibrium improving its 

efficiency and durability.  

The operation of fuel cells is essentially simple, however, 

the ideal operating conditions are difficult to obtain and 

maintain stable during prolonged periods of operation, 

particularly when the power request presents transients, as is 

the case in most of applications [13]. The PEMFC is sensitive 

to variations in the humidity of the membrane, the partial 

pressure of the reactants P(H2), P(O2), the partial pressure of 

the product P(H2O) and the temperature T [14], among other 

variables. A small variation in any of these variables may 

have strong effects on the general behavior of the PEMFC. A 

great sensitivity or robustness to internal variables and 

external perturbations in addition of being a highly nonlinear 

dynamical system with highly sensitive to initial conditions, 

implies that under certain conditions the PEMFC may present 

chaotic behavior, as has been already demonstrated [15]-[16]. 

Considering that a nonlinear dynamical system with chaotic 

behavior can be modelled from the measurements of only one 

of its observables without losing any of the main topological 

characteristics [17], in principle it would be possible to model 
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the functioning of a PEMFC by a nonlinear dynamical system 

with chaotic behavior from its output voltage. The voltage 

output time series are chosen to identify and capture the 

chaotic behavior of the PEMFC because it is easy to measure 

from the fuel cell and it has been observed chaotic content in 

such time series for certain operational parameter values 

[15]-[18]. 

In this work we present a new method to develop a 

nonlinear autonomous dynamical system as models of the 

PEMFC in its chaotic operating regime. This method only 

requires the information contained in the output voltage of 

the PEMFC. The method is based on time series analysis 

tools [9] applied in two stages to generated a feedback of new 

information converging to the optimal model of the 

corresponding voltage time series. The first stage consists in 

the qualitative and quantitative selection of potentially useful 

voltage time series. This selection is performed using the 

power spectrum, the false nearest neighbors, the maximum 

Lyapunov exponent and the correlation dimension as 

indicators and measures of chaotic content in time series [9]. 

The time series are also detrended and filtered in order to 

highlight and make a better identification of the chaotic 

content of each time series. In the second stage, the 

Takens-Mañe reconstruction theorem [19]-[20], the 

Gram-Schmidt orthonormalization process, the 

Adams-Moulton predictor-corrector method [21], and the 

least squares method are used altogether as an information 

optimization method to reconstruct the dynamics of the time 

series in a three-dimensional space. The model obtained in 

this way is a reconstruction of a dynamical system of 

nonlinear differential equations in 3D from a scalar time 

series in 1D [5]. It is considered a reconstruction because it is 

a dynamical system that generates the trajectory in the 3D 

state space reconstructed from the scalar time series in 1D. 

Three independent variables and nonlinear terms of them up 

to order two are the minimal and sufficient conditions for a 

3D nonlinear dynamical model in order to have chaotic 

solutions [5]-[9]. 

The digital implementation of the model reconstruction 

method, is a software tool developed and written in Python 

language, with all the necessary algorithms to go from the 

identification of chaos to the reconstruction of the nonlinear 

dynamical models. We call this software CMRTS, Chaotic 

Model Reconstruction from Time Series. CMRTS was 

applied to different voltage time series as the outputs of a 

PEMFC with different operational parameter values 

obtaining interesting results that indicate a potential chaotic 

dynamical stability for some of them. 

This article is organized as follows: Section 2 presents in 

detail the method applied for the reconstruction of 3D 

nonlinear dynamical systems models with chaotic solutions 

from scalar time series in 1D, and the software developed to 

implement the method described. Section 3 presents the 

application of the method to a voltage time series from a 

PEMFC at different operational conditions, to obtain a 

nonlinear dynamical model of its chaotic behavior. In Section 

4 are presented and discussed the results obtained in the 

previous section. Section 5 presents conclusions and 

prospects for future work.  

II. THEORETICAL FRAMEWORK  

The operation of the PEMFC can be seen in a simple way. 

Hydrogen feeds the anode and decomposes into an electron 

and a proton, the electron passes through a circuit, while the 

proton passes through the membrane of the PEMFC, in the 

cathode the electron and the proton are recombined forming 

the hydrogen atom again, closing the electrical circuit and 

reacting with the oxygen or air feeding the cathode to form 

water molecules and heat, as shown in the balance of 

equation (1) [13]: 

4𝐻+ + 4𝑒− + 𝑂2 → 2𝐻2𝑂 + ℎ𝑒𝑎𝑡                    (1) 

Although its operation is essentially simple, ideal 

operating conditions are difficult to obtain and maintain for 

long periods of time [14]. This is due to the fact that the 

optimum operation condition is obtained for high reactant 

pressures, low product partial pressures, and low ohmic 

membrane resistance, this last obtained for high levels of 

water content in the membrane. Under these conditions, the 

system is unstable, a fully humidified membrane can easily 

derive into a flooded cathode affecting reactant partial 

pressures in the cathode and degrading the fuel cell 

performance. On the other hand, slight variations in 

temperature or cathode gas flow and humidity content can 

easily either flood the cathode or dry the membrane, both, 

considered non-optimal operation conditions. In most 

operation conditions, power transients and power control 

systems, will cause variations in current, voltage, 

temperature, gas flow, and gases partial pressures, making 

very difficult for the system to remain in the optimum 

operation conditions for each power demand. In 

consequence, it is necessary to have an optimum control of 

these parameters using monitoring and diagnostic techniques 

[15]. Some of the techniques most used in the diagnosis of 

PEMFC are based on the construction of models of their 

operation for the detection of faults [16]. 

The PEMFC models are divided into two main branches, 

the analytical or white box models and the black box models, 

there is also an intermediate branch called grey box models 

which is a mix between the white box models and the black 

box models. The white box models are based on the 

construction of differential equations that simulate the ideal 

behavior of the PEMFC and failures are diagnosed when the 

real behavior of the PEMFC differs greatly from its ideal 

behavior. This type of model is very efficient in finding faults 

in the operation of the PEMFC. However, due to the 

complexity of the behavior of the PEMFC, these models 

relate a number of variables that significantly increase the 
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time required to solve the equations and make it difficult for 

this type of model to be used to diagnose faults online. The 

black box models solve the aspect of the execution time, 

these models are created from the existing correlations 

between the input and output data, therefore, no additional 

information is required of the internal operation of the 

PEMFC, significantly reducing the number of variables and 

relationships to consider, this implies a reduction in the time 

spent in the construction and evaluation of the models. These 

types of models are best for online fuel cell diagnostics. 

However, since they are based on input and output 

relationships, they lose generality when applied to PEMFC 

with different characteristics. The most used methods in this 

type of model are neural networks, fuzzy logic and vector 

support machines. On the other hand, there are the grey box 

models that largely solve the calculation times presented by 

the models of white box reducing the number of variables 

with which it works. The most common way to reduce 

variables is to find correlations from data taken from the 

PEMFC, however, as the number of variables is reduced, the 

generality of the models is lost [13]-[16] and [18]. 

This article presents a novel method to create a 

combination of white and black box models of PEMFCs 

under chaotic behavior conditions when stability and 

robustness may be expected by the nature of such behavior of 

complex systems. The method initially uses indicators of 

nonlinear information content in time series such as the 

power spectrum, mutual information, false nearest neighbors, 

Lyapunov exponents, and dimension correlation to identify 

the possible chaotic behavior of the PEMFC voltage time 

series. Since real time series always have different sources of 

low and high frequency contamination, a diversity of 

bandwidth filters is applied to highlight the chaotic content of 

the time series; this procedure is guided by the tendencies of 

the nonlinear indicator just mentioned. The reconstruction or 

construction of the model by means of a 3D trajectory 

reconstruction from a 1D time series, is the reconstruction of 

the attractor that represents the dynamics of the system in the 

3D phase space, it is the trajectory in the state space of the 

system. This procedure is performed based on the 

Takens-Mañe reconstruction theorem as the demonstration 

that all the dynamical information of the three variables of a 

3D nonlinear dynamical system can be extracted from a time 

series of only one of the variables. Then, it is defined a 

measure in state space and the Gram-Schmidt 

orthonormalization process is applied to build an 

orthonormal polynomial base up to order two, and finally the 

Adams-Moulton method and the least squares method are 

used to estimate the values of the polynomial coefficients 

consistently with the information contained solely in the 

original time series. These stages are described in more detail 

in subsections A and B. 

 

 

A. Identifying chaos in time series 

Most complex systems must have nonlinearities that 

represent feedbacks and other dynamical diversity and 

richness of their dynamics, and these nonlinearities may 

produce chaotic behavior. However, diverse sources of 

contamination present in any real time series may hide its 

chaotic content. This constitutes an important challenge: 

detection and highlight the chaotic content of a real time 

series of measurements to better understand the dynamical 

information and properties of the system it represents. To 

determine if a time series contains a possible chaotic behavior 

and highlight it from diverse sources of contamination, 

several measures of chaos are used as they are mentioned and 

organized in Figure 1.  

First, the power spectrum is a powerful tool of time series 

analysis that allows us to observe important qualities of the 

dynamics of the system contained in the corresponding time 

series: if a time series is completely stochastic, its spectrum is 

characterized by a continuous distribution in a very wide 

range of frequencies without distinguishing any particular 

preference in any specific frequency or range of frequencies; 

if the time series corresponds to a linear deterministic system, 

its solutions are periodic and the spectrum shows 

well-defined peaks at specific frequencies and their 

harmonics; finally, if a time series contains deterministic 

chaos information, the power spectrum shows an energy 

distribution at various frequencies, almost continuous and 

rapidly decreasing in a defined range with a certain structure, 

and the amplitude must be very low both at very low 

frequencies that represent trends and non-stationarity, and at 

high frequencies that represent contamination with 

high-frequency white noise. In this way, the power spectrum 

serves as a qualitative method of analysis to determine the 

potential for chaotic content that the time series may have. If 

the power spectrum indicates weak but interesting chaotic 

content with low and/or high frequency noise, in each case 

various low-pass, high-pass or band-pass filters can be 

applied as a first feedback process to identify, highlight and 

verify the chaotic content of the time series. 

Second, the false nearest neighbors’ method, FNN [6], 

uses the correlation of the time series data at increasing 

dimensions, to identify the minimum dimension that the 

attractor must have according to the deterministic chaos 

information it contains. The number of false neighbors must 

be reduced as the dimension increases until it tends to zero in 

the appropriate dimension for ideal time series or to a low 

asymptote when acceptable contamination remains. The 

remaining value of FNN for high dimensions is a good 

indicator of the noise or high frequency contamination of the 

time series that may be filtered out appropriately to highlight 

the chaotic content of the time series [5]-[12]. 

Third, the Lyapunov exponents, and more precisely the 

maximum Lyapunov exponent [6]-[10], is a measure of the 

sensitivity to the initial conditions of the system, measuring 
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the divergence between nearby trajectories in phase space 

which increases exponentially for chaotic behavior. For a 

time series the maximum Lyapunov exponent can be 

numerically estimated with high accuracy depending on the 

purity of the data. If the maximum Lyapunov exponent is 

positive, it is good indicator of chaotic behavior. In a 

n-dimensional dynamical system, each of the n dimensions 

has its own Lyapunov exponent. For a 3D dynamical system, 

chaos occurs when there is one positive, one zero and one 

negative exponent [10]-[12]. 

Finally, a chaotic attractor defining the trajectory of the 

dynamical system in the 3D state space, must have a 

non-integer or fractal dimension. The dimension of the phase 

space where the attractor exists, is the integer dimension 

immediately greater than the dimension of the attractor. 

There are several numerical methods and measures to 

estimate the dimension of the attractor from a time series 

from different practical definitions of the attractor dimension, 

but the most representative and used for real time series, is 

the dimension of correlation measure [5]-[12]. 

No one of these four or any other indicator of chaos 

content in a time series by itself is a sufficient and definitive 

evidence of chaos in a specific time series, depending on the 

characteristics of the time series one indicator alone can be 

fooled in one way or the other. However, used together, the 

four indicators can give reliable results. As it was already 

mentioned, due to the noise generated by sampling 

measurements in real time series, in most of the cases its 

potential chaotic content cannot be clearly isolated. It is 

necessary an initial filtering process of the time series, not 

only to highlight the possible chaotic content, but to improve 

the modelling results that become another important source 

of information by feedback between the empirical, theoretical 

and numerical information of the corresponding dynamical 

system. There are different techniques for time series 

filtering, depending on the characteristics of the noise and 

other sources of contamination present in the time series 

which are not very well known and only partially controlled 

experimentally. In general, it is advisable to have some prior 

knowledge of the behavior of the dynamical system under 

study, to avoid eliminating relevant data or adding artificial 

information that does not correspond to the behavior of the 

original time series during the filtering process [5]-[12].  

 

Figure 1. Filtering pre-process applied to fuel cell voltage 

time series to detect and highlight potential chaotic behavior. 

B. Construction of models 

The modelling method is based in the procedure indicated 

in initially and further developed for climate measurements 

[5]. The obtained models are autonomous nonlinear 

dynamical systems of differential equations of polynomials 

up to second order in three variables, with trajectory solutions 

in the corresponding 3D state or phase space as shown in 

equation (2) [5]:   

𝑥̇⃗ = 𝐹𝑥(𝑥⃗) = 𝐶𝑥
⃗⃗ ⃗⃗⃗ ⋅ Π𝐼(𝑥⃗),                                          (2) 

where 𝑥⃗ = (𝑥, 𝑦, 𝑧) is the state vector in 3D defining the 

trajectory of the system as the solution of the dynamical 

system. 𝐶𝑥
⃗⃗ ⃗⃗⃗  is a coefficient vector of three elements and 

Π𝐼(𝑥⃗) indicates the polynomials in three variables with all 

the nonlinearities up to order two as shown in equation (3). 

The elements of 𝐶𝑥
⃗⃗ ⃗⃗⃗  determine the contribution of each 

polynomial to the dynamical system. Therefore, the product 

of the right-hand side of equation (2) generates a matrix of 

coefficients with 30 elements: ten for each variable 

corresponding to one constant term, four linear terms and six 

nonlinear terms as all possible nonlinearities up to order two 

among three variables. 𝐼 = (𝑖, 𝑗, 𝑘) is the vector index of the 

ten polynomials Π𝐼(𝑥⃗) , varying from (𝑖, 𝑗, 𝑘) = (0,0,0)  to 

(𝑖, 𝑗, 𝑘) = (2,2,2), with the constraint 𝑘 ≤ 𝑗 ≤ 𝑖: 

𝛱(𝑖,𝑗,𝑘)(𝑥⃗) = ∑ ∑ ∑   𝛼𝑓𝑔ℎ
(𝑖,𝑗,𝑘)

𝑥ℎ−𝑔𝑦𝑔−𝑓𝑧𝑓

𝑔

𝑓=0

ℎ

𝑔=0

𝑖−1

ℎ=0

+ ∑ ∑ 𝜂𝑔ℎ
(𝑖,𝑗,𝑘)

𝑥𝑖−ℎ−𝑔𝑦ℎ𝑧𝑔

𝑗−𝑔

ℎ=0

𝑘

𝑔=0

 

(3) 

In order to avoid data overlap between the terms of the 

polynomial base Π𝐼(𝑥⃗) and guarantee the efficiency of the 

representation of the trajectory, the polynomials must be 

linearly independent and normalized over the discrete 



    ISSN (Online) 2394-2320 

International Journal of Engineering Research in Computer Science and Engineering  

(IJERCSE) 

Vol 10, Issue 4, April 2023 

 

20 
 

measure defined in the state space, i.e. an orthonormal base. 

The Takens-Mañe reconstruction method [18]-[19] is 

initially used to convert the 1D time series into a 3D 

trajectory in state space representing each point of the 

trajectory by the 3D vector (𝑥, 𝑦, 𝑧) = (𝑥𝑛, 𝑥𝑛+𝜏 , 𝑥𝑛+2𝜏) 

where 𝑥𝑛  is the original 1D time series and 𝜏  is the 

reconstruction delay time estimated by using the mutual 

information theory [6]. The Gram-Schmidt 

orthonormalization process is applied to obtain the necessary 

orthonormal base from the general polynomial expression of 

equation (3). 

The coefficients of 𝐶𝑥
⃗⃗ ⃗⃗⃗ and the orthonormal base Π𝐼(𝑥⃗)  in 

the right side of equation (2) are estimated using the 

Adams-Moulton corrective predictor method and the least 

squares method with an information optimization processes 

that allows to maximize the capture of the chaotic content of 

the time series avoiding as much as possible the 

contamination sources. The Adams-Moulton method 

basically performs a numerical integration as a predictor of 

the function that represent the dynamics of the reconstructed 

vector using the past information as shown in equation (4): 

𝑥⃗𝑛+1 = 𝑥⃗𝑛 + Δ𝑡 ∑ 𝑎𝑗
(𝑀)

𝐹𝑥(𝑥⃗𝑛+1−𝑗)𝑀
𝑗=0                       (4) (4) 

where 𝑥⃗𝑛 is the n-th term of the reconstructed vector, Δ𝑡 is 

the time elapsed between two successive measurements of 

the reconstructed trajectory in 3D, 𝑀  is the number of 

previous steps used to make the correction of the prediction 

and 𝛼𝑗
(𝑀)

 are the Adams coefficients already defined for 

various values of M in [5] and [21]. Replacing 𝐹𝑥    from 

equation (2) into equation (4) we obtain the following 

expression (5): 

(∑ 𝑎𝑗
(𝑀)

Π𝐼(𝑥⃗𝑛+1−𝑗)𝑀
𝑗=0 ) ⋅ 𝐶𝑥

⃗⃗ ⃗⃗⃗ =
𝑥𝑛+1−𝑥𝑛

Δ𝑡
  .              (5) 

Since the matrix of coefficients is not a square matrix, the 

Moore-Penrose pseudo-inverse is used to solve the system of 

equations: 

𝑥⃗ = 𝐴†𝑏⃗⃗  

where the symbol † denotes a pseudo-inverse [5], then we 

obtain equation (6) where Δ𝑥⃗𝑛 = 𝑥⃗𝑛+1 − 𝑥⃗𝑛 and the 𝐶𝑥  are 

the coefficients determined by: 

𝐶𝑥 = (∑ 𝑎𝑗
(𝑀)

𝛱𝐼(𝑥⃗𝑛+1−𝑗)𝑀
𝑗=0 )

†
⋅

𝛥𝑥𝑛⃗⃗ ⃗⃗⃗⃗

𝛥𝑡
                     (6) (6) 

The model in equation (2) is then completely determined 

since the polynomials Π𝐼(𝑥⃗)  are known and 𝐶𝑥
⃗⃗ ⃗⃗⃗  have 

numerical well-defined values for a specific time series. 

Finally, the Runge-Kutta numerical integration method is 

used to integrate equation (2) with all the values of the 

parameters using one-time steps and 10000 iterations to 

display the solutions of the obtained dynamical systems. The 

final result is the trajectory of the system in the 3D state space 

of variables x, y and z corresponding to a particular time 

series as will be presented in the following sections. 

C. Software CMRTS 

As already indicated, CMRTS is for Chaotic Model 

Reconstruction from Time Series, a software developed by 

the authors for the reconstruction of nonlinear models with 

chaotic behavior from a time series [5]. This software is 

written in Python and covers the model reconstruction and 

analysis methods described in subsections A and B. In 

addition, CMRTS has a graphical user interface divided into 

three main parts: Model, pre-process and process, as shown 

in Figure 2. 

The Model section of CMRTS allows the user interaction 

with the obtained models for a particular time series. It allows 

the integration of the models using the Runge-Kutta method, 

the control of the parameters such as the integration step and 

the desired number of iterations in each different integration. 

It also has diverse visualization tools for visual inspection 

and analysis of the trajectories generated by the integration of 

the obtained models. 

The Pre-process section of CMRTS is focused on verifying 

the chaotic content of the time series, using chaos measures. 

In this section the software tool calculates, graphically and 

numerically: The mutual information, the power spectrum, 

the false nearest neighbours, the Lyapunov exponents and the 

correlation dimension, which are altogether necessary and 

sufficient to evaluate the chaotic content of the time series as 

described in subsection A. This section of CMRTS also 

allows the application of digital filters, detrending and 

smoothing procedures to highlight the chaotic content of a 

time series. 

The Process section of CMRTS is where the construction 

of the models takes place. This section implements, in a 

transparent way for the user, the Takens-Mañe reconstruction 

theorem, the Gram-Schmidt orthonormalization process, the 

Adams-Moulton prediction-correction method and the least 

squares method, described in subsection B for model 

reconstruction. In addition, the reconstruction time τ can be 

varied in such a way that several models can be built from a 

single time series for subsequent evaluation using the Model 

section. 

 
Figure 2. Diagram of the CMRTS's graphical user interface, 

specifying the different functionalities and the corresponding 

processing sequence. 
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III. METHODOLOGY   

The experiments necessary to detect and model chaos in 

the voltage time series from PEMFC were carried out in the 

specialized laboratory FCLAB, a technical and scientific 

resource center dedicated to systems in the Hydrogen-Energy 

sector in France. A test bench with gas inlet and purge valves 

was used in a ZSW brand fuel cell composed of five square 

cells, with an effective area of 100cm2 to obtain the time 

series of voltage measurements. The fuel cell was tested for 

the conditions stated in Table 1. Due to the difficulty of 

controlling and keeping stable the relative humidity RH of the 

membrane, it was fixed at 70% for all experiments. These 

values were chosen considering that the chaotic behavior in 

PEMFC tends to occur in extreme conditions, in particular 

near flooding conditions, when the RH is high, close to 100% 

and the H2 stoichiometry is near 1, temperature T around 

50°C and current density J in approximately equal to 1 in the 

units indicated in Table 1. The experiments were carried for 

the 27 combinations of the values of variables in Table 1, 

with a sampling rate of 5 samples every 3 seconds, for a 

period of time of 15 minutes. From this procedure, 27 time 

series of the fuel cell voltage were obtained, each with 1500 

data points. The obtained time series were tested for chaotic 

behavior as presented in section A. The procedure was 

executed by the CMRTS software described in subsection C. 

The voltage time series that showed more indications of 

possible chaotic behavior as mentioned before, were selected 

and the results analyzed.  

Table 1 

𝑅𝐻 𝑇(°𝐶)  𝑆𝑡𝑜 𝐽(𝐴 𝑐𝑚⁄ ²) 

~70% 

50 1,1 0,8 

55 1,3 0,9 

60 1,5 1 

Table 1. Design of experiments to detect deterministic 

chaos in the PEMFC voltage: the temperature T, the 

hydrogen stoichiometry Sto and the current density J are 

varied, each one in three different values, obtaining 27 

combinations of parameter values. 

We then proceed to pre-process and process the time series 

to build the models of the corresponding systems with the 

selected time series in the previous step. This procedure also 

runs on the CMRTS software. The procedure starts with the 

3D reconstruction in the phase space of each of the voltage 

time series using the Takens-Mañe theorem. The time delay 𝜏 

was varied from 1 to 200 times Δ𝑡 , obtaining 200 

reconstructions for each time series and subsequently the 

same number of models to evaluate. The orthonormal 

polynomial base is obtained applying the Gram-Schmidt 

process to the reconstructed 3D trajectory. The coefficients of 

the model 𝐶𝑥
⃗⃗ ⃗⃗⃗, are obtained using the Adams-Moulton method 

and the Moore-Penrose pseudoinverse. The Adams-Moulton 

method is used as shown in equation (4) of subsection B with 

a number of previous steps 𝑀 = 3  to correct the prediction 

of the values of 𝐹(𝑥⃗) considering the reconstructed vector 

𝑥𝑛⃗⃗⃗⃗⃗, as can be seen in equation (5); larger and smaller values 

of M were not consistent with the considered time scales and 

sampling frequency as the results obtained made it evident. 

The Moore-Penrose pseudoinverse is then used as shown in 

equation (6). Finally, having the orthonormalized polynomial 

base and the coefficients already determined, these two 

factors are multiplied and a model is obtained as shown in 

equation (2).  

It should be noted that with this procedure the models are 

built exclusively using experimental data, without the need of 

any other information apart from that contained in the fuel 

cell voltage signal time series. It is also important to note that 

after this modelling procedure, only a few of the thirty 

coefficients of the general model for a 3D nonlinear 

autonomous dynamical system of polynomials up to order 

two, get significant values different from zero, obtaining in 

this manner a relatively very simple model of a very complex 

dynamics thanks to the nonlinearities and deterministic chaos 

of nonlinear models.  

Finally, the fourth order Runge-Kutta method is applied to 

integrate the obtained models, using an integration step h = 

0.001, with 10000 iterations and initial conditions 

(𝑥0, 𝑦0 , 𝑧0) = (𝑥1, 𝑥1+𝜏, 𝑥1+2𝜏), where 𝑥1 is the first data of 

the voltage time series being modelled. The integrated 

models are evaluated, initially by visualisation selecting 

those that present a chaotic solution describing a qualitatively 

fractal attractor. Additionally, using the chaos measures 

described in subsection A, the most promising models are 

selected using the feedback provided by the pre-processing 

indicated before to highlight the chaotic content in real 

contaminated time series. The CMRTS makes easy to try 

different time series, parameter values and models, nimbly 

performing tries and errors to find the optimal conditions and 

converge to the optimal model for a given time series.  

IV. RESULTS 

From the 27 experiments proposed in Table 1, it was 

possible to obtain good voltage data time series for only 19 of 

them. For the remaining 8 experiments the PEMFC control 

system was automatically activated stopping the operation 

for security reasons of the fuel cell. The corresponding 19 

voltage time series were visually analyzed and estimated the 

chaos content of each one with the chaos measures described 

above. Table 2 shows the results of 19 time series with the 

corresponding PEMFC operation parameter values. 𝑁𝑇𝑒𝑠𝑡 is 

the identifier for each experiment, T is the temperature of the 

stack, Sto the anode stoichiometry, J the current density and 

RH is the relative humidity of the membrane. PS refers to the 

power spectrum as a visual qualitative measure, then “Y” 

indicates a clear potential chaotic content of the time series, 
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otherwise it is marked with “N”. The 𝜏  is the delay time 

obtained from the mutual information, FNN is the estimate of 

the minimum dimension in which it is possible to unfold the 

attractor, Lyap is the maximum Lyapunov exponent 

indicating sensitivity to the initial conditions when positive, 

CD is the correlation dimension indicating a strange attractor 

when its value is not integer.  

Table 2 

NTest T Sto J RH PS 𝜏 FNN Lyap CD 

1 50 1,3 0,8 75 N 24 4 0 6,23 

2 50 1,3 0,9 73 N 25 4 0 9,11 

3 50 1,3 1 76 Y 4 3 0,11 6,63 

4 50 1,5 0,9 80 N 18 4 0 1,17 

5 50 1,5 1 76 N 16 4 0,07 8,29 

6 55 1,1 0,8 74 Y 12 3 0,31 7,49 

7 55 1,3 0,8 70 N 29 4 0,06 7,60 

8 55 1,3 0,9 65 Y 8 3 0,10 6,80 

9 55 1,3 1 60 N 21 5 0 7,93 

10 55 1,5 0,8 68 N 39 5 0 8,62 

11 55 1,5 0,9 82 N 18 4 0 6.00 

12 55 1,5 1 75 N 17 4 0,09 4,15 

13 60 1,1 0,8 65 N 4 4 0,06 5,73 

14 60 1,3 0,8 67 Y 4 3 0,06 5,62 

15 60 1,3 0,9 69 Y 5 3 0,04 5,91 

16 60 1,3 1 67 N 20 3 0,22 2,71 

17 60 1,5 0,8 72 N x x x x 

18 60 1,5 0,9 57 N 7 4 0,05 7,36 

19 60 1,5 1 73 N 7 4 0,07 4,39 

Table 2: The 19 time series of the corresponding 

experiments with its operation parameter values and chaos 

measures. NTest is the number that identifies the selected 

experiment, T is the temperature of the cell, Sto is the anode 

stoichiometry, J is the current density, RH is the Relative 

Humidity of the cell, PS is the Power Spectrum, τ is the time 

delay, FNN are the False Nearest Neighbors, Lyap is the 

largest Lyapunov exponent and CD is the Correlation 

Dimension. 

These measures used as indicators of possible chaos 

content in the time series cannot be conclusive because of 

many reasons, in particular for the finite resolution of the data 

points, sampling frequency and time span of observation. 

Formally and rigorously, the results would not be conclusive 

for each measure independently even if the data would have 

infinite resolution, infinite sampling frequency or continuous 

measurement and practically infinite observation time span. 

However, for some real time series it has been observed rapid 

convergence to conclusive results although, the omnipresent 

contamination from diverse sources that makes necessary the 

coherent interpretation of the imprecise and qualitatively 

results of the application of several chaos measures as 

proposed in this work. 

 

 
Figure 3. Voltage time series of the experiments 3 and 8, top 

and bottom respectively. 

The five experiments, NTest =3,6,8,14 and 15, are 

highlighted in Table 2 to indicate that they have the most 

promising measures indicatives of highly possible chaotic 

behaviour and the cases with the smaller value of FNN equal 

to 3. For these five experiments, the time lag τ has the smaller 

values indicating that the nonlinear correlations are not very 

large indicating stochastic or noise dominated time series; the 



    ISSN (Online) 2394-2320 

International Journal of Engineering Research in Computer Science and Engineering  

(IJERCSE) 

Vol 10, Issue 4, April 2023 

 

23 
 

maximum Lyapunov exponent Lyap are positive and small 

but significative indicating sensitivity to initial conditions, 

however the experiments 14 and 15 have very small values 

reducing the possibility of chaotic content. Finally, the 

correlation dimension CD results are high, indicating 

potential chaotic content but highly contaminated, also 

indicated by the remaining tendency of the FNN as can be 

seen in Figure 5. In these experiments the most recurrent 

operation parameter is the stoichiometry equal to 1.3, the 

other operation parameters do not have a clear predominant 

value although the variations are small as was indicated 

before in the planning and design of the experiments. 

Accordingly, with the mentioned results, the time series 

corresponding to the experiments 14 and 15 seem to have no 

much more information than noise of a small relative voltage 

amplitude, ~0.05, with a large relative voltage peak of ~0.25. 

The time series of experiment 6 shows a very small relative 

noise with a few very large peaks indicating a very unstable 

operation with very low potential to have chaotic content. 

 

 
Figure 4. Power Spectrum for experiments 3 and 8, top and 

bottom respectively. 

Therefore, we are going to continue the analysis and 

modeling of only these two time series corresponding to the 

experiments, NTest = 3 and 8, the only ones with significative 

possible chaotic content so far. However, all calculations and 

proofs are going to be performed for all the nineteen time 

series for the sake of comparisons when useful and 

illustrative. The two corresponding power spectrums, 

presented in Figure 4, show a range of frequencies small and 

continuously decreasing amplitude from low to higher 

frequencies which is a good initial indicator of chaotic 

content in the time series. However, for NTest = 3 there are two 

trouble features: there is a very high amplitude for very low 

frequencies indicating a strong trend of the time series as a 

source of contamination, and a large and wide second pick for 

relatively high frequencies indicating both contaminations 

from a periodic signal and medium to high frequency noise. 

These two sources of contamination can hide the chaotic 

content of the time series. In the case NTest = 8, the 

nonstationary or low frequency contamination is weaker and 

the second peak is not present.  

Figure 5 shows the FNN of experiments 3 and 8. The 

relative slow decrease from imbedding 1 to 2, then a faster 

decrease from embedding 2 to 3 and finally slower decrease 

for larger embedding, very similar for the two time series. 

This is a good indicator of chaotic content with a potential 

embedding dimension closer to 3 than to 4 with a reasonable 

noise contamination. In the case of a stochastic or very noisy 

time series the FNN would give a very fast decrease from 

embedding 1 to 2 and a remaining small oscillating amplitude 

for larger embeddings.  

Filtering a time series with chaotic content is a very tricky 

process because we do not know a priory how much chaotic 

power is contained in each frequency of the power spectrum. 

We only know that the chaotic information is mostly 

contained in a wide range of medium frequencies and is very 

difficult to disentangled it from contamination sources 

without effecting the chaotic content by deleting or 

aggregating some valuable and delicate information in the 

filtering process. However, we know that outside the “chaotic 

range” of frequencies, i.e. towards low and high frequencies, 

nonstationary sources of information and white noise 

respectively, are dominant. The challenge with digital filters 

is the correct definition of the high pass and low pass 

frequencies and their strength within the frequency “chaotic 

range”. A first approximation to solve this problem without 

affecting much the chaotic information content of the time 

series can be performed by successively remove the linear 

tendency of the time series as a soft high pass filter and 

applying a local discrete gaussian average as a soft binomial 

low pass filter. As already mentioned and consistently done 

with the power spectrum results, the two time series from 

experiments 3 and 8, have small but important linear 

tendencies to be removed, increasing and decreasing 

respectively as can be observed in Figure 3. These tendencies 

can be easily removed by fitting the time series to a straight 

line with a minimum square method and subtracting the 



    ISSN (Online) 2394-2320 

International Journal of Engineering Research in Computer Science and Engineering  

(IJERCSE) 

Vol 10, Issue 4, April 2023 

 

24 
 

corresponding value to each data point of the time series. In 

order to remove the high frequency noise contamination, 

each data point of the time series is replaced by the mean 

value with its four nearest neighbour data points weighted by 

the coefficients of Pascal’s triangle:    

𝑥𝑖
𝑓

=
1

16
(𝑥𝑖−2 + 4𝑥𝑖−1 + 6𝑥𝑖 + 4𝑥𝑖+1 + 𝑥𝑖+2) 

where  𝑥𝑖
𝑓
 is the i-th filtered data point of the time series. 

Since these two procedures are linear, they can be applied in 

any order with the same results aside of small variations from 

numerical precision as can be seen in Table 3, where are 

presented the results of the nonlinear measures for the time  

 

 
Figure 5. False Nearest Neighbors, FNN, for the two time 

series of experiments NTest = 3 and 8, top and bottom 

respectively. 

 
Figure 6. Time series corresponding to experiments NTest = 3 

and 8, top and bottom respectively, after the indicated 

detrending and filtering processes. 

Series corresponding to the experiments 3 and 8, before 

and after the detrending and filter processes as indicated. 

Figure 6 presents the time series corresponding to 

experiments 3 and 8 after the indicated processes of 

detrending and filtering. Comparing Figures 3 and 6, it is 

possible to observe some apparently small changes in the 

corresponding times series however, in terms of information 

content, they are important and with strong implications to 

capture and model the potential chaotic content of them. 

As can be seen in Figure 7 and Table 3 respectively, the 

time series appearance and chaos measures have some 

improvement after the detrending and denoising procedures. 

However, these improvements are not significative and even 

can have some negative impact regarding the objective of 

highlight the chaos content of the time series. This is because, 

as it was already mentioned before, the information of the 

chaotic behaviour of a time series is very delicate and 

distributed in a large range of low, medium and high 

frequencies.  

Table 3 

 Original time 

series 

Filtered time series 

NTest τ Lyap CD τ Lyap CD 

3 4 0.09 6.51 4 0.13 7.54 

8 8 0.10 6.80 10 0.13 5.97 

 Detrended and 

then filtered time 

series 

Filtered and then 

detrended time series  

 τ Lyap CD τ Lyap CD 

3 4 0.11 7.80 4 0.11 7.75 

8 9 0.12 7.03 9 0.12 6.77 
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Table 3. Chaos measures of the two time series 

corresponding to experiments 3 and 8, before and after the 

indicated detrending and filtering processes. 

Therefore, the modelling process is applied to the time 

series corresponding to experiments 3 and 8, before and after 

the detrending and noise filter processes. Since τ is a 

prescription value which depends on the size of the 

integration time step Δt, in each case the trajectory 

reconstruction is performed using Δt ≤ τ ≤ 200Δt obtaining 

two hundred possible 3D nonlinear models for each time 

series. Then each model is numerically integrated to obtain 

the x variable as a time series of data points to be compared 

with the original experimental time series, closing a feedback 

converging process between experimental information and 

nonlinear modelling information.  

From this comparison process between experimental and 

numerical time series and their chaos content, we chose two 

cases that show a particularly interesting potential of chaotic 

dynamics. This does not mean that the dynamics of the other 

time series cannot be modelled by this method but, further 

analysis and tests have to be performed to improve the 

evidences of their potential of chaotic content. On the other 

hand, it is noteworthy that with optimized Δt numerical time 

series of 1500 data points, it would be easier to build 

nonlinear models of the possible chaotic behaviour of the 

PEMFCs with appropriated operation parameter values. This 

is a strong indication of the improvement or filtering power 

(detrending and denoising) of the modelling processes by 

itself. This is because, the self-consistency and robust 

information treatment that the modelling process performs in 

its different stages, largely and with accurate precision reduce 

the nonstationary and noise contamination of the time series 

without strong damage of the chaos information content of 

the time series.  

 

 
Figure 7 

Figure 7: Reconstructed attractor from the voltage time 

series corresponding to NTest = 3 (top), without any 

pre-processing for detrending or denoising and using a delay 

time τ = 120. Reconstructed attractor from the voltage time 

series corresponding to NTest = 8 (Figure 7 bottom), without 

any pre-processing for detrending or denoising and using a 

delay time τ = 113. 

The result of the reconstruction process is the numerical 

value of the coefficients of each term of the 3D dynamical 

system with nonlinearities up to order two, i.e. one constant, 

three linear terms and six nonlinear terms for each one of the 

three variables for a total of thirty coefficients. Tables 4 and 5 

show the coefficients of the two models obtained from the 

time series corresponding to experiments 3 and 8 with delay 

times 120 and 113 respectively. In these two tables the three 

components (𝑥̇, 𝑦̇, 𝑧̇) represent the time derivatives of the 3D 

variables and the header of each column represents the 

coefficient of the corresponding combination of variables. 

This notation represents the function F in terms of 

polynomial terms that constitute the model as indicated in 

equation 2. The model is obtained by multiplying each 

variable by their respective coefficient. An example for the 

first line (corresponding to x as the first variable of the 3D 

dynamical system of differential equations), of Table 5 is 

shown in equation (7): 

𝑥̇ = −3.53 + 9.54𝑥 + 5.18𝑦                                             (7) 

         −12.23𝑧 + 0.31𝑥2 – 3.67𝑥𝑦  

         – 0.34𝑥𝑧 + 0.95𝑦2 − 0.07𝑦𝑧 + 2.37𝑧2 

The expressions corresponding to the 𝑦̇  and 𝑧̇   time 

derivatives are similarly written with the corresponding 

parameter values of the second and third lines from Table 5. 

The result, is a 3D dimensional model (3D autonomous 

nonlinear dynamical system of differential equations) defined 

by the values of the 30 corresponding coefficients. Similarly, 

it can be done for Table 4 corresponding to the experiment 3 

and for any other model obtained from a time series of 

voltage data points. 

It is evident that the numerical values of the coefficients of 

the models shown in tables 4 and 5 are totally different 

although they correspond to the same PEMFC but with 

different values of the operating parameters, indicating the 

sensitivity to initial conditions of the PEMFC and the model. 

This is the precise unpredictability of the PEMFC and its 

corresponding chaotic behaviour but at the same time the 

robustness and long-term predictability that the dynamics is 

kept in the attractor even under strong external influences. 

Table 4 

 𝑐 𝑥 𝑦 𝑧 𝑥2 

𝑥̇ 12,99 -8,95 0,71 -2,17 0,59 

𝑦̇ 14,07 5,12 -10,25 -6,13 -1,99 

𝑧̇ -13,01 0,41 10,24 -0,12 0,29 
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 𝑥𝑦 𝑥𝑧 𝑦2 𝑦𝑧 𝑧2 

𝑥̇ 2,27 0,12 -1 -0,56 0,66 

𝑦̇ 0,5 1,43 0,55 2,51 -0,73 

𝑧̇ -0,4 -0,35 -2 0,27 0,06 

Table 4. Coefficients of the 3D autonomous nonlinear 

dynamical system obtained from the time series 

corresponding to the experiment 3, using a delay time τ=120. 

Table 5 

 𝑐 𝑥 𝑦 𝑧 𝑥2 

𝑥̇ -3.53 9.54 5.18 -12.23 0.31 

𝑦̇ -1.13 -16.41 8.61 8.65 2.87 

𝑧̇ 2.94 9.37 -12.49 1.06 0.06 

 𝑥𝑦 𝑥𝑧 𝑦2 𝑦𝑧 𝑧2 

𝑥̇ -3.67 -0.34 0.95 -0.07 2.37 

𝑦̇ -0.08 0.15 0.5 -3.98 0.39 

𝑧̇ -0.57 -2.87 2.56 -0.12 1.3 

Table 5. Coefficients of the 3D autonomous nonlinear 

dynamical system obtained from the time series of 

experiment 8, with delay time τ=113. 

Table 6 shows the results of the chaos measures τ, Lyap 

and CD applied to the time series of the variable x obtained 

by numerical integration of the dynamical models obtained 

from the experimental time series corresponding to 

experiments 3 and 8 respectively. The values of 𝜏  are 

estimated with the mutual information and are the values 

used in the calculation of the other corresponding chaos 

measures. Therefore, it should be noted that these values of 𝜏 

are not the same with which the models were constructed 

because they correspond to numerical time series where the 

chaos information is evident and the characteristics of the 

time series such as sampling frequency, Δt, detrending and 

denoising are numerically optimized and the modelling 

process implies a more precise and less disruptive filtering 

process as mentioned above. This can be seen in the results of 

the chaos measures more consistent with chaotic content and 

characteristics of the corresponding time series: the values of 

τ are more consistent with the number and precision of the 

data points, the sampling frequency and Δt produced by the 

numerical integration, the values of Lyap are larger indicating 

more sensitivity to initial conditions as a landmark of chaos, 

and the values of the CD estimates are clearly fractal and 

between dimensions 2 and 3 as a clear indicator of a chaotic 

attractor. The filtering pre-processing to reduce tendencies 

(low frequency contamination), and white noise (high 

frequency contamination), improve significantly the results 

independently of the order of application of the two filtering 

processes. These results indicate that the modelling process 

has improved the proportion of the chaotic information 

content compared to other information contents of the 

experimental time series and also allows for a further 

improvement by means of simple and soft detrending and 

denoising pre-processing of the numerical time series.   

Table 5 

 Numerical time series Filtered time series 

NTest τ Lyap CD τ Lyap CD 

3 23 0.30 2.38 5 0.21 2.52 

8 25 0.22 2.05 10 0.30 2.60 

 Detrended and then 

filtered time series 

Filtered and then 

detrended time series 

3 5 0.19 2.14 5 0.18 2.14 

8 8 0.23 2.40 8 0.23 2.42 

Table 6. Chaos measures τ, Lyap and CD of the variable x 

integrated from the dynamical models from the experimental 

time series corresponding to the experiments 3 and 8 

respectively. The values of τ are estimated with the mutual 

information function and these are the values used in the 

calculation of the other corresponding chaos measures. 

 
Figure 5: Attractors obtained from the integration of the 

models presented in tables 4 (top) and 5 (bottom). The 

numerical integration of the corresponding models was 

performed using the Runge-Kutta method with step h=0.001 

and 10000 iterations. 
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Figure 5 shows the attractors obtained from the integration 

of the models represented in tables 3 and 4, using the 

Runge-Kutta method with step h = 0.001 and 10000 

iterations. These attractors would indicate that the behaviour 

of the cell is confined within limits in phase space and the 

chaotic systems tend to remain confined within its attractor. 

In terms of control, it is possible that the cell acquires strong 

stability and robustness under perturbations and remains in 

the operational conditions of experiments 3 and 8. 

V. CONCLUSION 

The numerical analysis and modelling of experimental 

time series from PEMFC presented in this work show that 

there is an important potential of deterministic chaos 

contained in voltage time series of the PEMFC for certain 

operating conditions. These operating conditions can give to 

the PEMFC the robustness, stability, durability and 

efficiency corresponding to a nonlinear dynamical system 

with chaotic solution with an attractor of fractal dimension. 

The dynamical models developed in this process could 

provide new understanding and better control of the PEMFC 

that may increase further its stability, durability and 

efficiency. 

The software developed and applied in this work, CMRTS 

(Chaotic Model Reconstruction from Time Series), allows an 

agile and efficient study and analysis of many different 

experimental time series obtained from diverse PEMFC 

operational conditions. It is therefore, a powerful tool for 

PEMFC research, development and even innovation towards 

a more efficient and competitive fuel cells.   

The robustness of a chaotic behaviour in complex dynamic 

systems emerges from the tendency to keep the solution of 

the system, its trajectory in phase space, confined within an 

attractor for very long periods of time and resilient to 

relatively strong external persistent perturbations. Formally, 

it is a consequence of the energy distribution of a chaotic 

dynamic in a wide and continuous range of frequencies 

avoiding any destructive resonance which is always possible 

in complex dynamic systems. Therefore, this nonlinear 

modelling process could allow a different kind of control 

bringing the PEMFC through the operational parameters to a 

chaotic attractor resulting in a dynamical stability for long 

periods of time without the need of any other type of external 

control or additional energy expense. However, there is a lot 

of work to be done in order to develop better nonlinear 

dynamical models with the accuracy and fidelity needed to 

achieve the precise values of the operational parameters for 

each PEMFC, because they are very sensitive to any small 

variations of the materials and design of the different parts of 

the PEMFC. The automatization of the CMRTS and the new 

understanding of the PEMFC’s dynamics that will provide 

the continuation of this R&D of nonlinear dynamical models 

applied to PEMFC, will also improve the diagnose and 

prevention of PEMFC failures and dysfunctional states, both 

on-line and off-line.  
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